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Lattice Nomenclature Survey from LGA to Modern LBM
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Abstract
Lattice con�guration is a core parameter in Lattice-Boltzmann (LB) methods, both from theoretical and implementa-
tion standpoints. As LB methods have progressed over the past decades, a variety of lattice con�gurations have been
proposed and referred to according to a plurality of lattice nomenclature systems that usually include the Euclidean
space dimensionality, the lattice velocity count and, in fewer instances, the discretization order in their format. This work
surveys lattice nomenclature systems, or lattice naming schemes, along the history of LB methods, starting from their
Lattice Gas Automata (LGA) predecessor method, up to the present time. Findings include multiple lattice categories,
competing naming standards, ambiguous names particularly in higher-order models, naming systems of varying model
parameter scopes, and lack of unambiguous naming schemes even for space-�lling, Bravais lattice types.
Keywords
lattice-Boltzmann stencils — lattice-Boltzmann models — lattice nomenclature systems — high-order lattices.
Highlights
Surveys lattice nomenclature systems in the history of LBM: from the LGA to current times — Discusses lattice categories,
competing standards, naming ambiguity, model parameter scope.
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1. Introduction
Historically, the lattice-Boltzmann (LB) method had its

origins in the frame of Lattice-Gas Automata [54], and has
been intensely developed since its inception [10, 17, 56, 48].

One important conceptual and implementation parameter
of LB methods is the employed lattice stencil—understood
as the lattice geometry, velocity set, weights, and scale param-
eters [42, 53, 52], although some authors may include in
the stencil designation additional modeling elements, such
as the relaxation time scheme [49].

Both LB and LGA methods can be implemented on a
variety of lattices, and historically many such lattices (along
with their corresponding names or naming systems) have
been developed. This work presents a LB literature survey
focused on lattice naming schemes, or model nomenclature
systems, from its Lattice-Gas Automata (LGA) predecessor
method until the present time, in a somewhat chronological
timeline.

2. Lattice Nomenclature Survey

2.1 Lattice-Gas Automata Lattice Designations
Some LGA lattices were named with acronyms after its

�rst proposers, such as the ‘HPP’ one [33], after Hardy, de
Pazzis, and Pomeau [37, 36, 80], or geometry-based acro-

nyms, such as the ‘HLG’ one [33], which stands for ‘hexago-
nal lattice gas,’ later on referred to as the ‘FHP’ one [32, 80],
after Frisch, Hasslacher, and Pomeau. Another geometry-
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based lattice of the time is the ‘FCHC’ one [32], which
stands for ‘face-centered-hypercubic’ model, due to d’Hu-
mières, Lallemand, and Frisch.

Later on designations such as ‘FHP + 3 rest particles’
and ‘FCHC + 3 rest particles’ also appeared [13], as well as
su�xes such as ‘-I’, ‘-III’, and ‘-IV’ after ‘FHP’, for alternative
collision rules [7, 13, 16].

2.2 Early Lattice-Boltzmann Years

Inception Period:
LB methods adhered to LGA lattice nomenclature in its

inception period, as witnessed by reference [54] in 1988 and
by subsequent references [44, 45] in 1989, by [9, 11, 14, 83]
in 1990, and by [23, 26, 31, 35, 79] in 1991, to cite a few.

Early 1990’s:
It seems that Qian [71] (apud [67, p. 235]) was the one

to introduce, in 1990, the ‘DdQb’ lattice naming scheme for
LB methods—in which d is the lattice Euclidean dimension-

ality and b is the lattice velocity count, as in D1Q3, D2Q9,
and D3Q15, etc. [68, 69]—that seems to be the most preva-
lent lattice naming system to date, although notable excep-
tions appear long after the paper [72] came out in 1991.

As far as increasing lattice velocity counts go, the rela-
tionship between mesoscopic lattice symmetry and resulting
macroscopic description isotropy has been established from
early in the history of LGA methods [37, 36], in two [33]
and in three Euclidean dimensions, the latter requiring the
lattice to include links beyond nearest neighbors [87, pp. 473,
490], hence particle velocities with unequal magnitudes.

