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Abstract

This paper presents a bi-level network interdiction model to increase the ef-

fectiveness of attempting to disrupt a human trafficking network under a resource

constrained environment. To model the behavior of the trafficker, we present a new

interpretation of the traditional maximum flow network problem in which the arc

capacity parameter serves as a proxy for the trafficker’s desirability to travel along

segments of the network. The objective for the anti-human trafficking stakeholder is

to invest resources in detection and intervention efforts throughout the network in a

manner that minimizes the trafficker’s expected maximum desirability of operating

on the network. Interdictions are binary, and their effects are stochastic (i.e., there

is a positive probability that a disruption attempt is unsuccessful). We present a

multi-stage version of the model, which incorporates the effect of interdictions be-

coming more or less successful over time. Using a genetic algorithm that uses a

pseudo-utility ratio for the repair operation, we solve multiple problem instances

for a case study of the road network in the Eastern Development Region of Nepal

and multiple grid networks. We then discuss observations regarding the impact of

probabilistic interdiction success and the implications it has for optimal policies to

disrupt a human trafficking network with limited resources.
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1 Introduction

Human trafficking is a human rights violation affecting millions of people worldwide

and international efforts to prevent, detect, and disrupt these exploitative operations

have been growing in recent years. While the precise definition of human trafficking dif-

fers from country to country, and even among jurisdictions within the same country, the

most widely recognized definition stems from the Palermo Protocol, which was adopted

by the United Nations in 2000. In it, human trafficking is defined as “the recruitment,

transportation, transfer, harbouring or receipt of persons, by means of the threat or use

of force or other forms of coercion, of abduction, of fraud, of deception, of the abuse

of power or of a position of vulnerability or of the giving or receiving of payments or

benefits to achieve the consent of a person having control over another person, for the

purpose of exploitation” (UN General Assembly, 2000). While human trafficking some-

times involves moving victims from one location to another, it is noteworthy to highlight

that the definition of human trafficking does not require movement.

Although human trafficking is globally acknowledged, its US$150 billion annual

global industry is far from being significantly disrupted (International Labour Office

(ILO), 2017). Human trafficking prevalence estimates are notoriously difficult to ob-

tain due to the varying jurisdictional definitions and illicit nature of the crime (Busch-

Armendariz et al., 2017). However, the most reliable global estimates indicate that

25 million people were being trafficked on any given day in 2016 for labor and/or sex

(International Labour Office (ILO), 2017).

While a substantial amount of human trafficking research has been conducted

in the social sciences, most of the prior research has focused on empirical and qualitative

insights to describe victim vulnerabilities, public health implications, and law enforce-

ment responses to trafficking (e.g., Chisolm-Straker & Stoklosa (2017); Ortiz (2016);

Nichols (2016); Farrell & Kane (2020); Weitzer (2014)). While critically important in

its own right, this social science literature has also informed an emerging body of opera-

tions research literature aimed at providing actionable insight into optimal mechanisms

of disrupting human trafficking operations (Mayorga et al., 2019; Konrad et al., 2017;

Caulkins et al., 2019). These papers specifically identify the opportunity for network

interdiction models to be used to disrupt human trafficking networks. Conversely, a

recent publication identifying emerging areas of network interdiction research also iden-

tifies human trafficking as an application area requiring methodological advancements

(Smith & Song, 2019).
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Network interdiction models can be used to gain insights into the best ways

to disrupt a human trafficking network and can be used in contexts in which human

trafficking is occurring with or without movement. For example, in the former, network

models can be used to represent financial transactions, social connections, and commu-

nication patterns. In the latter, network interdiction models can be used to disrupt

human trafficking that involves traffickers and/or victims moving throughout a physical

network. The model we develop in this paper can be used to disrupt both movement

and non-movement network related aspects of human trafficking operations. However,

we present the model in the context of disrupting the physical movement involved in

human trafficking operations.

For instance, migration has been identified as a system condition that enhances

an individual’s vulnerability to being trafficked (Seo-Young, 2015). The United Nations

Office on Drugs and Crime (2013) states that two-thirds of migrants (not all are being

trafficked) in the East Asia and Pacific region use informal crossing points such as rivers

and accessible points of the coasts. As we will discuss in the case study presented in this

paper, similar informal crossing also occurs along the Nepal/India border. Due to the

many border crossing locations, it can be difficult to monitor all possible crossing points

in the region for human trafficking activity. This motivates the usefulness of network

interdiction models in resource constrained environments.

While the potential benefit of using network interdiction models for human

trafficking intervention is suggested in the aforementioned recent operations research

literature, to the best of our knowledge, our work is the first to begin to tailor network

interdiction models to the nuances of human trafficking on a physical network. The

model we present draws assumptions and incorporates nuances of human trafficking

from the current social science literature. Yet, information regarding the structure and

operations of human trafficking networks is currently limited, and as such, so is the data

to populate network interdiction models. Therefore, our model serves as an illustration

of the benefit network interdiction models could have for human trafficking disruption

efforts and motivates further interdisciplinary collaborations between social scientists

and operations researchers to pursue research that identifies robust input parameters

and additional factors that need to be incorporated into network interdiction models.

Specifically, we present a bi-level network interdiction model in which there

are two players who are self-optimizers based on the other player’s actions. Players in

our model include the interdictor—who takes an initial action seeking to disrupt the
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human trafficking network—and the trafficker—who observes the interdictor’s actions

and operates on the resulting network. We modeled the trafficker’s movement using the

maximum flow problem where the traditional arc capacity parameters are a proxy for the

desirability of a trafficker to operate along that arc rather than a literal interpretation

of flow; the interdictor desires to minimize this maximum flow, thereby minimizing the

trafficker’s desirability of operating on the network. Interdiction decisions are binary

and attempt to reduce the capacity of an arc to zero. However, the result of the decision

is stochastic; there is a positive probability that an interdiction decision on an arc is

unsuccessful and doesn’t have any effect on the arc capacity. Additionally, our model is

multi-staged and interdiction decisions affect the probability of successful interdiction

in future stages. This assumption is inspired by human trafficking literature that states

the training and information gained from previous interdictions give interdictors signals

about how traffickers operate in an area (?). On the other hand, traffickers adapt their

operations over time in response to interdictions to avoid detection (Surtees, 2008).

This adjusted success probability dynamic results in nonlinearities within the model,

motivating us to use a genetic algorithm with a novel repair function to solve the model.

We illustrate the impact network interdiction models can have on disrupting

human trafficking operations through a case study involving census data and the road

network from the Eastern Development Region of Nepal. Due to the available data,

this paper primarily focuses on law enforcement as interdictors. However, we note that

there are many types of non-law enforcement related interventions to human trafficking

that could be considered by other types of interdictors, including basic needs provi-

sion, prevention efforts, increasing access to human trafficking hotlines and services for

survivors, training healthcare staff to recognize potential signs of trafficking, and labor

inspections. Thus, nonprofit organizations, healthcare providers, public health officials,

policy makers, and government agencies can also be viewed as interdictors. Indeed,

recent human trafficking research discusses the need to consider human trafficking inter-

ventions outside of the criminal justice system and acknowledges that this multi-faceted

approach may yield better outcomes (Farrell, Bright, & de Vries, 2019; Farrell & Kane,

2019; Farrell, Dank, et al., 2019). This highlights the need for additional social science

research that focuses on non-law enforcement disruption mechanisms and their efficacy

that could also serve as inputs into our model.

The motivating example for this model is non-governmental organization Love

Justice International’s human trafficking transit monitoring operations in Nepal (Hud-



5

low, 2015). Due to the high trafficking flow between Nepal and India’s open border, Love

Justice International trains staff to identify possible cases of human trafficking along the

border and at key transit points throughout Nepal. These staff don’t have the authority

to physically interdict the traffickers or stop potential human trafficking victims from

crossing the border. However, they can ask screening questions to travellers and notify

local law enforcement if they observe indicators of trafficking or connect potential vic-

tims to resources to lessen their vulnerability to trafficking. Thus, the transit monitoring

approach is a human trafficking disruption mechanism.

Our contributions with this work include: providing one of the first network in-

terdiction models to address human trafficking, creating a multi-stage network interdic-

tion model with decision dependent interdiction success probabilities with the objective

of minimizing the maximum flow, re-framing arc capacity parameters as proxies for arc

desirability, and developing a novel repair function for a genetic algorithm to solve the

resulting nonlinear model.

The remainder of the paper is organized as follows. Section 2 provides a literature

review of related network interdiction models. In Section 3, we present the multi-stage

stochastic network interdiction model with decision dependent interdiction probabilities.

The genetic algorithm for solving the resulting nonlinear model is discussed in Section

4, and Section 5 presents a case study for the Eastern Development Region of Nepal.

Finally, in Section 6, we summarize our results and discuss the practicality of the model.

We also propose extensions for the model and solution framework.

