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Abstract— Optical systems typically use galvanometers (aka 

galvos) and scanners. Galvos move optical elements such as 

mirrors, quasi-statically, from one static position to another, and 

an important figure of merit is their step-settle relaxation time. 

Scanners move in an oscillatory fashion, typically at the device 

resonant frequency. MEMS devices, which have many advantages 

and are often used in such optical systems, are typically high Q 

devices. Moving from one position to another for a galvo or one 

frequency/amplitude to another for scanners, can take many 

periods to settle following the ring down. During these transitions, 

the optical system is inactive and the time is not being efficiently 

used. In this article we show how a novel class of open loop control 

algorithms can be used to rapidly change position, frequency and 

amplitude, typically in well under the period of the device. We 

show how the MEMS designer can excite, with complete, high-

speed control, a vibrational mode of the system. We call this modal 

engineering, the ability to control the modes of the system in a 

practical, fast way. This control of the modes is accomplished with 

open loop control algorithms. 

 
Index Terms—MEMS, Galvanometers, Galvos, Scanners, 

Modal Engineering, Step and Settle Time, Open Loop Controls 

 

I. INTRODUCTION 

EMS devices are playing a large and growing role in 

transducing the electronic domain into the mechanical [1-

3]. In the world of MEMS actuators, devices that turn 

electrical controls into motion, modes of operation tend to fall 

into two broad classes. There is quasi-static operation where the 

device is moved from one static position to another and the 

figure of merit is the step and settle response time [4-9]. In 

optical systems, these types of devices are called galvanometers 
or “galvos”.1 The other typical mode of operation is scanning 

where the MEMS device continuously oscillates, usually at its 

resonant frequency, to leverage the Q of the system [10,11]. In 

optics, these types of devices are called “scanners” and can run 

along one or two axes. Here we discuss how they both can be 
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essentially ideal behavior. 

 

These two types of operation, quasi-static and scanning, are 
widely used because they represent two stable states for a 

moderately high Q MEMS device, oscillating at resonance or 

being static [12,13]. The optical engineer can design the system 

to do something useful, such as imaging in a LIDAR system, 

while the device is doing one of these [14,15]. Using normal 

drive methods, transitioning from one of these states to the other 

requires waiting a multitude of periods of the device for the 

ringing behavior to end and this temporal overhead limits 

system performance. In this article, we show how a novel class 

of open loop control theory algorithms allow the MEMS 

designer to do modal engineering, e.g. the turning on and off of 
specific modes of the device with transitions between them that 

take only a fraction of a period. We believe these algorithms 

will open the design space and allow for practical MEMS 

devices that are hybrid in operation between galvos and 

scanners, as the benefits of a high Q system can be leveraged 

without the price of a slow response time, critical in many 

applications. 

 

Figure 1 shows an example of what we discuss here. In the 

upper panel is shown the ability to turn the fundamental mode 

of the device on and off, precisely and quickly. This is a 

Simulink simulation for an infinite Q system with a 1 rad/sec 
resonant frequency. It would normally take an infinite time to 

make these transitions. As one can see, it is possible to abruptly 

turn these modes on and off, in integral units of the half period 

of the device. This is the behavior of an optimal scanner device. 

The lower panel shows how this same system can be made to 

operate quasi-statically, moving from one static position to 

another, quickly, with each transition taking one half of a 

period. Once again, this is for an infinite Q system. This is the 

behavior of an optimal galvo device. Combining these two 

methods lets one move the device to any position, to oscillate a 

specific number of cycles and then return to some other 
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position. We have demonstrated this performance in Figure 1 

for an infinite Q system but our approaches are perfectly general  

and will work for any underdamped, second order system with 

a Q>1. 