Moreover, Koelman [47] had proposed matching dis-
crete velocity moments up to a certain order n with the d-
dimensional continuous Boltzmann distribution, since only
those moments in�uence the macroscopic �ow behavior;
such procedure would yield values for lattice velocity weights

Wα. The proposed criteria were deemed more stringent than
previously well-known symmetry and isotropy requirements
from [87], since it not only led to an isotropic macroscopic
description, but also ensure pressure term independence
from velocity terms of the Navier-Stokes description. Fur-
thermore, a skewed rectangular 9-speed lattice with inde-
pendent a and b axis lengths was proposed1, whose weights
exactly recover those of the well-known D2Q9 lattice for
a = b, over which the argument that valid weights ‘[...] can

always be found by choosing a large enough set of (lattice) ve-

locity vectors [...]’ [47].
One driving application for increased velocity count

1That lattice was named ‘face-centered rectangular’ by the author.

lattices is thermal �ows. On reference [3] an unnamed 2D,
hexagonal (triangular), 13-velocity lattice having velocity
magnitudes of 0, 1, and 2 lattice units [17] was employed
for adiabatic sound propagation and heat transfer Couette
�ow, whose results were shown to be in agreement with
corresponding analytical solutions.

Some ‘nDmV’ lattices, with n being the Euclidean space
dimension and m the lattice velocity count, namely, 1D5V,
2D16V, and 3D40V, were introduced in [18] for shock wave
front structure and shear wave �ow application cases. The
2D16V lattice, for instance, was said to be comprised of four
sublattices—a term that appeared in subsequent references—
with each sublattice having 4 discrete velocities of same mag-
nitude and forming adjacent right angles, which led to pos-
sibly multiple sublattices per lattice energy level ε≡ 2e = c2,
with c being the microscopic (lattice) velocity magnitude,
and e the corresponding speci�c kinetic energy, as was the
case with the ε = 12 + 22 = 5 energy level of a square lat-
tice, represented by the 8 discrete velocities obtained from
permutations of (±{1,2},±{2,1}) in lattice units, which
were grouped in two distinct sublattices. This is in contrast
to later works in which energy levels are treated as single
groups.

Late 1990’s to mid-2000’s:

Most likely borrowing from mesh-based continuous me-
chanics numerical methods, a study [41] has proposed a LB
algorithm for non-uniform mesh grids, by decoupling spa-
tial and momentum space discretizations in the LB scheme.
The underlying momentum space discretization was the
well-known D2Q9 lattice, referred to in the study as ‘9-bit
BGK model in 2D space’ and other semantically equiva-
lent sentences, in which BGK stands for kinetic theory’s
Bhatnagar-Gross-Krook collision model for the continuous
Boltzmann equation [12, 50, 38].

Nine years after the debut of LB methods, a study [40]
showed that they could be directly derived from the contin-
uous Boltzmann equation with linearized collision operator
under the BGK approximation [38], while lattice stencils
from requirements of matching continuous and discrete
velocity moments up to a desired order—a decisive publica-
tion, not only in making LB methods theory independent
from its LGA historical predecessor, but also to pave the way
towards later methods for lattice weights determination for
the lattice velocity set based on some discrete-to-continuous
equivalences [76, 65]. The lattices in [40] were verbosely
referred to as ‘d-dimensional b-bit g lattice model’, with d
being the Euclidean space dimension, b the lattice velocity
count, and g a geometry term, such as ‘triangular,’ etc.
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A review article by Shen and Doolen [17] published a
decade after McNamara and Zanetti’s premiere LB publica-
tion [54] and seven years after Qian’s paper introducing the
now-prevailing ‘DdQb’ lattice naming scheme [72], would
still refer to LB lattices either with LGA-style or verbose
nomenclatures, and to overall LB schemes based on its colli-
sion term treatment, such as ‘lattice BGK (LBGK)’ models.

Higher-order lattices were proposed in [62] for two- and
three-dimensional Euclidean spaces. They were referred to
as ‘octagonal grid (17-bit),’ and as ‘3D “octagonal” 53-bit’
models, respectively, and were isotropic up to the sixth-order.
Since octagons are not space-�lling, plane-tiling geometries,
the proposed lattices were not of the Bravais type, mean-
ing they impose a decoupling between the spatial and the
momentum space discretizations, as with the non-uniform
mesh [41], and the method has to resort to interpolations,
which was later shown to cause spurious numerical di�u-
sion [76, p. 429].