2 Literature Review

Network interdiction models allow us to analyze human trafficking disruption ef-

forts by modeling both the trafficker’s and the interdictor’s policies, behaviors, timing,

and level of information about the other player. Network interdiction typically models

two opposing decision makers on the same network. One decision maker, the defender,

is trying to operate on the network as effectively as possible, while the other, the inter-

dictor, takes actions to interrupt the ongoing operation (Smith & Song, 2019). Classical

examples consider the defender as a player who desires to protect the network from

damage and the interdictor as a player who aims to optimally impair the defender’s in-

frastructure to reduce network utilization (Smith et al., 2013). In the human trafficking

case, human traffickers are the defenders that seek to operate their trafficking networks

without disruption, while law enforcement and other anti-trafficking stakeholders are the
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interdictors that attempt to disrupt the trafficking network. As previously mentioned,

in this paper, we will refer to law enforcement as the interdictors and traffickers as the

defenders.

We now summarize the literature related to illicit network interdiction and

broader applications of multi-stage min max flow network interdiction models that in-

corporate uncertainty.

2.1 Illicit Network Interdiction

While the current literature regarding network interdiction models tailored to the

human trafficking context is limited to general overview papers (Caulkins et al., 2019;

Mayorga et al., 2019; Smith & Song, 2019; Konrad et al., 2017), network interdiction

models have been applied to other illicit network applications, such as drug trafficking

and nuclear smuggling. The complex nuances of interdicting illicit networks motivate

the need for the extending network interdiction theory, as described in a survey of recent

advancements in network interdiction models and algorithms (Smith & Song, 2019).

In recent years, network interdiction models have been used to disrupt drug

trafficking (Malaviya et al., 2012; Baycik et al., 2018), nuclear smuggling (Morton et

al., 2007; Michalopoulos et al., 2013; Dimitrov et al., 2011; Morton & Pan, 2005), and

strengthen border control (Zhang et al., 2018). While, collectively, these papers have

considered multi-stage, stochastic extensions to the classic network interdiction model

in which players gain information over time, none of the models incorporate all of the

features in a maximum flow network interdiction model as we do in this paper.

In Malaviya et al. (2012), the authors model an illegal drug supply chain as a

deterministic hierarchical social network and solve a maximum flow network interdiction

problem. The authors assume that criminals in the upper echelons of the drug supply

chain can only be interdicted if the lower-level criminals are first interdicted to gain more

information about the upper-level criminals. This is captured through what the authors

refer to as “climbing the ladder” constraints and causes the model to use a multi-stage

approach.

While Morton et al. (2007) consider stochastic source and sink nodes to model

the lack of knowledge about a smuggler’s operations, the model is a stochastic short-

est path network interdiction model rather than a maximum flow network interdiction

model. Additionally, the formulation allows the interdictor/leader to increase the re-

silience of the network by taking monitoring actions on the selected arcs while the smug-
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gler/follower is solving their shortest path problem. Ramirez-Marquez et al. (2010) con-

sider both maximizing the shortest path and minimizing the interdiction strategy cost

and therefore come up with a bi-objective approach.

A wide variety of network types have also been considered in illicit network

applications. For example, in Malaviya et al. (2012) the network on which interdictions

are being made is a social hierarchical drug network where the interdictor climbs up

the hierarchy. Kosmas et al. (2020) also consider a social network of a drug trafficking

and human trafficking networks to model how an illegal organization can continue to

operate after interdictions if the illicit network can replace interdicted arcs or nodes.

However, physical networks have also been considered; Morton et al. (2007) consider

interdicting nuclear smuggling on a physical network and Baycik et al. (2018) uses a

layered drug network which consists of both information and physical networks. The

model we present in this paper focuses on interdicting physical networks.

2.2 Multi-stage Min Max Flow Interdiction with Uncertainty

The maximum flow network interdiction problem that serves as the basis for our

work is one type of network interdiction model in which the interdictor seeks to minimize

the maximum amount of flow the adversary can send through the network (Wood, 1993;

Smith, 2010). The deterministic interdiction assumption of the traditional maximum

flow network interdiction problem is relaxed by Cormican et al. (1998) to allow stochastic

interdictions such that the success of the interdiction is not certain. In other words, the

decision to interdict may not result in a successful change to the network. The main case

that Cormican et al. (1998) studied is the binary interdiction realization case where an

interdiction attempt on an arc either makes the flow capacity for that arc zero or does not

affect the capacity at all. Since Cormican et al. (1998), many network interdiction models

have focused on minimizing the maximum flow (Smith, 2010), including versions that

include uncertainty (Smith et al., 2013; Smith & Song, 2019; Janjarassuk & Linderoth,

2008; Sadeghi & Seifi, 2019). Also, evolutionary algorithms have been investigated for

the stochastic network interdiction problem (Ramirez-Marquez et al., 2009).

Uncertainty can arise in network interdiction models in various places. Held &

Woodruff (2005) consider interdiction decisions where the underlying network topology

is not known with certainty. Morton et al. (2007) aim to find sensor locations on a

network that minimizes the expected maximum reliability path for a potential evader.

They consider a case where the source-pair of the evader is not known with certainty
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but according to a distribution. Zhang et al. (2018) are also interested in finding sensor

locations on a physical network against evaders with an uncertain source-sink pair, with

the goal of minimizing the expected shortest path.

The type of uncertainty we incorporate into the present paper is decision-

dependant uncertainty. In network interdiction models with decision-dependent uncer-

tainty, scenario occurrence probabilities depend on the interdiction decision; therefore

they are not independent of the model decisions. This makes calculations such as ex-

pectations and compound probabilities more complex as they can become nonlinear as

scenario probabilities can become variables themselves. An example for this case can be

seen in in Sadeghi & Seifi (2019). They first linearize a decision-dependent maximum

flow interdiction model by using Laumanns et al. (2014)’s distribution shaping and then

use Benders decomposition to solve a decision-dependent network interdiction problem

where the inner problem is a maximum flow problem for a single stage. The uncertainty

in their model lies in the outcome of an interdiction attempt. Other researchers have

used probability chains to reformulate the model to allow decision-dependent probability

calculations, such as O’Hanley et al. (2013) who use probability chains to reformulate

Morton et al. (2007)’s problem of minimizing the expected maximum reliability path

problem. Decision-dependent uncertainty is a more general concept observed in other

stochastic programming problems outside of the network interdiction subfield as well,

and we refer the authors to models in facility protection and network design for a broader

understanding of decision-dependent uncertainty in such (Bhuiyan et al., 2020; Medal

et al., 2016).

Another important aspect in a multi-stage model with uncertainties is the time-

line of events and decisions. While some multi-stage network interdiction models assume

that the interdictor wishes to make an interdiction decision, wait to observe the out-

come of the interdiction decisions, and then adapt their strategy for future stages based

on the outcome of the present stage (e.g., Ketkov & Prokopyev (2020); Borrero et al.

(2016); Held & Woodruff (2005)), we do not assume such “sequential” decision making.

Instead, our approach assumes the decision maker wishes to determine the interdiction

decisions for all future time periods at once. This is a realistic assumption in many

practical cases as creating a multi-time stage human trafficking disruption plan can take

a significant amount of resources and time to coordinate. Other researchers have also

considered multi-stage models in which the decision maker plans for all upcoming stages

at time zero (e.g., Malaviya et al. (2012); Baycik et al. (2018)).



9

Table 1: A Summary of Relevant Literature

Paper
Maximum Flow
Inner Problem

Multi-Stage
Stochastic

Success Probabilities

Borrero et al. (2016) X
Held & Woodruff (2005) X
Janjarassuk & Linderoth (2008) X X
Ketkov & Prokopyev (2020) X
Malaviya et al. (2012) X X
Morton & Pan (2005) X
Morton et al. (2007) X
O’Hanley et al. (2013) X
Ramirez-Marquez et al. (2009) X X
Ramirez-Marquez et al. (2010)
Sadeghi & Seifi (2019) X
Zhang et al. (2018) X

As we describe above, network interdiction models have been used in disrupting

illicit network operations. However, to the best of our knowledge, neither the illicit

network interdiction nor the broader network interdiction literature captures all of the

features we consider in this paper (see Table 1). Specifically, we consider a multi-stage

min max flow problem with decision-dependent uncertainty. In our model, a scenario’s

occurrence probability depends both on the current stage’s and the previous stage’s

interdiction decisions because of the probability updates we consider. Additionally, our

model is one of the first to present a network interdiction model focusing on a human

trafficking application and our reinterpretation of the network flow as desirability allows

us to represent the decision maker’s decision-making from a different point of view.

3 The Model

3.1 Model Description

With this work we aim to aid the prevention, detection, and intervention stages of

current human trafficking efforts. Since human trafficking is difficult to identify, we’ve

assumed that trained members of law enforcement have a higher chance of successfully

interdicting human trafficking in their region. This assumption is in alignment with

previous studies that show providing law enforcement personnel with human trafficking

focused training is positively correlated to the number of human trafficking prosecutions

(?).

Real world cases also indicate that communities that include survivor input were

more successful at addressing human trafficking (Sebastian, 2018; Okech et al., 2012).

Human trafficking survivors provide valuable information about trafficking networks,
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operations, and recruitment methods including how traffickers adapt to interdiction

attempts.

In this research, we captured these two assumptions of human trafficking with a

bi-level stochastic maximum flow network interdiction model with dynamic interdiction

success probabilities. In our model we have two players, the interdictor, who we assume

to be law enforcement, and the defender, who we assume to be the human trafficker.