II. BACKGROUND 

In a previous set of papers [6,16-18] we have discussed the 

galvo behavior of a MEMS device and shown how it can have  

essentially perfect step and settle behavior. We will briefly 

summarize those results here. For a high Q system, when you 

apply a step function input, the system overshoots to twice the 

final rest position and then oscillates about that final rest 

position until it finally converges to that point. If, instead, a 

half-step is applied, one half a period later, the system is at a 

peak of its excursion with an amplitude equal to the desired 

final rest position. With zero slope in a position-time plot, its 

velocity is zero. The method shown in Figure 1 applies half the 

value of the force needed to hold the device at its desired end 

position and after one half a period, applies the full force. With 

the device where it is intended to be, after half a period, with 

zero velocity, this application of the full force essentially 
catches it and holds it in the desired position, stably for as long 

is desired.  This is called a double step (DS) drive. One half the 

force and one half the period are the values for an infinite Q 

(Q>100) system. This is perfectly general and works for a 

system with any Q with a modification of the parameters.  This 

is derived later in the analytical section.  Ref. 16 discusses a 

variety of similar drive schemes called overdrive methods 

where one applies an accelerating force for a while and then a 

decelerating force. They are similar to how one moves an object 

in free space where it starts at rest, an accelerating force is 

applied, and then a decelerating force is applied with the object 

arriving at its final rest position with zero velocity. The 
simulation shown in the lower panel of Figure 1 was obtained 

using DS for all the transitions. The drive signal is the red curve 

and one can see the double step structure for each transition. 

These open loop drive schemes allow for essentially ideal galvo 

behavior. 

In this paper, our main focus is the behavior shown in the 

upper panel of Fig. 1. This is the effect we describe as modal 

engineering, the ability to turn the modes of the system on and 

off, quickly, with precision. The key to our approach is to drive 

the system coherently, with full knowledge of its underlying 

dynamics. In a conventional control theory approach [12,13], 
one uses feedback and methods like PID control. Our approach 

here is simpler from a system point of view because the sensor 

and feedback system are not needed, reducing cost and 

complexity. The high stability and linearity of MEMS make 

them ideally suited for such feedforward control algorithms 

[19]. 

This paper is organized into the following sections. In 

section IIA we present results from Simulink simulations using 

an infinite Q system, demonstrating all tools we have at our 

disposal. In section IIB we study a finite Q system showing how 

finite damping modifies the algorithms demonstrated in section 

IIA. In section III, we present a closed-form solution of the 
underlying equations of motion for our system. Finally, in 

section IV, we present experimental results on a MEMS 

micromirror. This analysis and data are for a MEMS application 

but we note that these approaches will work equally well for 

any underdamped, second order system. 

A. Infinite Q Systems 

In this section we discuss results obtained using Simulink 

simulations on an infinite Q, second order system. The system 

has a resonant frequency of 1 rad/sec, the period is 2. The 

simulations are performed with time steps of 10-4 seconds and 

typically cover periods of time in the range of 100-300 seconds. 

If one gives the system a step input, one sees the behavior 

shown in Figure 2a). It rings forever, oscillating between zero 

and twice the nominal final resting place. A larger step 

increases the oscillating amplitude. If one turns the step off at 

an arbitrary time, the device ends up in a non-determinate state. 

The signal shown in Figure 2a) is unipolar, it oscillates between 

zero and twice the nominal resting point of the system. If one 
wishes to have bipolar behavior, one can use a pulse like that 

 

 
Figure 1  Shown in the upper panel is modal engineering, the ability to turn 

the modes of the system on and off, with precision. The lower panel shows 
ideal step and settle response for our system. Both results are for the same 
infinite Q system. The red curve is the applied drive and the black curve, the 
system response. This is a Simulink simulation. 
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shown in Figure 2b). One half a period (π) after the step up, a 

step down in equal amplitude is applied. In this case the system 

oscillates symmetrically around zero.  

 

 
In 2c), we turn the step off 5 device periods (10) after it 

starts. One can see that the modes have been completely and 
cleanly turned off. The key point is to apply the off pulse at a 

very specific time in the oscillation cycle to pull the energy out 

of the mode. We note that the system has an infinite Q but by 

using an understanding of the dynamics of the device, we can 

make it switch on and off in a single period. We also note these 

are open loop drive algorithms, there is no feedback being 

employed. The amplitude of oscillation is determined by the 

pulse amplitude. 

 
Figure 4  Shown is an example of using double step (Fig. 1) and modal 

engineering (Fig. 3) to produce a complex response. This is a Simulink 
simulation for an infinite Q system. The red trace is the applied drive and the 
black curve is the system response. 

2  

 

 
Figure 2 Shown are Simulink simulations on an infinite Q system. On the 

upper panel is shown a response to a step. The system oscillates in a unipolar 
way, between zero and twice the equilibrium position. In the middle panel, 
when a half period pulse is applied, the system rings in a bipolar way. The 
lower panel shows turning the oscillations off by using a properly timed half 
period pulse. 