Other lattice namings of the early- and mid-2000’s in-
clude verbose, spelled out ones [25, 51]; a ‘DdQb’ variant of
Qian’s ‘DdQb’ scheme [60]; a ‘groupI’ to ‘groupIV’ regular
2D polygon variant [85, 84]; a ‘b (dD)’ short designation
for an otherwise verbose one [20]; an explicit lattice units
velocity list, such as ‘{0,±1,±3}’, in [20]; and the ‘dodeca-
hedron’ and ‘icosahedron’ ones that were shown to be stable
for supersonic thermal �ows [86, 84].

2.3 The Year of 2006
The year of 2006 is seemingly a landmark for multi-

velocity, higher-order LB schemes—and incidentally for lat-
tice naming schemes—as evidenced by the appearance of
three key publications, namely those of Shan, X., Yuan, X.-
F., and Chen, H., [76], of Philippi, P. C., Hegele, L. A.,
dos Santos, L. O. E. and Surmas, R., [65], and of Chikata-
marla, S. S. and Karlin, I. V., [20].

Shan and Coauthors:
A systematic discretization framework for the Boltz-

mann equation was proposed by Shan and coauthors in [76].
From kinetic theory [38, 50], the authors pointed out that
successive Chapman-Enskog approximations of the Boltz-
mann equation obtain the (i) Euler, (ii) Navier-Stokes, (iii) Bur-
nett, and (iv) higher-order macroscopic equations—meaning
progressively higher-order moments of the continuous Boltz-
mann equation express progressively higher-order macro-
scopic thermohydrodynamic descriptions. Moreover, the
authors demonstrated that projecting the Boltzmann equa-
tion onto order-N truncated tensorial Hermite polynomial
expansion bases [34], lead to discrete LB models of corres-

ponding order-N moments, since resulting Hermite expan-
sion coe�cients correspond to the velocity moments up to
the chosen order.

In this discretization framework, the lattice is viewed as
a Hermite expansion quadrature, and the naming conven-
tion was de�ned in terms of three parameters, namely, an
Euclidean space dimension D, a quadrature velocity count
d, and an algebraic degree of precision n encoded in an
‘Ed

D,n’ naming scheme—an order-N Hermite expansion re-
quires a quadrature degree n > 2N. Citing Qian and coau-
thors’ lattices [68], they established the following compar-
isons, which were o� only by a scaling factor: D2Q9 ∝ E9

2,5,
D3Q15 ∝ E15

3,5, and D3Q19 ∝ E19
3,5.

Additionally, they established that Gauss-Hermite quadra-
tures of the Boltzmann equation yield LB models with min-

imum velocity count for a given degree of precision and Eu-
clidean spacial dimension, without, however, the ability to
prede�ne (choose) the discrete velocity abscisae, which apart
from special cases fails to produce a space-�lling, Bravais
lattice—recalling that for LB methods, this means lower
memory requirements but decoupled spatial and momen-
tum ‘meshes’ that require interpolations, thus introducing
artifacts such as spurious numerical di�usion.

In the Appendix of reference [76], the authors include a
brief overview on deriving quadratures on prede�ned Carte-
sian abscissae, which is the main requirement for space-
�lling, Bravais lattices for non-interpolating, exact advection
LB schemes. The brief overview, however, is of scalar nature,
while a tensorial treatment is needed for full clarity. Results
for the space-�lling E17

2,7 and E39
3,7 quadratures were listed

among the ones obtained with Gauss-Hermite quadratures.

Philippi and Coauthors:
Tackling the aspects associated in deriving space-�lling,

Bravais lattices aiming at su�ciently high orders as to ap-
proach thermal hydrodynamic transport problems, Philippi
and coauthors [65] have proposed a new Method of Pre-

scribed Abscissas, MPA, for obtaining lattice weight values
and scaling factor from prede�ned lattice arrangements.

Departing from the continuous Boltzmann equation,
the derivation of discrete velocity sets, i.e., the lattice vectors,
and corresponding weights, was considered as a quadrature
problem aiming at (i) matching discrete equilibrium mass
distribution function with its continuous counterpart and at
(ii) warranting even-ranked velocity tensor isotropy, which,
in turn, translates into isotropic �uid transport properties.