We use a maximum-flow to model the the trafficker’s decision making process. Rather

than a literal interpretation of flow capacity constraints on arcs as is common in most

network interdiction literature, we reinterpret the arc capacity parameters to represent

the desirability of a trafficker to operate along the arc. In other words, we are assuming

the interdictor has expert knowledge about how the trafficker views the network. We

amalgamate this information with the trafficker’s inherent goal of profiting from factors

such as desire for cheap labor and other pulling factors in one part of the network by

exploiting vulnerabilities of others in another part of the same network.

In this paper we assume that both the trafficker and the interdictor have the

same knowledge of network topology for the trafficking operation and there is no infor-

mation asymmetry. An extension to the model we present could consider the case in

which the anti-human trafficking decision maker doesn’t know the trafficker’s desirabil-

ity of operating on each arc to capture more of the hidden/covert nature of traffickers

and the anti-trafficking stakeholder learning the trafficker’s disabilities over time. A rel-

evant paper with this approach that focuses on discovering hidden parts of the network

with the help of interdictions in an evader-interdictor setting is Borrero et al. (2016).

However, incorporation of such a dynamic would require a large and granular dataset

for a realistic representation of the network learning dynamics and the current human

trafficking research lacks such kind of databases.

Another feature of our model is how an interdiction attempt’s success gets up-

dated over stages based on the decisions taken previously. We assume initial arc interdic-

tion successes probabilities are given parameters, and when the interdictor is successful

at an interdiction, the success probability for that arc gets updated for the next stage.

These updates denote either gaining more experience on a certain arc and operating

more effectively as a direct result, or revealing previous tactics and losing some of the

previous success probability. We give a more detailed explanation and motivate these

cases in the human trafficking context in the upcoming sections. However, one impor-

tant assumption we make in this model is that a successful interdiction will only affect
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the success probability of that same arc in future time periods. Future extensions to the

model could consider interdiction decisions that have a broader effect on the network by

changing the success probabilities of neighboring arcs or all other arcs in the network

to capture more of the dynamics of trafficker and interdictor behaviors. However, such

extensions are outside of the scope of the present study as the current formulation is

already challenging to solve without adding these additional network dynamics.

We first describe a single-stage model which incorporates stochastic interdic-

tion success probabilities. We then use this single-stage model to create a base for

building the multi-stage extension in Section 3.3, which incorporates dynamic, decision-

dependent stochastic interdiction success probabilities.

3.2 Single-Stage Model

Let G = (N,A) be a network which has source and sink nodes s and t, respectively.

This network of physical locations as nodes and arcs with flow capacities represents how

the trafficker and the interdictor are perceiving the trafficking flows for a geographical

region. Therefore, the interdictor desires to minimize the maximum flow between the

source and the sink, where we consider the flow as the trafficker’s perception of operation

ease (or desire to operate) while trafficking from the source to sink nodes. In other words

arc capacities denote the operation level the trafficker considers possible without getting

caught on that arc before any interdiction decision has been made. To minimize the

trafficker’s flow, the interdictor can attempt to disrupt arcs in the network.

Mathematically, these interdiction decision variables are represented with a vector

y, where yij takes value 1 if arc (i, j) is attempted to be interdicted and 0 if not. We

let Iij be the auxiliary interdiction effectiveness variable identifying whether arc (i, j)

is successfully interdicted (Iij = 1) or not (Iij = 0). We will impose constraints such

that when no interdiction attempt is made on arc (i, j) (i.e., when yij = 0), Iij is equal

to 0. On the other hand, if an interdiction attempt is made (i.e., when yij = 1), Iij

becomes 1 with probability pij ; otherwise it is 0. Attempted interdiction either fully

reduces the arc capacity to 0 or it does not affect the arc at all. We let Ω be the space

of all possible scenarios with ω ∈ Ω representing an outcome scenario. Parameter cij is

the required cost for attempting an interdiction on the arc (i, j) and R is the budget of

the interdictor. The optimal value of the trafficker’s maximum-flow problem based on

the interdictor’s decisions (y) and their realizations (I) under scenario ω is denoted by

Q(y, Iω). With this notation, the interdictor’s problem is:
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minimize
y

E[Q(y, Iω)] (1)

subject to
∑

(i,j)∈A

cijyij ≤ R (2)

yij ∈ {0, 1} ∀(i, j) ∈ A (3)

Objective function (1) minimizes the expected value of the maximum-flow through

the network from source node s to sink node t. Therefore, E[Q(y, Iω)] can be repre-

sented as
∑

ω∈Ω Py(ω)Q(y, Iω), where Py(Iω) is the probability that realization Iω will

occur under the probability space created by the decision y, which we will discuss in

detail shortly. Constraint (2) is the resource limitation constraint for the interdictor and

constraint (3) is the domain of the decision variables.

Without loss of generality, we can order each arc in the network from 1 to

|A|.Then, combining all arc interdiction decisions, realizations for a network under an

interdiction decision can be represented with, I = {I1, I2, ..., I|A|}. This allows the prob-

ability of a realization on the network under interdiction decision y to be represented

as a multiplication of arc realizations since we assume independence between arcs (Lau-

manns et al., 2014). We define the binary arc realization probabilities under interdiction

decision y for all (i, j) ∈ A as:

Py{Iij = Iωij} =


yijpij Iωij = 1

(1− yij) + yij(1− pij) Iωij = 0

If an arc interdiction decision is given, (i.e., yij = 1) the arc realization corre-

sponding to the successful interdiction (i.e., Iij = 1) has a probability of pij . On the

other hand, a failed attempt will have a probability of (1 − pij) for the arc. However,

if no interdiction attempt for the arc is present, the realization must be zero as well,

which is satisfied with the given definition.

Now using the arc realizations we can define a full network realization, or in

other words, a scenario. The probability of scenario ω happening under decision y can

be defined as;

Py{I = Iω} =
∏

(i,j)∈A

Py{Iij = Iωij}

This definition of the decision-dependent scenario probabilities creates a prob-

ability space when we consider all of the possible realizations under a given interdiction

decision. To see why, think of a set of |A| coins where the probability of flipping a
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head on a single coin is pij . Then the interdiction decision becomes which coins we are

selecting to flip. Therefore, the size of the scenario space is changing with the inter-

diction decision. However, with the above given definitions, we can still find scenario

probabilities as a joint distribution of arc realizations.

As the effect of anti-human trafficking efforts varies with respect to where the

intervention occurs, we choose to allow the model to incorporate different interdiction

success probabilities for each arc. We will use these probabilities and update their values

based on our previous interdiction actions to estimate how our previous encounters with

trafficking operations can impact future attempts’ success. We will elaborate more on

how these probabilities can be estimated in Section 5 when we discuss a case study.

The trafficker’s subproblem for scenario ω ∈ Ω can be seen below where A is

the modified version of arc set A with the arc (t, s) included, i.e A := A ∪ (t, s). This

inclusion of the artificial return arc (t, s) with an infinite (or very large) capacity allows

us to reformulate the maximum flow problem as a network flow problem (Bertsimas &

Tsitsiklis, 1997):

Q(y, Iω) = maximize
x

xts (4)

subject to 0 ≤ xij ≤ uij(1− Iωijyij) ∀(i, j) ∈ A (5)∑
j∈FS(i)

xij −
∑

j∈RS(i)

xji = 0 ∀n ∈ N (6)

In this optimization problem, objective (4) represents a trafficker’s desire to

maximize the flow through the network. The trafficker does this by maximizing the flow

on arc xts after the interdictor decides which flows to attempt to interdict (y) and the

extent to which the attempts are successful (Iω) are observed. Constraints (5) are the set

of equations for the stochastic arc capacities. If arc (i, j) isn’t successfully interdicted,

the capacity remains at uij . However, if an interdiction is successful, the capacity of the

arc is reduced to 0. Constraints (6) are flow balance constraints for each node on the

network, where the forward star of i, FS(i), denotes the set of arcs directed out of node

i and the reverse star of i, RS(i), denotes the set of arcs directed into i.

Note that the same Iω can be observed under different interdiction decisions

as the scenario spaces that interdiction decisions create are not necessarily disjoint and

share common scenarios (i.e., successfully interdicted network instances). Therefore,

maximum-flow values for these realizations should be identical as well. However, their

probability coefficient in the expectation calculation can be different for every probability

space that the interdiction decision y creates. So, if we calculate maximum flows under
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all possible scenarios (interdicted networks), the single level problem becomes finding

the minimum flow expectation yielding a probability space with a feasible set of binary

arc interdictions.

As previously mentioned, in our model the capacity parameter can be regarded

as a proxy for the traffickers’ desire to use certain arcs. Human trafficking literature has

identified the push and pull factors that increase an area’s vulnerability to trafficking,

but the marginal effect of these factors remain difficult to quantify. With the flow

capacity serving as a ‘trafficking desirability’ proxy, we provide an initial attempt to

create such a parameter. This proxy is one of the main reasons why we choose to model

the human trafficking network interdiction problem as a maximum flow problem; we use

the arc capacities to have a bottleneck effect on the the trafficker’s operations rather

then an additive effect like in the shortest path problem.