 
Figure 3 Shown is how by combining the pulses, one can turn the modes on 
and off in myriad complex ways. The red traces are the applied drive and the 
black curves, the system response. 

A 

B 

C 
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 As shown in Figure  one can use a negative pulse applied 

an integer number of periods after the first pulse (in this case 5 

periods or 10) to turn the sequence off. One can have as few 

as one complete cycle or even a half a cycle. For the single full 

cycle, 1.5 periods long, one applies a step up, half a period later 

one has the step down to zero, half a period later a step down to 

minus the step-up amplitude and finally, a half a period later a 
step up to zero. To obtain the unipolar signal one applies a pulse 

of a full period length. When the system is at rest, a step up can 

be applied at any time. The key to the approach we present here 

is to apply the rest of the pulse sequence at times that 

correspond to integer values of the device period, which for 

MEMS devices may be known to 1 ppm or better. We are using 

an understanding of the device dynamics to time our pulses to 

let us turn these modes on and off at will. We refer to this 

capability as modal engineering. 

For a linear system, one can combine the techniques shown 

in Figure 2 with those shown in Figure  to produce complex 
patterns. An example of such a pattern is shown in Figure 4. In 

this figure, we use the DS drive (up and down) to create a 

plateau and then use the recipe for a full sine wave to put a put 

a negative pulse in the center of the plateau. With the tools 

presented here one can create an essentially unlimited set of 

patterns and behaviors of arbitrary complexity. One can 

engineer the modes of the MEMS device to meet the needs of 

the imaging system as opposed to designing the optics around 

the limitations of the MEMS device.  

In this section, we have discussed the modal engineering of 

an infinite Q system. However, the techniques are general and 

can be applied to finite Q systems. In the next section we 
discuss these methods. 

B. Finite Q Systems 

For a system with a finite Q, one needs to modify the 

algorithms discussed previously in an appropriate way. Finite 

Q causes two effects, one trivial and one that must be dealt with. 
The trivial effect is the shift in resonant frequency due to finite 

damping. If one makes the standard correction, all is well. One 

needs to use the resonant frequency of the system for the timing 

as discussed above, which takes the dissipation into account. 

The second effect is somewhat more troubling and must be 

explicitly dealt with. 

Finite Q means losses in the system from the oscillating 

mode. Figure 5 shows what happens. In the upper panel of 

Figure 5, the system has an infinite Q and behaves as described 

previously. In the lower panel, the system has a Q of ~100 and 

two things happen. Because energy is lost every cycle, the 

amplitude of the oscillating mode decays over time. And 
because the amplitude of the final cycle is not the amplitude of 

the first cycle, the negative going pulse pulls too much energy 

from the system and does not stop the response but causes it to 

oscillate at a non-zero amplitude. This loss of energy must be 

compensated for. To do this we add in a small amount of drive 

at the resonant frequency.  

Figure 6 shows how this is done. We add in enough energy 

at the resonant frequency to compensate for the damping losses. 

We are, in essence, topping up the mode. This returns the 

response of the system to the ideal behavior seen for the infinite 

Q performance. The other drive techniques demonstrated for 
the infinite Q system can also be modified in a similar way. 

 

 

 
Figure 5  Shown is an 11 pulse cycle for an infinite Q system, upper 
panel and a system with a Q of 100, lower panel. These are Simulink 
simulations with the red traces the input and the black curves the 
system response. 

Figure 6  Shown is a Simulink simulation for a finite Q system (100) 

where we feed in enough AC signal to account for the damping 
losses after the initial pulse. Red: drive, black: response. 
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In the infinite Q limit, the emptying pulse is equal in 

amplitude to the initial pulse.  No energy is dissipated during 

the ringing of the system.  For finite Q, the starting pulse is 

larger than the stopping pulse.  This is because the starting pulse 

needs to add in some extra energy to account for the losses 
during the first cycle and the last pulse needs less energy 

because of losses during the last cycle.  This equivalence is 

shown explicitly in the analytical section.  Because one usually 

has a finite amount of force overhead to work with, a DC pulse 

is preferable because the power factor is 1 for a square pulse but 

only .707 for a sine pulse, requiring a larger force excursion for 

the same impulse. 