The Method of Prescribed Abscissas, MPA, yields im-

plicit equations for lattice weights and lattice scale factor in
the form of polynomial tensor products, which are gener-
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ally excessively numerous, especially for higher-order cases.
They have to be selected (reduced) and converted either into
a non-linear system of equations. The apparent lack of lit-
erature guidance in tensor component equation selection
criteria and solution approach has motivated works [5, 24].

In their prescribed abscissas quadrature discussion, au-
thors state that [65, p. 6]:

“[...]Nth-order approximation to the [Maxwell-

Boltzmann] equilibriumd�tribution� required

when Nth-order macroscopic equilibrium mo-

ments are to be corre�ly d�cribed in [la�ice-

Boltzmann methods,]”

which is homologous to many Shan and coauthor’s state-
ments in [76]. Observations like these, allied to the new and
consistent methods of deriving higher-order LB stencils by
Gauss-Hermite or Prescribed Abscissas quadratures, allowed
for the immediate and subsequent appearances of lattices
in 2D- and in 3D-Euclidean spaces with increased velocity
counts, many of which requiring changes or adaptations in
the naming scheme, as the sequence will show.

Immediate examples [65] include (i) two forms of bidi-
mensional, 17-velocity ones, named D2Q17 and D2V17 for
distinction; (ii) a D2Q21 one; as well as (iii) two forms of
bidimensional, 25-velocity ones, named D2V25(W1) and
D2V25(W6), containing the energy levels ε∈ {0, 2, 4, 8, 9,
16, 18}, and ε ∈ {0, 1, 2, 4, 8, 9, 16}, respectively—thus
without the energy levels (hence, weights) labeled ‘1’ and ‘6’
for ‘(W1)’ and ‘(W6)’, respectively—and (iv) a fourth-order
(N = 4) Hermite D2V37 lattice, suitable for thermal �ow
LB simulations.

Chikatamarla and Karlin:
Seeking to systematically derive stable and Galilean in-

variant LB models, Chikatamarla and Karlin [20] set about
the problem of LB stencil construction from a discrete form
of Boltzmann’s H-theorem—in which the (−H) quantity
represents a sort of generalized thermodynamic entropy for
non-equilibrium states in the Boltzmann Gas Limit (BGL)
that increases according to the second law of thermodynam-
ics until equilibrium is reached [38]. By maximizing the
entropy, i.e., by minimizing H in the discrete description,

H =
N

∑
i=1

fi ln
(

fi

Wi

)
, (1)

with appropriately chosen weights Wi under a set of macro-
scopic constraints of mass and energy conservation as well
as constitutive relations for higher-order macroscopic ten-
sors, authors arrived at explicit expressions for the weights

Wi and for the stencil reference temperature for several one-
dimensional lattice models having from 3 to 5 velocities.
Methods obtained by this systematic were named ‘entropic’
LB methods (ELBM).

Remarkably, due to a pattern in Gauss-Hermite quadra-
ture [6], Chikatamarla and Karlin proposed a straightfor-
ward way of obtaining higher-dimension lattice stencils [20]:

“[...] d�crete velociti� [ci] in theD-dimensional

c�e are tensor produ�s of D copi� of the one-

dimensional velociti�, where� the corr�pond-

ing weights [Wi] are algebraic produ�s of the

corr�ponding weights in one dimension.”

As the immediate examples of [65] evidence, as soon
as one allows for including several energy levels (but not
necessarily all, nor in monotonic order) in a Bravais lattice,
velocity count no longer uniquely identi�es lattices, and
thus, velocity count-based lattice naming schemes are bound

to be ambiguous and require additional information as to

uniquely identify the lattice. Usually, the additional infor-
mation is laying out all velocity vectors, whether by energy
level listings, a quiver-like lattice picture, or tabulated lattice
velocities (plus weights, and either scaling factor or refer-
ence temperature)—all of which seem, to varying degrees,
excessively wordy and lengthy. Moreover, the very need for
providing additional information as to uniquely identify an
already named lattice seems to defeat the purpose of naming
it, at least in part.

2.4 Higher-order lattice proliferation

Late 2000’s:
The onset of systematic techniques for LB stencils fab-

rication in 2006 [20, 65, 76], allied to the expansion of LB
simulation applications and domains, contributed to the
proliferation of LB stencils over the following years. This
further highlighted the ambiguities in velocity count-based
naming schemes, as well as prompted the appearance of fur-
ther lattice naming variety.