3.3 Multi-Stage Network Interdiction Model

In the single-stage model, the interdictor attempts to disrupt some of the arcs

in order to minimize the max-flow of the trafficker. However, in reality, trafficking

interventions occur over time and the impact they have varies due to traffickers adapting

to previous interventions or anti-trafficking stakeholders becoming more effective as more

information is gained about the network. We incorporate this dynamic by extending

the single-stage model to a multi-stage framework in which we consider updates to the

probability of successfully interdicting an arc in future stages if the arc was successfully

interdicted in the previous stage. An interdiction does not change the network structure

for the next stage; rather, it updates the interdiction success parameters for future

stages.

3.3.1 Interdiction Success Parameter Update

Let K represent the set of stages. Similar to the single-stage model, the probability

of interdiction success for an arc (i, j) during stage k ∈ K is denoted pkij . In the multi-

stage model, a successful interdiction has two effects: one short-term and one long-term.

The short term effect eliminates the trafficker’s desire to use arc (i, j) in their

trafficking operation in stage k by reducing the capacity of the arc to 0 for the current

stage. Consistent with the human trafficking literature, we assume that the capacity of a

successfully interdicted arc is only reduced for the current stage. That is, if interdiction



15

efforts aren’t implemented on arc (i, j) in future stages, traffickers may once again find

arc (i, j) desirable.

The long term effect of a successful interdiction affects future interdiction success

probabilities; we assume that every successful interdiction on an arc (i, j) will update the

probability of the next stage’s interdiction success on the same arc (i, j). We model this

update in success probability with the rate parameter ∆. Specifically, we let −1 ≤ ∆ ≤ 1

denote a measure of the percent change in the interdiction success probability. Its

scalar value represents how much new information is worth to the system, and its sign

represents who favors from this update.

Positive update rates, 0 < ∆ ≤ 1, indicate that the interdictor is becoming

more successful at reducing trafficking in an area with each successful interdiction. This

can happen under the case where law enforcement is discovering the modus operandi of

the trafficking operation on an arc and then using this information to obtain a higher

likelihood of success in further interdictions. For example, a rate of 0.5 means that with

each new successful interdiction on arc (i, j), the probability of successful interdiction

on arc (i, j) increases by fifty percent of the remaining amount (i.e., 50% of 1 − pkij).

That is, an arc that had a pkij = 0.8 probability of successful interdiction in stage k

would increase to the probability pk+1
ij = 0.9 in stage k+ 1 if the interdiction in stage k

was successful.

On the other hand, successful interdictions can create updates in the favor of

the trafficker as well. This corresponds to update rates −1 ≤ ∆ < 0 and represents the

percent reduction in interdiction success in future stages. If a trafficker is interdicted on

a specific arc, other traffickers may gain knowledge about the interdiction tactics of law

enforcement in a manner that allows them to continue operating on the arc with a lower

chance of being detected. Therefore, successful interdictions may reduce the likelihood

of future successful attempts on an arc. For example, a rate of -0.5 means that with each

new successful interdiction on arc (i, j), the probability of successful interdiction on arc

(i, j) decreases by the fifty percent (i.e., 50% of pkij). That is, an arc that had a pkij = 0.8

probability of successful interdiction in stage k would decrease to a pk+1
ij = 0.4 likelihood

of successful interdiction in stage k + 1 if the interdiction in stage k was successful.

However, as this is a stochastic model with the outcome of interdictions repre-

sented by scenarios, the probability updates for the arcs are also represented in expec-

tation terms. We introduce the following equations to update interdiction probabilities
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for the arcs at each stage. (Note that y and I have also been indexed by stage for the

multi-stage model.)

pk+1
ij =


pkij + (1− pkij)ykijE[Ikij ]∆ 0 ≤ ∆ ≤ 1

pkij + pkijy
k
ijE[Ikij ]∆ −1 ≤ ∆ < 0

(7)

We also use the notation P ky (Iω) to denote the scenario probability for scenario ω,

which is generated by the interdiction decision y = (y1,y2, ...,yK). Each vector yk

denotes the corresponding stage’s interdiction decision. It is important to note that the

future stages’ decisions do not effect previous stages’ probability spaces. We use the full

interdiction vector y to be consistent. Calculation for the scenario probabilities under

interdiction are done similar to the single-stage case, with one major difference. For

the first stage, interdiction probabilities are parameters and they become active or not

depending on the first stage’s interdiction decision. Starting from the second stage, arc

interdiction probabilities become variables and change values depending on the previous

stage’s interdiction decision.

Example with Positive Rate Parameter: To illustrate how the update equation

works, consider a network with just two nodes, node A and node B, and a single arc

connecting them (AB). Suppose the probability that the interdictor successfully inter-

dicts this arc if she attempts to is 80% initially (p1
AB = 0.8) and the update rate is 50%

(∆ = 0.5). When the interdictor attempts to interdict arc (AB), there are two possible

scenarios: the interdiction is successful with probability P k=1(Iω = 1) = p1
ij = 0.8 (as

there is only one arc on the network), which results in I1
AB = 1; or the interdiction is

unsuccessful with probability P 1(ω = 2) = 1 − p1
ij = 0.2, which results in I2

AB = 0.

Under scenario 1, where the arc is successfully interdicted, the probability of successful

interdiction in the next stage becomes pk=2,ω=1
AB = 0.8 + (1 − 0.8) ∗ 1 ∗ 1 ∗ 0.5 = 0.9.

Under scenario 2, where the interdiction attempt fails, there is no increase in probabil-

ity (pk=2,ω=2
AB = 0.8). Therefore, the expected updated probability under the decision of

attempting to interdict arc (AB) becomes p2
AB = 0.8 ∗ 0.9 + 0.2 ∗ 0.8 = 0.88.

Example with Negative Rate Parameter: If the update rate was instead ∆ =

−0.5, then the successful interdiction in scenario 1 would result in a probability of

successful interdiction of pk=2,ω=1
AB = 0.8 + 0.8 ∗ 1 ∗ 1 ∗ (−0.5) = 0.4 in the next stage.

If the interdiction attempt was unsuccessful (i.e., scenario 2), there is no change in the

success probability (pk=2,ω=2
AB = 0.8). Therefore, the expected updated probability under

the decision of attempting to interdict arc (AB) becomes p2
AB = 0.8∗0.4+0.2∗0.8 = 0.48.



17

We use the percentages for the rate variable, ∆, first and foremost to model

the changing incremental effect of the information gained (i.e., successful interdictions

provide information). Since this is a normalized parameter, the magnitude of its effect

depends on the initial success probabilities, p1
ij . For example, when 0 < ∆, if the initial

probabilities (p1
ij) are very low, the interdictor will gain a greater marginal increase

in future interdiction success probabilities than compared to a p1
ij value near 1. The

motivation for this is that a low probability of success may correspond to the interdictor

not having much information about the trafficking network. Any successful interdictions

when the interdictor doesn’t have much information about the network could have a

drastic difference as it provides insights into the ongoing human trafficking network

in the area. On the other hand, if law enforcement is already effective against the

traffickers, successful interdictions will only have a fine-tuning effect, i.e. they will still

increase the success probability but in a relatively slight margin.

Symmetrically, if the initial probabilities (p1
ij) are very low and ∆ < 0, the

trafficker is able to fine tune their evasion tactics to avoid interdiction. If the initial

probabilities (p1
ij) were much higher, the trafficker has more opportunity to reduce their

likelihood of interdiction in future stages.

With the multi-stage nature of the model, the budget parameter R and the

cost parameter c can become stage dependent as well. Recourse variables and decision

variables also depend on the stage of the problem from now on. For the multi-stage

version of the model, scenario probabilities can be found using the multiplication of arc

realization probabilities given below. As previously mentioned, the pkij ’s can be found

using the probability update formula given the interdiction vector y:

P ky{Iij = Iωij} =


ykijp

k
ij Iωij = 1

(1-ykij) + ykij(1− pkij) Iωij = 0

3.3.2 Model Formulation

The formulation for the multi-stage stochastic network interdiction with probability

updates can be seen below for the case of 0 ≤ ∆ ≤ 1. The only change required for

model formulation to account for the case of −1 ≤ ∆ ≤ 0 is replacing constraint (11)

with the associated −1 ≤ ∆ ≤ 0 equation from (7).

minimize
y,p

∑
k∈K

Ek[ Qk(y, Iω)] =
∑
k∈K

∑
ω∈Ω

P k(ω)Qk(y, Iω) (8)
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subject to
∑

(i,j)∈A

ckijy
k
ij ≤ Rk ∀k ∈ K (9)

ykij ∈ {0, 1} ∀(i, j) ∈ A,∀k ∈ K (10)

pk+1
ij = pkij + (1− pkij)ykijE[Ikij ]∆ ∀(i, j) ∈ A,∀k ∈ {0, ...,K − 1} (11)

In the above formulation, objective function (8) seeks to minimize the summation

of the expected maximum flows over every stage. Constraints (9) are the set of resource

constraints for every stage, where each stage has its own budget that does not roll over

into future stages. Constraint set (11) ensures that for each arc the probability of the

next stage is updated based on the current decision, its expected realization, probability

of success, and the update rate. This constraint connects consecutive stages according

to the hitherto mentioned probability updates. Finally, constraint set (10) is the domain

of the interdiction decision variables y.