Error! Reference source not found.7 shows a Simulink 

simulation with three new features. In the first, one can fill the 

mode initially (or empty it) using multiple timed pulses, with 

~50% amplitude, one period apart. This may work better 
experimentally where the ability to apply large forces may be 

limited. In the second new feature, we use a unipolar square 

wave to keep the mode topped up. It works as well as the sine 

wave and simplifies the closed form analysis discussed in the 

next section. Finally, by shifting the emptying pulse by one half 

a period, one can use a negative going pulse instead of a positive 

pulse. These features allow one to tailor the drive to match the 

electronics and kinds of forcing one has available. 

III. ANALYTICAL RESULTS 

In this section, we discuss the analytical solution to the 

relevant ODE. As shown above, one can drive the system using 

either pulses or parts of sine waves. For the sake of simplicity, 

we discuss the use of pulses in this section. One thing we wish 

to do is to use the drives as shown in Figure 6. There is an initial 

pulse which puts energy into the mode, a series of smaller 

pulses which keep the mode topped up to deal with the losses 

due to the finite Q of the system and finally an emptying pulse, 

which removes energy from the mode. The other type of drive 

we wish to use is the two-step drive, such as shown in Figure 8. 

All of these various drive schemes can be created by various 

combinations of step functions with appropriate time delays and 

changes in step height. Because our system is linear, we can 

create the complete analytical result of these complex drives by 

summing these various contributions to create our final system 
response. In this section, for simplicity, we focus on a system 

with finite 𝑄 =
𝑚 𝜔0

𝛾
  whose natural frequency is 𝜔0 = √

𝑘

𝑚
, 

mass m and loss factor γ. The resonator is further characterized 

by its spring constant k and can be driven by static forces F1 and 

harmonic forcing Fdr at a frequency of 𝜔𝑑𝑟.  The resonance 

frequency includes dissipative effects and is expressed as 𝜔𝑟 =

 

 
Figure 8  Top: Shown is the single step and two-step response for a Q = 10 

system (infinite Q response is dashed), calculated using the closed form 
solution 4 and 5.  Bottom: resonant actuation for a Q=10 system (infinite Q 
response in dashed). In both plots the red trace depicts the set and hold 
response, illustrating a transition with no ringing or overshoot. 

 
Figure 7  Shown is a Simulink simulation of a system with a Q~100. Three 

new features are demonstrated:  a) one can ring the system up (or down) in 
multiple pulses, b) we are using a square wave to keep the mode topped up 
and c) we can use a negative pulse, moved by ½ a period, to remove the 
energy from the mode. The red curve is the input and the black the response. 
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𝜔0√1 − (
𝛾

2𝑚𝜔0
)

2

=
2𝜋

𝑇𝑟
, and 𝑇𝑟 is the period of the resonance. 

Such a system is characterized by the following second order 

differential equation: 

 𝑚𝑥̈ + 𝛾𝑥̇ + 𝑘𝑥 = 𝐹1 + 𝐹𝑑𝑟(𝑡), (1) 

where 𝐹𝑑𝑟(𝑡), represents harmonic forcing. The response takes 

the general form 

𝑥(𝑡) =
𝐹1

𝑘
+ 𝑒−

𝛾
2𝑚

𝑡𝑒
−𝑖𝑡𝜔0√1−(

𝛾
2𝑚𝜔0

)
2

(𝑎 + 𝑒
−2𝑖𝑡𝜔0√1−(

𝛾
2𝑚𝜔0

)
2

𝑏) 

+ 𝐹𝑑𝑟
𝑚(𝜔0

2−𝜔𝑑𝑟
2) sin(𝜔𝑑𝑟𝑡)−𝛾𝜔𝑑𝑟 cos(𝜔𝑑𝑟𝑡)

(𝛾𝜔𝑑𝑟)2+𝑚2(𝜔0
2−𝜔𝑑𝑟

2)2
, 

(2) 

All the simulations outlined above can be expressed by 

applying the driving conditions and the boundary conditions 

and solving for the integration constants a and b. Without loss 

of generality we define the target amplitude to be x0, which is 

reached by the steady state force F0 = kx0. 