The following ‘DdVb’ lattices were derived by Ortiz [61],
using prescribed abscissas quadrature [65]: second-order
hexagonally regular (Bravais) D2V7; third-order irregular,
i.e., not space-�lling, D2V12; fourth-order irregular D2V19,
D2V20, D2V21, and regular D2V37; �fth-order irregular
D2V28a, D2V28b, and regular D2V53a and D2V53b; sixth-
order regular D2V81. In three-dimensional Euclidean space,
the following: second-order irregular D3V13, third-order
irregular D3V27, and fourth-order irregular D3V52 and
D3V53.
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The D2V37, D2V53 and D2V81 lattices appear on [66].
Analytically derived exact weights and scale factors for the
D2V17 and D2V37 lattices are reported in [78].

A ‘59-velocity model in three dimensions’ is said to
be of third order Hermite expansion, with sixth-order ten-
sor isotropy in [15]; however, no weights, velocity list nor
scaling factors of such lattice are given. One-dimensional
D1Q3, D1Q4, D1Q5, and D1Q6, as well as two-dimensional
D2Q12 and D2Q21 lattices are presented in [46], with �-
nite Knudsen number applications in view. Reference [73]
studies various two- and three-dimensional lattices of up to
51 velocities, while referring to a ‘DdQq’ notation as being
‘standard’.

On patent [75], authors designate Cartesian, space-�lling
models with 21, 37, 39, and 103 velocities, as ‘2D-1’, ‘2D-2’,
‘3D-1’, and ‘3D-2’, respectively.

Discussion on a plurality of lattices and lattice oper-
ations, such as stretching, extending (product), pruning,
and superimposing, takes place in [22]; noteworthy ones
are the D1Q(1+2k) lattices for k ∈ {1, . . . ,4}, the higher-
order ones also referred to ‘1D seven/nine velocity set’; the
‘ZOT’, i.e., ‘{0,±1,±3}’, or ‘zero-one-three’ 1-D lattice; the
‘D1Q5-ZOT lattice’, de�ned as “the short�t integer-valued
d�crete velocity set in the family of five-velocity sets” [20]; the
‘D2Q25-ZOT’ lattice [21], of eight-order isotropy, obtained
by extending the ‘D1Q5-ZOT’ through a tensor product
with itself, so that

D2Q25-ZOT≡ (D1Q5-ZOT)⊗ (D1Q5-ZOT); (2)

the ‘D3Q125-ZOT lattice’, also of eight-order isotropy, ob-
tained by extending either the ‘D1Q5-ZOT’ or the ‘D2Q25-
ZOT’ lattice through a tensor product between them, so
that

D3Q125-ZOT≡ (D2Q25-ZOT)⊗(D1Q5-ZOT); (3)

and also it’s pruned version ‘D3Q41-ZOT’, obtained by
pruning, or, symmetrically removing velocity subsets.

It is worth noting that pruning operations deal with
discrete velocity groups of same magnitude; hence, energy
levels—so that pruning remove entire energy levels from a
departure lattice con�guration.

Several lattice stencils are given in [82] mostly in the
‘DdVb’ naming scheme from [65], but also including an ‘n’
su�x, as in D1V9n, D2V28n, and D3V53n, as to indicate
the lattice is not space-�lling, and also in the ‘{0,±a,±b}’
format, in which b can be an explicit multiple of a, as in {0,
±a,±3a}, naming schemes. Bravais lattices are given up to
D1V15, D2V53, and D3V107 in one-, two-, and three- Eu-
clidean spacial dimensions. Appendix tables list full velocity

sets as the ‘DdVb[n]’ naming scheme, in which the ‘n’ su�x
is optional, is not uniquely determined.

From 2010 to 2020:
The following lattices are referenced in the following

works: a D2Q36 in [2, p. 452]; a di�erent D2V25, D2V33,
D2V29-{l, r, rl}, D3V39, D2V45, D2V77, rectangular
D2Q13R, hexagonal D2V19H (also referred to as ‘GBL’,
after Gros�ls, Boon and Lallemand), D2V55H, D2V85H,
and D2V115H, the last three of �fth, sixth, and seventh
order, respectively, and D3V107 in [43]; an unnamed one,
described as ‘a ninth-order accurate Gauss-Hermite quadra-
ture formula in three dimensions’ in [59] having 121 veloci-
ties in three-dimensional Euclidean space.