At each stage, the trafficker solves the following max-flow problem based on the

interdiction decisions y and their outcomes Iω.

Qk(y, Iω) =maximize
x

xkts (12)

subject to
∑

j∈FS(i)

xkij −
∑

j∈RS(i)

xkji = 0 ∀i, j ∈ N (13)

0 ≤ xkij ≤ uij(1− Iωijykij) ∀(i, j) ∈ A (14)

4 Solution Approach

One common approach to solve network interdiction models is to take the dual of

the inner maximization problem and combinine it with the outer minimization problem

(Smith et al., 2013; Cormican et al., 1998). This allows the bi-level min-max problem

with different objective functions to be transformed into a single minimization problem.

The dual of the follower’s max flow problem is given below with dual variables αn and

βij corresponding to (13) and (14).

Qωk (y, Iω) = minimize
α,β

∑
(i,j)∈A

(uij(1− Iωijkyijk))βωijk (15)

subject to αωik − αωjk + βωijk ≥ 0 ∀(i, j) ∈ A, ∀i, j ∈ N (16)

αωtk − αωsk ≥ 1 (17)

βωijk ≥ 0 ∀(i, j) ∈ A (18)
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Combining this problem with the leader’s problem we can obtain the equivalent

problem:

minimize
y,α,β

∑
k∈K

E[ Qk(y, I
ω)] =

∑
k∈K
ω∈Ω

Pk(ω)
∑

(i,j)∈A

(uij(1− Iωijkyijk))βωijk (19)

subject to
∑

(i,j)∈A

cijkyijk ≤ Rk ∀k ∈ K (20)

yijk ∈ {0, 1} ∀(i, j) ∈ A, ∀k ∈ K (21)

pij,k+1 = pijk + (1− pijk)yijkE[Iijk]∆ ∀(i, j) ∈ A, ∀k ∈ {0, ..., |K| − 1} (22)

αωtk − αωsk ≥ 1ω ∈ Ω k ∈ K (23)

αωik − αωjk + βωijk ≥ 0 ∀(i, j) ∈ A (24)

βωijk ≥ 0 ∀(i, j) ∈ A,ω ∈ Ω, k ∈ K (25)

We note that it is not possible to solve the above problem directly with tra-

ditional linear programming methods due to the the nonlinearity introduced by the

scenario probability term in the objective. Specifically, the P ky (ω) terms contain the mul-

tiplication of the binary arc interdiction decisions and interdiction probabilities (which

are themselves decision variables after the initial stage due to constraints (11)). We also

multiply this with the corresponding value of the minimum cut which creates a nonlin-

ear term. Therefore, we cannot use standard integer programming solution approaches.

Instead, we use a genetic algorithm (GA) to solve the model with nonlinearities.

4.1 Genetic Algorithm for the Maximum Flow Network Interdiction

Model

Briefly, GAs are methods for searching a solution space for solutions with the highest

(or lowest, depending on the type of the objective) objective values (Mitchell, 1998;

Haupt & Haupt, 2004). Motivated by biological evolution, GA terminology usually

refers to solutions as individuals and objective functions as fitness functions. Each

individual is composed of multiple bits representing specific decision variable values. To

be consistent with the nomenclature we will use the same terminology as well.

GAs and evolutionary algorithms are a common method of solving network in-

terdiction problems (Ramirez-Marquez et al., 2010; Dai & Poh, 2002; Ramirez-Marquez

et al., 2009). Dai & Poh (2002) uses a GA to solve the deterministic maximum flow
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network interdiction model on a directed graph where each individual represents a cut

in the network. Inspired by this approach, we developed a GA for our problem. How-

ever, one major difference is in how we define the individuals. Since Dai & Poh (2002)

only considers a single-stage deterministic model, each bit in an individual represents

which side the corresponding node belongs to after the network is partitioned by a cut.

However, since we consider a multi-stage model and we have also coded the interdiction

decisions over the arcs, the individuals we consider consist of bits that represent an

interdiction decision at stage k for the corresponding arc. Therefore, the individuals

in our solution effectively consist of |K| copies of the individuals that are present in a

single-stage version, one for each stage.

The operations of our GA are described below and a summary of all related GA

parameters is given in Table 2. Pseudo-code for the GA is provided in the Appendix.

4.1.1 Representation and Fitness Function

Each individual is a binary string of length of |A| ∗ |K| where A is the set of arcs

and K is the set of stages. If an arc a is attempted to be interdicted at stage k the

corresponding bit (a, k) takes the value 1; otherwise it is 0. Therefore an individual

includes interdiction decisions for all of the stages.

To evaluate the fitness of an individual, we first generate the possible interdicted

networks for each stage with their corresponding probabilities by using Py(ω). Then,

we solve the deterministic maximum flow problem for each scenario w and take the

expectation over all scenarios by using the hitherto calculated probabilities for each

stage. While we are moving on from the first stage, we also update the interdiction

probabilities according to the probability update functions we introduced in the multi-

stage problem. Therefore, depending on the rate, each stage yields different flow amounts

and we determine these values iteratively for an individual. Finally, we sum the expected

maximum flows over the stages to calculate the fitness of an individual.

4.1.2 Creating the Initial Population

Due to our knapsack constraint (9), we use the primitive primal heuristic from

Chu & Beasley (1998) to generate an initial population. This algorithm ensures all

individuals in the initial population are feasible by starting with all variables as zeros

and then randomly picking a variable and making it one unless it makes the individual
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infeasible. A population size of 100 individuals was used and was determined through

initial experiments that were shown to quickly converge to near-optimal values.

4.1.3 Parent Selection

Parent selection is the operation of selecting individuals from the current population

in order to conduct reproduction operations, namely crossover and mutation. We have

used the tournament selection method with a tournament size of 4 individuals and fitness

scaling to ensure that we favor better performing individuals more than their raw fitness

score (see Shukla et al. (2015) for tournament selection and other selection techniques

in GAs).

4.1.4 Crossover and Mutation

Crossover and mutation are reproductive operations to iterate the GA. After the

parent selection operation, we have a set of individuals from the current population

to generate the new population. We implemented a uniform crossover function which

takes the input as two parents from the parent selection and a random string of zeros

and one. It then assigns the values from the first parent to the new individual where

the random string has values equaling one and assigns values from the second parent

where the random string has values equaling zero. Therefore the output becomes a new

individual from two parents.

The mutation operation essentially changes the bits of the individual following

a probability distribution with an aim of reducing the chance of getting stuck at local

optimums. We have used the bit flip mutation as we have binary values. This operation

flips (changes the ones to zeros and the zeros to ones) the value if the bit is selected

to be mutated. In other words, for an individual that will go through the mutation

operation, we first select which bits to mutate and then flip them. We have mutated

10% of selected individuals.

We also let 90% of the population be generated from the crossover operation,

5% from the mutation and the rest from the elites. Elite individuals are the best fitness

function yielding individuals that carry-on through the iterations.

4.1.5 Repair Operation

As can be seen from above reproduction operations, we do not consider the budget

constraint while conducting crossover and mutation, which might generate infeasible
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individuals for the new generation. Searching through infeasible solutions is not an

efficient use of solution time.

To handle individuals that exceed the budget constraint and to restrict the ran-

dom search to the feasibility set, we implemented an approach that uses pseudo-utility

ratios tailored to our network interdiction model with dynamic interdiction success prob-

abilities. In their 1998 paper, Chu & Beasley showed that these types of operations

perform well for a search with knapsack constraints. Our pseudo-utility ratio considers

the expected capacity of an interdicted arc (i, j) and the cost required to attempt the

interdiction: E[capacity]
cost =

pijk∗uij
cijk

. This value is an estimate of the interdictor’s utility

of interdicting each arc on the network.

The repair operator uses the ratio as follows. If the individual is infeasible, the

operator starts removing interdiction decisions from the individual for the given stage,

starting from the lowest pseudo-utility yielding arcs. It is important to note that these

values are pre-processed before the algorithm starts iterating. The operator removes

arcs in this manner until it becomes feasible. After the individual becomes feasible,

the operator starts adding interdiction decisions, now, starting from the highest ratio

yielding ones, while considering the budget. The operation terminates when we can not

add any more interdiction decisions while staying feasible.

4.2 Termination Criteria

The GA terminates when negligible or no improvement is observed between the last

10 generations’ best (i.e., lowest fitness function yielding) individuals. We have accepted

improvements over 0.0001% of the current fitness function as significant and selected the

number of stalling generations to be 10 to avoid getting stuck at local optimums. A ter-

mination guarantee condition that stops the algorithm after 100 iterations/generations

is also specified, although this condition never became active in our experiments.

Table 2: Genetic Algorithm Parameters

Parameter Description Value

PopSize Population size 100
TournSize Tournament size 4
ElitePop Percentage of population generated by keeping elite individuals 5
CrossoverPop Percentage of population generated by crossover 90
MutatePop Percentage of population generated by mutation 5
MutateProb Fraction of individual mutated 0.1
MaxIter Maximum number of iterations 100
MaxIterNoImprove Maximum number of iterations with no improvement 10
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4.3 Grid Networks

We test our GA on grid-like networks in the spirit of papers like Atamturk et al.