For example, the ring free set-up depicted in Figure  is 

obtained by setting 𝐹𝑑𝑟 = 0, 𝑥(0) = 0 and 𝑥′(0) = 0. The last 

free parameter is F1, which is determined by requiring that the 

apex is reached after the first half period, or 𝑥(𝑡1) = 𝑥0, note 

that 𝑡1 =
1

2
𝑇𝑟. The solution is the well-known expression for the 

response of a harmonic oscillator to the step drive: 

 𝑥(𝑡) =
𝐹1

𝑘
(1 − 𝑒−

𝛾𝑡

2𝑚 (cos(𝜔𝑟𝑡) +
𝛾

2𝑚
sin(𝜔𝑟𝑡))), (3) 

and the force taking the form 

 
𝐹1 = 𝐹𝑠𝑡−𝑢𝑝 =  𝐹0  (1 −

1

1 + 𝑒
𝛾

2𝑚
𝑡1

) 

                         ≈
𝐹0

2
(1 +

𝜋

4𝑄
) + O[𝑄−2],. 

(4) 

where the latter expression is valid in the high Q limit. 

Once the apex is reached the forcing can be turned to F0 to 
hold the position x0 at rest, as is illustrated in Figure . 

Alternatively, in scanning mode, a unipolar square wave can be 

applied to maintain the amplitude of the oscillating response. A 

plot of the drive force and response are illustrated in Figure 9 

for a Q = 10 system and is constructed in the following way: 

 

I)  The step-up is expressed by equation 3 displaced by time 

t0 so that 𝑡 → (𝑡 − 𝑡0) and the drive force is Fst-up given by 

equation 4. The step-up duration lasts= t1. or half a period of the 

damped system. In the high Q limit (introducing an error on the 

order of 0.2% for Q=10) equation 3 becomes  

 𝑥(𝑡) =
𝐹1

𝑘
(1 − 𝑒−

𝛾(𝑡−𝑡0)

2𝑚 cos(𝜔𝑟(𝑡 − 𝑡0))), (5) 

II)  The response is set to ring for N=6 full periods or 𝑇𝑁 =

6𝑇𝑟 =
6

𝑓𝑟
, after which a final pulse pulls all the energy out of the 

mode so that the resonator comes to rest at the origin. In a 

dissipationless system the forcing and response is symmetric. 
Including dissipation results in a second pulse which is smaller 

than the first as some of the energy is dissipated and does not 

need to be actively pulled out of the mode. One finds that the 

step-down force is  

 
𝐹1 = 𝐹𝑠𝑡−𝑑𝑛 =  𝐹0 − 𝐹𝑠𝑡−𝑢𝑝 = (

𝐹0

1 + 𝑒
𝛾

2𝑚
𝑡1

) 

                        ≈
𝐹0

2
(1 −

𝜋

4𝑄
) + O[𝑄−2], 

(6) 

and the amplitude response takes the form 

𝑥(𝑡) =
𝐹0

𝑘
−

𝐹1

𝑘
(1 − 𝑒−

𝛾𝑡

2𝑚 (cos(𝜔𝑟𝑡) +
𝛾

2𝑚
sin(𝜔𝑟𝑡))), 

𝑥(𝑡) =
𝐹𝑠𝑡−𝑑𝑛

𝑘
+

𝐹𝑠𝑡−𝑢𝑝

𝑘
𝑒−

𝛾𝑡

2𝑚 cos(𝜔𝑟𝑡), 

(7) 

with the time shifted to 𝑡𝑑𝑛 = 𝑡 − 𝑡0 − 𝑡1−𝑡𝑁 and the second 

expression holds for large Q. 

III) The cyclic period, in the example given here lasting 6 

periods, is determined by solving equation 1 with Fdr=0 and F1 

switching on and off to form a uni-polar square wave with 

frequency 𝑓𝑟 =
1

𝑇𝑟
 and amplitude FSqW. As two time-sections are 

implemented two sets of boundary conditions are needed: 

Initially, F1 =0 𝑥𝑎(𝑡1) = 𝑥0, and 𝑥𝑎′(𝑡1) = 0, corresponding to 

 
Figure 9  Shown is the response for a system with a Q of 10 with the applied 

pulse train in red (square wave unipolar drive).  The analytic solution 
reproduces perfectly the numeric solution to the differential equation. The 
black line illustrates the amplitude of the first and last pulse for a dissipation 
free system, the dashed lines illustrate the drive forces needed to add and 
remove the energy from the mode. 
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a release from rest at position 𝑥0. A half-period later, 
1

2𝑓𝑟
, the 

force is switched to FSqW. 

The boundary conditions ensure a smooth continuity: 𝑥𝑏 (𝑡1 +

𝑇𝑟

2
) = 𝑥𝑎 (𝑡1 +

𝑇𝑟

2
) = −𝑥0𝑒

−
𝛾𝜋

2𝑚 𝜔𝑟 .   and 𝑥𝑏′ (𝑡1 +
𝑇𝑟

2
) = 0. 

Finally, the force, FSqW, needed to reach the target amplitude x0 
is determined by the condition that the apex is reached after a 

further half period, such that 𝑥𝑏(𝑡1 + 𝑇𝑟) = 𝑥0. The sequence 

repeats N times until the energy is pulled from the mode as 

described previously. A closed form is given as: 

 

𝑥𝑎(𝑡𝑎) = 𝑒
−

𝛾 𝑡𝑎

2𝑚 cos(𝜔𝑟𝑡𝑎)       [0 < 𝑡𝑎 <
𝑇𝑟

2
] 

𝑥𝑏(𝑡𝑏) = −𝑒
−

𝛾 𝑡𝑏

2𝑚 cos(𝜔𝑟𝑡𝑏) + 𝑥0   [0 < 𝑡𝑏 <
𝑇𝑟

2
] 

(8) 

With 𝑡𝑎 = mod(𝑡 − 𝑡0 − 𝑡1, 𝑇𝑟) and 𝑡𝑏 = mod (𝑡 − 𝑡0 − 𝑡1 −
𝑇𝑟

2
, 𝑇𝑟), and 𝑡 ∈ [𝑡0 +

1

2
𝑇𝑟 , 𝑡0 + (𝑁 +

1

2
) 𝑇𝑟]. Finally, the force 

required to remain “topped off” with a square wave drive is 

 

𝐹𝑆𝑞𝑊 = 𝐹0  (1 −
1 + 𝑒

−
𝛾𝜋

2𝑚 𝜔𝑟

1 + 𝑒
𝛾𝜋

2𝑚 𝜔𝑟

) 

≈ 𝐹0
𝜋

2 𝑄
(1 −

𝜋

4 𝑄
) + O[𝑄−3]. 

(9) 

Figure 9 is generated by combining the results for the drive 

from equations 4 and 6 to generate the forcing for the step-up 

and down respectively, and equation 9 to maintain the resonant 
response.  The amplitude response of the drive is plotted using 

equations 5, 7, and 8. The forcing starts at t0=1 and the time is 

normalized to the period of the resonator. The solid black trace 

indicates the level of the step up and step-down forces for a 

dissipation free system, where for such a case no square-wave 

drive would be needed.  As the forcing is only in one direction 

the response is no longer symmetric in amplitude with the 

negative deflection only reaching an amplitude of −𝑥0𝑒
−

𝛾𝜋

2𝑚 𝜔𝑟. 

A numeric solution of the differential equation 1 is 

indistinguishable from the analytical solution. 

 

The same exercise can be repeated for a harmonic drive, 
where now F1=0 and Fr is determined by applying the boundary 

conditions. The response due to the harmonic drive force, 

𝐹𝑟−𝑢𝑝 sin(𝜔𝑟𝑡), is given by the ring up expression 

 

𝑥(𝑡 → 𝑡 − 𝑡0) = 𝐴𝑡𝑒−
𝛾𝑡

2𝑚 sin(𝜔𝑟𝑡 + 𝜑𝑡) 

                   +𝐴 cos(𝜔𝑟𝑡 + 𝜑), 
(10) 

with the steady state terms 𝜑 = tan−1 (
𝑚𝜔𝑟

𝛾
) +

𝜋

2
 and 𝐴 =

𝐹0

𝑚

1

√(𝜔0
2−𝜔𝑟

2)2+(
𝛾𝜔𝑟

𝑚
)

2
, and the transient terms 𝜑𝑡 =

tan−1 (
𝜔𝑟

𝛾

2𝑚
+ 𝜔𝑟 tan 𝜑

) and 𝐴𝑡 = −𝐴
cos 𝜑

sin 𝜑𝑡
. When removing energy after 

the steady state oscillations the amplitude response becomes 

 
𝑥(𝑡 → 𝑡 − 𝑡0 − (𝑁 + 1)𝑇𝑡) = −𝐴𝑡𝑒

𝛾𝑡
2𝑚 sin(𝜔𝑟𝑡 − 𝜑𝑡) 