(2018) and Janjarassuk & Linderoth (2008). We generate an a × b rectangular grid

network with a horizontal layers of b nodes each. In these networks horizontal arcs

are directed in the orientation of the source and the sink. Vertical arcs are oriented

randomly.

With these numerical experiments, we aim to illustrate how our GA works

and how our problem’s solution space differs from other stochastic network interdiction

problems due to decision-dependent success probabilities.

We have selected two grid networks for our experiments. The first is a 3 × 3

grid network, which we will denote as the small network. The second is a 5 × 5 grid

network and we will denote this network as the large network. In the small network we

allow all of the arcs to be interdicted and in the large network we allow half of the arcs

in the grid to be interdicted. These interdictable arcs are shown in the Figure 1 with

dashes and in red for the large network; the small network can be seen in the Appendix.

For each network we denote the source and sink nodes with square shapes. The source

node is indicated by node 1 in both networks, and node 11 and 27 in the small and

large networks, respectively. Horizontal arcs are arcs that are directed in the immediate

direction from the source to the sink, such as arc (1,4) in the large network. An example

for a vertical arc from the large network is arc (3,4). Our network sizes are comparable

to the smaller networks Janjarassuk & Linderoth (2008) consider, yet is computationally

difficult due to the probability updates; each stage’s decision changes the other stage’s

success probabilities and therefore the scenario probabilities became decision variables

rather than parameters, adding to the complexity.

We have generated random arc capacities and the initial interdiction probabil-

ities for the arcs are from uniform distributions with ranges from 1 to 10 and from 0

to 1, respectively. Arc capacities and the initial interdiction probabilities can be seen

on the arcs with the corresponding pseuodo-utility in the format of (cost, interdiction

probability, psuedo-utility). We use unit costs of interdiction for each arc.

We benchmark the performance of the GA with the optimal solutions we ob-

tained from complete enumeration. In this section we will discuss how well the GA

converged in our experiments and the effect of the budget on the solutions. As these

networks and their parameters are not generated specifically for the trafficking context,

we will conduct our policy related discussion in the case study section.
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Figure 2: GA Performance on 3x3 Grid Network

Figure 3: GA Performance on 5x5 Grid Network

Figure 2 and Figure 3 show how well the GA performed for both networks. We

present the results of the GA with box plots to present the results of 100 experiments for

each setting and the optimal solutions. Our first observation is the increase in the spread

of the solutions that GA converged to as the budget increases for each network. This is

an expected observation as the solution space gets larger when the interdiction budget
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increases. We also observe an increase in the spread as the rate parameter increases

within the same budgets for both networks.

We also observed that when the rate is positive the optimal solutions always con-

sist of having the same set of interdictions in the first and the second stages. Therefore,

we have created a modified GA (MGA) that forces the first and the second stage inter-

dictions to be identical. We discuss the reasoning behind this in greater detail in Section

5.2.1.

Figure 4: GA and Modified GA Performance on 3x3 Grid Network
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Figure 5: GA and Modified GA Performance on 5x5 Grid Network

We can see this in more detail in Figure 4, as well which shows how the best GA

solutions in the 100 runs found the optimal solution, or a solution within 1% or 5% of

the optimal solution. We observe that most of the GA runs converged to the optimal

solution which we have found by enumeration. MGA provided better results for positive

rate values as we illustrate in Figure 4 and Figure 5. On the first row of Figure 4 we

observe the MGA converging to optimal solutions more frequently compared to the

GA. As GAs iterate in a stochastic fashion we present the cases where the algorithm

converges to sub-optimal solutions as well. From these experiments we observe that

the convergence to sub-optimal solutions became more frequent when the interdiction

budget increases. To give an example, the worst performing set of experiments are from

interdiction budget is equal to 3. In this setting, when the rate is 1, the GA found

the optimal solution in 59% of the experiments for the small network, and 88% of the

solutions were within 15% of the the optimal solution. For the large network, the GA’s

performance dropped and it wasn’t able to converge to any solution within 5% of the

optimal solution. However for this instance, we observe MGA converging to optimal or

near-optimal solutions frequently.

As expected, the GA’s performance on the 5x5 grid decreased compared to

the 3x3 grid. We also observe that MGA’s performance is better as enforcing the

same solution for the both stages reduces the search space. To promote consistency

in comparing the results of the GA and MGA across different networks, we keep the
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termination criteria the same for all network instances. Thus, we didn’t conduct our

experiments with dynamic termination criteria based on problem instance’s size so this

reduction in performance is expected as the search space got larger with the larger

network. Tailoring the termination criteria for each network instance may provide better,

but less comparable, results.

From these grid-networks we illustrate how the GA can be used for the model

from a computational perspective. Although it is difficult to provide optimality bounds

on the performance of a GA, we have illustrated the ability of the GA and MGA to

provide an optimal or near-optimal solution obtained through enumeration for two grid

networks. This provides an initial understanding of how well the GA and MGA may

do for larger networks that are not enumerable. Furthermore, as our model is nonlinear

and multi-stage (two-stage in the experiments), a GA is a practical way to solve the

problem.

In the next section we also illustrate how the utility measure we built for the

GA can be useful for the policy analysis by itself as it gives a measure of arc desirability

and the cost over the network.

5 Case Study: Nepal

We illustrate the network interdiction model using a case study of traffickers operat-

ing on a road network in the Eastern Development Region of Nepal. This is motivated

by the efforts of non-governmental organizations, such as Love Justice International,

who monitor human trafficking transit activity along the Nepal-India border (Hudlow,

2015). The Nepal network, which we will discuss in more detail in this section, will have

34 nodes, 38 arcs and 33 of these arcs are interdictable.

5.1 Parameter and Network Generation

Through analyzing six years of Love Justice International’s human trafficking transit

activity data, El Khalkhali et al. (2020) identified that people crossing the Nepal-India

border at Kakarbhitta, Bhadrapur, and Biratnagar who exhibit signs of being potential

human trafficking victims are commonly from the Taplejung and Khadbari districts.

Using this knowledge, our case study focuses on disrupting human trafficking along

the road network in the Eastern Development Region of Nepal, with Taplejung and

Khadbari as source nodes and Kakarbhitta, Bhadrapur, and Biratnagar as sink nodes.

We convert this multi-source, multi-sink network into a single source, single sink node
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network for the network interdiciton model by introducing artificial source s′ and sink

nodes t′ connected to the Taplejung and Khadbari; and Kakarbhitta, Bhadrapur, and

Biratnagar nodes, respecively. In the remainder of the manuscript, we refer to Taplejung

and Khadbari as source nodes s; Kakarbhitta, Bhadrapur, and Biratnagar as sink nodes

t; the singular artificial source node as s′; and the singular artificial sink node as t′.

As previously mentioned, the prevalence of human trafficking and the nature of

how traffickers operate on a physical network are largely outstanding research questions

due to not having a universally agreed definition of the crime, the illicit nature of human

trafficking, and a victim’s propensity to not self-identify as victims (Farrell & de Vries,

2020). In the absence of this data, a common approach is to estimate possible trafficking

flows using the number of human trafficking cases investigated, hypothetical trafficking

indicators and related demographic metrics from high level datasets. Danailova-Trainor

et al. (2006) and Hernandez & Rudolph (2015) are two studies that identify factors

related to trafficking between two countries, including the country’s’ income differentials,

border policies, migrant populations, and population size.

These studies and identifiers are useful for our model, as we use them to generate

the desirability parameter for each arc. This parameter limits the maximum flow that

can go through an arc and is traditionally referred to as the arc capacity. Therefore,

since the trafficker wants to maximize the overall expected flow on the network, arcs

with a higher desirability (i.e., higher capacity) will be more appealing for the trafficker.

To obtain the desirability parameters, we first begin by calculating a measure

of the trafficking flow (ust) between every source sink pair (s, t) using census data and

the Danailova-Trainor et al. (2006) and Hernandez & Rudolph (2015) indicators: in-

come ratio (IncDiffst), total population (PopSumst), and total foreign population

(Fpopst) (Government of Nepal Central Bureau of Statistics, 2012). Distances (Distst)

were obtained from UN RCHC in Nepal (2011). Each of these four parameters is

weighted by a respective value from w, where w = {wIncDiff , wPopSum, wDist, wFpop} =

{1.208, 0.783,−0.974, 0.393}. These values are originally from Hernandez & Rudolph’s

(2015) regression analysis and used in this case study with illustrative purposes to show

how the different trafficking indicators may be weighted differently. For a more realistic

study, future research is needed to obtain better estimators that are tailored to the con-

text being modeled. The arc capacities representing desirability of trafficking between
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two locations (ust) is calculated as:

ust = wIncDiff ∗ IncDiffst + wPopSum ∗ PopSumst + wDist ∗Distst + wFpop ∗ Fpopst

Table 3 provides the resulting baseline flow estimates.

Table 3: Flow Between each Source-Sink Pair

Source\Sink Biratnagar Bhadrapur Kakarbhitta

Khadbari 3 2 1
Taplejung 3 2 2

The above function generates a normalized estimation of the trafficking flow

between every source and every sink. However, it is also important to know the various

paths traffickers can take between source and sink nodes. We obtain this information

from the Nepal road network as shown in Figure 6 (UN RCHC in Nepal, 2011), where

triangles denote source nodes, stars denote the sink nodes, and squares denote transit

nodes. Each node represents a district in the Eastern Development Region of Neapl.