                                                          + 𝐴 cos(𝜔𝑟𝑡 − 𝜑), 

(11) 

applicable for 𝑡 ∈ [𝑡0 + (𝑁 +
1

2
) 𝑇𝑟 , 𝑡0 + (𝑁 + 1)𝑇𝑟].  The expressions 

for the ring up and ring down forcing amplitudes are 

 

𝐹𝑟−𝑢𝑝 = 𝐹0

𝑥0

𝐴𝑡𝑒
−

𝛾
2𝑚

𝜋
𝜔𝑟 sin(𝜋 + 𝜑𝑡) + 𝐴 cos(𝜋 + 𝜑)

  

              ≈ 𝐹0 (
2

𝜋
+

1

2𝑄
) + O [𝑄−2

], 

(12) 

and 

 

𝐹𝑟−𝑑𝑛 =
𝐹0𝑚

𝛾 𝜔𝑟 𝜔0
2

((
𝛾𝜔𝑟

𝑚 )
2

+ (
𝛾

2𝑚
)

4

)

(𝑒
𝜋𝛾

2𝑚𝜔𝑟 − 1)

 

           ≈ 𝐹0 (
2

𝜋
−

1

2𝑄
) + O [𝑄−2

].   

(13) 

During the steady state the amplitude is  

 𝑥 (𝑡 → 𝑡 − 𝑡0 −
1

2
𝑇𝑡) = 𝑄

𝐹0

𝑘
cos(𝜔𝑟𝑡), (14) 

 
Figure 10  Sine wave drive.  A first and last half period sine drive rapidly 

dumps and extracts energy from the mode. To maintain the mode amplitude 
a resonant drive is applied. The plot describes a Q=10 system, the analytic 
result perfectly matches the numeric solution for the differential equation. 
The black line illustrates the amplitude of the first and last pulse for a 
dissipation free system, the dashed lines illustrate the drive forces needed to 
add and remove the energy from the mode. 
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with 𝑡 ∈ [𝑡0 +
1

2
𝑇𝑟 , 𝑡0 + (𝑁 +

1

2
) 𝑇𝑟] and the harmonic forcing is 

simply  

 
𝐹𝑑𝑟(𝑡) =

𝐹0

𝑚

1

√( 𝜔0
2 −  𝜔𝑟

2)2 + (
𝛾𝜔𝑟

𝑚 )
2

sin(𝜔𝑟𝑡 + 𝜋) 

≈
𝐹0

𝑄
 sin(𝜔𝑟𝑡 + 𝜋). 

(15) 

The drive force and the response of the bi-polar harmonic 

drive is illustrated in Figure 10 for a Q=10 system. Again, the 

analytic solution presented here is indistinguishable from the 

numeric solution of the differential equation. An advantage of 

this drive modality is the symmetric bi-polar response. It should 

be noted that a harmonic oscillation which is only in the positive 

regions can easily be generated by replacing the steady state 

drive with a dc offset and half the resonant force. Such that  

 𝐹𝑑𝑟(𝑡) =
𝐹0

2
 (1 +

1

𝑄
sin(𝜔𝑟𝑡 + 𝜋)). (16) 

Figure 11 illustrates how the different forcing amplitudes, 

scaled to the static force F0, are affected by the quality factor. 

As would be expected the steady state forces, for both the 

harmonic and square wave drive fall off for high Q. For high Q 

the step-up/ring-up forces and step-down/ring-down forces 

respectively also converge as would be expected for a reversible 

dissipation free system. The step-down/ring-down force 

amplitudes vanish for low Q, as for such systems all energy is 

dissipated passively and there is no longer the need to actively 

apply a breaking force.  

IV. EXPERIMENTAL RESULTS 

To demonstrate these effects on a MEMS device, we have 

used a commercial micro-mirror system, the Mirrorcle 

Technologies product [20]. The device and system are shown 

in Figure . The device we used has a 5mm diameter mirror, a 

resonant frequency of 325 Hz and a packaged Q of 25. It is a 

Mirrorcle model A8L2.2 mirror, gimbal-less two axis bonded 

design with a gold-coated mirror and a tip/tilt range of +/- 5 

degrees about two axes.  

Figure 12 also shows our experimental setup. The mirror is 

solidly mounted in the center of the system and a laser and 
position sensitive detector are used to measure the mirror angles 

of rotation. For these experiments, we only use one axis of 

rotation. The mirror is controlled by an electronic drive circuit 

that determines the mirror angle. A +/- 10 V input creates a +/- 

5 degree rotation. The actual MEMS device itself is operated 

with ~180 volts of drive. The electronic circuit has a look-up 

table with the device calibration stored on it and this system 

both creates the high voltage needed and corrects for the 

quadratic voltage dependence normally seen for a MEMS 

device. The input voltage to the system (+/- 10 V) produces a 

linear angular response (+/- 5 degrees) and so the input can be 
thought of as a force directly applied to the mirror. The 

electronic circuit is thus designed and calibrated to act like a 

fixed angular spring constant. The circuit is well fast enough to 

respond to the dynamics being studied here. An analog 

multiplier circuit (AD633) was used to modulate the input 

signal along with an SRS summing circuit to add the various 

pulses together, created by an SRS DG645 pulse generator. 

 

 

 
Figure 11  Normalized drive forces depending on drive method as a function 

of the Quality factor.  In each case the response amplitude is normalized to 

𝑥0 =
𝐹0

𝑘
. The yellow and light blue trace illustrate the drive force needed to 

maintain the amplitude of the resonant system for a unipolar square wave 
and resonant sine wave drive respectively. As would be expected these fall off 
with increasing Q as the need to “top off” vanishes. The step up and step-

down amplitude converge at 0.5 for the step drive and at  
2

𝜋
  for the sine 

drive. In both cases the step-down force vanishes for low Q as all the energy 
in the mode is removed by dissipation and no breaking force is needed. The 
solid vertical black line corresponds to Q = 10, for which system the full 
responses are illustrated in figures 9 and 10. 

 

Figure 12  Shown is our experimental apparatus. The Mirrorcle MEMS micro-

mirror is mounted on the central section, illuminated with a laser and the 
position sensitive detector is used to detect the mirror’s angular position. The 
mirror is controlled by an electronic circuit shown in the lower left of the 
photo. 
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Figure 13 shows our experimental results. In the top panel, 

we show the native response of the system to a single step input.  

The Q~25 and the system rings for many tens of milliseconds. 

The middle panel shows the response to a two-step input, 

similar to the simulations shown in Figure 1 and the analytical 
solutions shown in Figure 8. In the two-step input the settling 

time has been reduced to ~1/2 a period or ~1.5 ms. The lower 

panel shows the response to a more complicated drive, similar 

to that drive algorithms can make this device function as an 

essentially perfect galvo and a perfect scanner.  Error! 

Reference source not found.14 shows how, by bringing all the 

algorithms together on a real MEMS device, one can modal 

engineer the output to create complex patterns. The 

experimental results in Error! Reference source not found.14 

can be compared with the simulation results in Figure 4. They 

agree, demonstrating the effectiveness of the algorithms 

discussed here. 

 

V. CONCLUSIONS 

In this paper we have shown how novel open loop control 

algorithms can make MEMS devices perform as essentially 

ideal galvos and scanners. In a real device, with a finite Q, 

changes to the input cause the system to ring and the response 

time is not ideal. For an optical system, this is wasted time 
because the device is not in a well-defined state. Using the 

algorithms shown here, one can make an imperfect device 

perform in an essentially ideal manner. 

We believe that the algorithms we have presented here will 

allow for the optical system designer to make a better use of the 

imaging time with minimal overhead due to MEMS device 

ringing and settling.   
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Figure 13  Shown are results on the Mirrorcle MEMS micromirror using the 
algorithms described in the text.  The red curve is the drive and the blue curve 
the device response.  The upper panel shows the native response of the 
device.  In response to a step input, it rings for ~100ms. The middle panel 
shows the step response reduced to ~1ms and the lower panel shows how 
one can use an advanced drive method to produce ideal scanner behavior.  
Note the differing time scales in all three plots. 

 

 

 

Figure 14  Shown is a complex pattern of response of the MEMS device 

shown in Figure 12.  This is a similar pattern to that shown in Figure 4. 
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