Figure 6: Road Network for the Eastern Developmental Region of Nepal

To calculate the arc desirability (i.e., capacity) parameters for the arcs in the

network, we used the network topology of Figure 6 and found every possible path from

each source to sink. Then for each arc, we identified every path that included the arc

and added the corresponding path’s estimated flow to the arc’s desirability parameter.
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Arc desirabilities for each node in the network are given in Table 4. To illustrate how we

use all possible source-sink paths to calculate the arc desirabilites, consider arc (1,6) in

Table 4 connecting nodes Damak and Itahari (locations can be seen in Figure 6). This

arc is present in six paths between source and sink nodes: it is in two paths between

Taplejung - Bhedetar, two paths between Khadbari - Bhadrapur, and two paths between

Khadbari - Kakarbhitta. When we multiply these numbers with the corresponding flow

values from Table 3, we obtain the arc desirability. In this case, arc 16 has a desirability

of: 2(3)+2(2)+2(1) = 12. Without any interdiction, the network with arc desirabilities

as capacities is a proxy for the amount of trafficking that occurs between districts.

Table 4: Arc Desirabilities and Pseudo-Utility Ratios

Node i Node j Arc # Arc Desirability Interdiction Cost Initial Interdiction Probability Pseudo-Utility Ratio

Taplejung Phidim 1 12 2 0.271 1.626
Taplejung Source 2 Uncapacitated N/A 0 0
Phidim Ilam 3 12 2 0.651 3.906
Ilam Phikkal 4 12 2 0.651 3.906
Phikkal Pasupati Nagar 5 0 1 0.374 0
Phikkal Charali 6 12 4 0.651 1.953
Charali Kakarbhitta 7 4 2 0.651 1.302
Charali Birtamod 8 8 1 0.651 5.208
Charali Bhadrapur 9 8 2 0.651 2.604
Kakarbhitta Sink 10 Uncapacitated N/A 0 0
Birtamod Bhadrapur 11 8 1 0.271 2.168
Birtamod Damak 12 12 1 0.271 3.252
Bhadrapur Kechana 13 0 1 0.171 0
Bhadrapur Sink 14 Uncapacitated N/A 0 0
Damak Gaurigunj 15 0 1 0.271 0
Damak Itahari 16 12 2 0.271 1.626
Itahari Biratnagar 17 9 2 0.651 2.9295
Itahari Dharan 18 9 1 0.651 5.859
Itahari Birpur 19 0 1 0.271 0
Biratnagar Rangeli 20 0 1 0.651 0
Biratnagar Sink 21 Uncapacitated N/A 0 0
Dharan Bhedetar 22 9 1 0.271 2.439
Bhedetar Dhankuta 23 9 1 0.198 1.782
Dhankuta Hile 24 9 1 0.198 1.782
Hile Bhojpur 25 0 20 0.651 0
Hile Basantapur 26 9 1 0.171 1.539
Basantapur Tehrathum 27 0 1 0.271 0
Basantapur Chainpur 28 9 1 0.198 1.782
Chainpur Khadbari 29 9 1 0.171 1.539
Khadbari Source 30 Uncapacitated N/A 0 0
Birpur Bhardaha 31 0 1 0.195 0
Bhardaha Rajbiraj 32 0 1 0.271 0
Bhardaha Rupni 33 0 1 0.198 0
Rajbiraj Kunauli 34 0 1 0.271 0
Rajbiraj Rupni 35 0 1 0.271 0
Rupni Kadmaha 36 0 1 0.198 0
Kadmaha Gaighat 37 0 1 0.195 0
Gaighat Khotang 38 0 3 0.271 0

The cost, cijk, of attempting an interdiction along arc (i, j) was assumed to

be directly proportional to the sum of the node populations (PopSumij) and to the

distance between the nodes (Distij) given that covering long distances and monitoring

activities involving large populations could be more costly. In this case study, we assume
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that the cost of interdiciton does not vary over time (i.e., cijk = cij∀k) and equals

cij = PopSumij ∗Distij .

After calculating the cost for attempted interdicitons along each arc, the cost values

were scaled to be between 1 and 20 (Table 4).

Finally, each arc also has an associated probability of being successfully inter-

dicted. While robust data to inform these parameter values does not exist, we estimate

the initial interdiction success probabilities, p0, as a function of node population. This

is based on Farrell et al. (2010), which surveyed law enforcement’s perception of human

trafficking in their local area and concluded that agencies with human trafficking train-

ing were more prepared to address human trafficking. Their findings also indicate that,

in general, the percentage of law enforcement personnel that have human trafficking

training is positively correlated with the population of the jurisdiction (Table 5). As

such, we have assigned arc (i, j) an interdiction probability equal to the training per-

centage corresponding to the sum of the node i and j populations (see Table 4).

Table 5: Population Probability Matrix

Population Size Training as Probability Proxy

4,999 and below 12.4%

5,000-9,999 17.1%

10,000-24,999 19.5%

25,000-49,999 19.8%

50,000-74,999 17.1%

75,000-99,999 37.4%

100,000-249,999 27.1%

250,000 and above 65.1%

See ? for the full table.

For this network, a heatmap of the expected pseudo-utility ratios that are used

in the repair operation is given in Figure 7. Darker edges denote the arcs with higher

expected pseudo-utility ratios. They are calculated by using the respective arc’s param-

eters; however, since the arc capacity parameter is estimated iteratively by considering

all paths through the network, the network structure effects the arc’s capacity and conse-
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Figure 7: Heatmap for the expected pseudo-utility ratios

quently effects the pseudo-utility ratios as well. The corresponding pseudo-utility values

are presented in Table 4.

We acknowledge that the parameter estimation methods described in this section

are a simplistic way to calculate how a trafficker and an interdictor operate on the

network, yet it serves the purpose of testing how the model behaves and algorithm

works given that robust human trafficking data is scarce. If more sophisticated and

accurate ways to quantitatively measure these parameters are found, our model can be

used with the updated parameters without needing to make fundamental changes to the

modelling formulation.

5.2 Findings

Since the parameters needed to implement this model remain an open research

question in the human trafficking field, we solved instances with varying budgets and

probability update rates for a two-stage model. We assume the budget remains the same

in each stage.

As previously mentioned, GAs are not guaranteed to provide an optimal solu-

tion. Therefore, we assessed the GA’s performance for low budget instances that we

were able to solve to optimality through enumeration; we started with a budget of 3 and
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increased the budget by 1 until it was computationally infeasible for us to compute the

optimal solution by enumeration. Table 6 shows the min-max flows at stage 1 (MMF1)

and min-max flow at stage 2 (MMF2) under the optimal interdictions and the best re-

sults from 100 runs of the GA with budgets equalling 3, 4 and 5. The results indicate

that the GA with a repair function is able to converge to optimal in 100 experiments

for each setting regardless of the value of the update rate ∆, which can be observed in

Figure 8. Figure 8 also shows that MGA was able to find the optimal solutions in most

of the experiments. Budgets larger than 5 were prohibitively costly to calculate through

enumeration. Although a provably optimal solution was not obtained for a budget of

10, we provide a population diversity graph in the Appendix to illustrate the diversity

of the solutions when the algorithm terminated. We also present the performance of the

GA and the MGA in the Nepal network just as we did for the grid networks in Figure 8

and notice a similar result: the MGA performs better than the GA and performance

decreases with increasing budget.

Figure 8: GA and Modified GA Performance on Nepal Network

5.2.1 Interdictors Becoming More Successful

From Table 6, we can observe that when the success update parameter ∆ ≥ 0, it is

best to follow the same interdiction strategy for both stages. Simply determine the best

interdiction strategy for the initial stage and follow it for the second stage as well. This

makes sense because the first stage problem is minimizing the trafficker’s desirability
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of operating on the network subject to a budget constraint that is consistent in both

stages. Since the probability updates are positive (i.e., ∆ ≥ 0), a successful interdiction

will further increase the likelihood of successfully interdicting the same arc in future

stages. Therefore, the optimal first stage policy becomes even more attractive in the

second stage.

This is also observed in Figure 9, which illustrates how the first and second

stage objective functions behave as the success rate parameter ∆ varies. It illustrates

that since successful interdictions become even more successful in future stages when

0 < ∆, the trafficker’s desire to operate on the network decreases in the second stage.

Figure 9: Optimally interdicted flow under budget = 5

5.2.2 Traffickers Adapting

However, in the case where the trafficker is learning from the interdictions and

adapting accordingly (i.e., ∆ < 0), interdicting different arcs for each stage might yield

a better total expected min-max flow over the planning horizon than following the same

strategy for both stages since successfully interdicted arcs become less successful in

future stages.

In the case of ∆ < 0, as the budget increases and the ∆ gets closer to -1, the

optimal strategy is to be less aggressive in the first stage, relative to the cases where ∆

is higher. This results in the trade off of allowing more flow through the network in the

first stage in order to preserve some effective interdictions for the next stage. We can

observe this by noticing that the optimal first stage interdiction decision when ∆ = −1

allows more trafficking flow than when ∆ = −0.5 for budgets greater than or equal to 4.

(This can be seen from both Table 6 and Figure 9.) This means that even though there
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exist interdiction decisions that would decrease the trafficking in Stage 1 more, these

decisions would produce a worse outcome in the second stage and allow for a greater

amount of trafficking to occur overall.

Since the optimal first and second stage interdiction decisions are the same when

0 < ∆ but may differ when ∆ < 0, we investigate how much of a difference not following

the optimal interdiction strategy would make when ∆ < 0. We do this by assuming

the interdictor is not changing strategies and continues to implement the initial stage’s

best interdiction policy assuming the success change rate is 0, when in actuality it is

negative. Observations under this problem instance showed that acknowledging the

ability of the trafficker to adapt and change the interdiction strategy accordingly can

reduce the total expected maximum minimum flow by up to 40%, depending on the rate

and the interdiction budget (see Table 7).

Figure 9 also illustrates that when ∆ < 0 and traffickers learn from successful

interdictions, the network becomes more desirable for traffickers to operate on over

time. However, it is important to note that while the network becomes more desirable

to traffickers in the second stage as compared to the first, it is still less desirable than

a network that was never interdicted. That is, even though interdictions become less

successful over time, it is still beneficial to pursue interdictions rather than not doing

anything. Similar patterns are observed for other budget values.

6 Conclusion and Future Work

This paper introduces a multi-stage stochastic network interdiction model with

decision-dependent success probabilities to aid in anti-human trafficking disruption ef-

forts. The trafficker’s movement throughout a physical network is captured using a

maximum flow problem where the traditional arc capacity parameters are redefined to

be a proxy for the desirability of a trafficker to operate along the arc. An interdictor—

which could include law enforcement, healthcare personnel, non-profit organizations,

service providers, or policy makers—attempts to disrupt the trafficking network by in-

terdicting arcs. To capture the uncertain nature of interdiction attempts, we assume

there is a positive probability that an interdiction attempt may be unsuccessful. We

also consider that the success probability is a function of prior interdiction decisions

and may change over time as traffickers or interdictors learn more information about

the network. In other words, the expertise and knowledge we aim to utilize in this model

are trafficking estimations over a region, estimations about the probability of success
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for the trafficking interdiction, and how this probability will change based on previous

actions in the same region. To solve the resulting nonlinear model, we developed a GA

and Modified GA that uses expected pseudo-utility ratios in its repair operation.

The two-stage version of our model was tested on a case study of a trafficking

network in the Eastern Development Region of Nepal. Results indicate that the traf-

ficker’s ability to adapt to previous interdictions is a driving factor in determining the

optimal interdiction policy over time. If the trafficking operation is unable to adapt to

disruptions such that the interdictor becomes more successful at interdicting as time

progresses, the optimal interdiction strategy is to interdict the same arcs in the first

and second stage. However, if the trafficker learns from successful interdictions, thereby

reducing the effectiveness of future interdictions along the same arcs, it is often optimal

to interdict different arcs in the first and second stages.

One valid concern regarding the applicability of the present model is the avail-

ability of data it requires, given the hidden/covert nature of human trafficking. In

many communities, there is currently a lack of data and understanding about traffick-

ing flows. However, more communities are starting to understand the value of collecting

data related to human trafficking operations and operational knowledge of trafficking

is increasing. Thus, this model highlights the benefit of collecting such data so that

decision-makers can utilize this knowledge to develop effective interdiction plans in a

cost restrained environment.

To the best of our knowledge, our model is the first network interdiction model

tailored to disrupting physical human trafficking networks. As such, we acknowledge

that there are multiple limitations of our model; human trafficking network structures

and operating dynamics largely remain an open research question, which limits the input

data available for network interdiction models. In light of this gap, we have generated

estimates of model parameters based on the current human trafficking literature. It is

our hope that this model serves as illustration of the types of practice and policy insights

that can be obtained if more robust human trafficking data was available and provides

motivation for interdisciplinary research to collect such data.

There are many nuances of human trafficking that motivate the need for further

extensions of our model to capture the growing knowledge of human trafficking networks.

As an example, we are currently working on extending the present model to incorporate

collaboration and information sharing among multiple anti-trafficking stakeholders each

seeking to disrupt a trafficker’s operation.
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Another extension can address the sequential nature of the interdictor and traf-

ficker decisions. In the current problem, the interdictor makes a decision and only after

observing the outcome of this decision does the trafficker determine how to maximize

their flow through the network. This assumption is somewhat limiting as traffickers and

interdictors often don’t have full knowledge of each others actions and don’t alternate

making decisions. As such, network interdiction literature related to dynamic games in

which players don’t have static strategies could be incorporated into the current model

(Lunday & Sherali, 2010; Fischetti et al., 2018; Zhang et al., 2018). Furthermore, loos-

ening the assumption that a trafficker optimizes their use of the network should also be

considered; in reality, the trafficker might take random or partially informed actions on

the network.

In conclusion, network interdiction models are uniquely positioned to aid in

disrupting human trafficking networks. To effectively use this methodology, additional

research is needed to obtain robust data to serve as input into the network interdiction

models and current network interdiction theory must continue to evolve to capture the

nuances of human trafficking.
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A Genetic Algorithm (GA)

A.1 GA with Repair Operation for the Trafficking Interdiction Model

with Probability Updates

1. Input: All model parameters: ua, ca where a ∈ A, where A is the set of arcs in

the network G. K denotes the set of stages and indexed by k. Budget/resources

of the leader is denoted by Rk for each stage k ∈ K. Pseudo-utility ratios for each

arc in the network can be calculated a priori as well.

Genetic Algorithm Parameters: PopSize, TournSize, MutateProb, CrossoverPop,

MutatePop, ElitePop, MaxIter and MaxIterNoImprove (Descriptions given in Ta-

ble 2).

2. Generate the initial population. Repeat (a) to (c) PopSize times.

(a) Create an individual, say y in the length of |A| ∗ |K| with all bits are zero.

(b) Randomly pick a bit from the individual and make it one (denotes arc

interdiction attempt for the law enforcement/leader) unless it makes the individual

infeasible. Repeat until individual becomes infeasible which can be checked with∑
a∈A yakca ≤ Rk ∀k ∈ K.

(c) Evaluate the individual by finding the expected maximum flow under the

selected interdicted arcs at (b). This value is the fitness function of the individual.

3. Set k = 0 and h = 0 where k is a counter on the number of iterations and h is a

counter on the number of consecutive iterations without improving the population.

4. While h < MaxIterNoImprove and k < MaxIter

(a) Elites: Set the best performing - lowest fitness function yielding - ElitePop*PopSize

individuals to the set of elite individuals.

(b) Parent Selection and Crossover: Randomly select TournSize individuals

with a bias towards lower fitness function yielding individuals and use tourna-

ment selection for selecting 2 parents. Use these parents to conduct the uniform

crossover operation to generate another individual. Repeat this step Crossover-

Pop*PopSize times.

(c) Mutation: Select ElitePop*PopSize individuals and use the bit-flip muta-

tion on each of them with the mutation probability MutateProb for each bit in the

individual.
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(d) Repair: Use the pseudo-utility ratios to repair the infeasible individuals

generated by reproduction operations (c) and (d). To do so, if the individual

is infeasible remove the bits with the lowest pseudo-utility ratio and after the

individual becomes feasible, start adding bits that yield the highest pseudo-utility

ratios until no more addition can be made.

(e) Increment k and evaluate the fitness values of the now repaired individuals

and if the best fitness value is better than the previous best fitness value solution

set h = 0 ; otherwise, increment h.

5. Report the best fitness value and the corresponding individual.

A.2 Small Network

B Case Study

B.1 Parameters

Table 8: Indicator parameters for the source and sink nodes

Node Location Population Income Foreign Population

Source 1 Khadbari 26301 738 0.00089453
Source 2 Taplejung 127461 813 0.00172602
Sink 1 Biratnagar 242548 774 0.00649595
Sink 2 Bhadrapur 50249 759 0.00751615
Sink 3 Kakarbhitta 21366 759 0.00751615

Table 9: Source-Sink Pair Desirabilities

Source (s) Sink (t) Income Ratio Total Population Distance Total Foreign Population Desirability (ust)

Source 1 Sink 1 0.953488 268849 114 0.00739049 3
Source 1 Sink 2 0.972332 76550 248 0.00841068 2
Source 1 Sink 3 0.972332 47667 243 0.00841068 1
Source 2 Sink 1 1.050388 370009 334 0.00822197 3
Source 2 Sink 2 1.071146 177710 242 0.00924217 2
Source 2 Sink 3 1.071146 148827 238 0.00924217 2

Distance data is from Google Maps and UN-Nepal Roadnetwork UN RCHC in Nepal (2011) and
the rest is from Nepal Census Data Government of Nepal Central Bureau of Statistics (2012)



49

F
ig

u
re

10
:

S
m

al
l

N
et

w
or

k



50

B.2 Final Population Diversity Plot for budget = 10 and ∆ = −1

Figure 11: Final Population Diversity of GA converging to 9.038 (best observed)