Spherical shell ‘SLB(N;K,L,M)’ lattices—of order N,
K spherical shells, L shell latitudes, each K-L intersection
circle with M uniformly distributed discrete velocities, so
that models have K×L×M velocities—with 1 6 N 6 7,
K,L > N, and M > 2N, i.e., SLB(1; 2, 2, 3), SLB(2; 3, 3, 5),
SLB(3; 4, 4, 7), SLB(4; 5, 5, 9), and so on up to SLB(7; 8, 8,
15), and even an SLB(N; 20, 20, 17) are given in [4], the last
ones having, respectively, 960 and 6800 velocities!

Rhombic D2Q9, rectangular D2R11, and orthorhom-
bic Bravais D3R23 lattices are found in [42].

Mattila and coauthors [53] have shown that spurious
currents emerge along liquid-vapor interface in multiphase
simulations. They have shown that higher-order stencils,
such as the fourth-order D2V37, yields more localized and
isotropic spurious currents than lower order ones, such as
third-order D2V17 and D2Q25-ZOT ones. Thus, multi-
phase �ows became another application requiring multi-
speed, higher-order LB methods [77]. In fact, shortly af-
ter, the group published [52] prescribed abscissas-derived
D2V81 and D2V141 lattices, along with an equivalent, how-
ever far simpler, form of the prescribed abscissas method in
their Section 2.

Reference [55] lists lattice velocities, weights and scaling
factor for D2Q16, D2Q17 (reference [78]’s D2V17 and ref-
erence [74]’s E17

2,7), D2Q37 (reference [65]’s D2V37), and
for a D3Q121, originally unnamed on reference [59]. Sit-
uations like this—in which a given lattice is referred to by
di�erent names in di�erent sources yet without ruling out
ambiguities—illustrate the need for improved lattice naming
schemes.

The ‘DdQbd ’ notation—as in D3Q53, D2Q72, D3Q73,
and D3Q113—with a more explicit origin and relationship
with a lower-dimensionality, entropic ‘D1Qb’ lattice of b
velocities, through tensor product extension from it [20]—
appears in [27, 28] in connection to compressible �ow ap-
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plications. In this scheme, if

(D1Qb)d ≡ (D1Qb)⊗ (D1Qb) . . .︸ ︷︷ ︸
(d times)

, then (4)

DdQbd ≡ (D1Qb)d . (5)

It is worth noting that the D3Q73 and D3Q113 lattices have
343 and 1331 velocities, respectively.

Supersonic and hypersonic �ow speeds are comparable
to and greater than molecular thermal velocity scales, respec-
tively; moreover, many supersonic �ows have a well de�ned
prevailing �ow direction, especially when simple, slender
objects move with high speeds through quiescent media.
Changing from a rest to the object’s reference frame causes
molecule velocity populations to be shifted by the object’s
speed. References [29, 30] present the D2Q72 lattice, i.e.,
a D2Q49 one, in the (i) symmetric variety, rest reference
frame, and (ii) shifted variety, comoving reference frame of
Ux = 1 lattice units. Better yet, authors demonstrate that
departing from a Galilean-invariant symmetric, rest refer-
ence frame lattice, reference-frame shiftings do not change

the lattice weights, meaning

Wi(U,T ) =Wi(0,T ), (6)

for arbitrary U , where Wi’s are the lattice weights in terms
of the lattice reference speed and temperature, and U is the
reference frame speed shifting. Better still, the Galilean in-
variance property allow for the construction of higher-order
lattices through tensor products of lower-order Galilean in-
variant ones, whether they are shifted or not.

Therefore, let a symmetrical D1Q7 lattice, with velocity
abscissas V7 = {−3, −2, −1, 0, +1, +2, +3}, produce
a unit Ux-shifted lattice with velocity abscissas V ′7 = {−2,
−1, 0,+1,+2,+3,+4}, then the velocity set of the unit
Ux-shifted D2Q72 lattice is given by V ′7x⊗V7y.

Body-centered cubic, BCC, lattice arrangements arising
from emphasizing spatial discretization over the momen-
tum one in the discretization of the Boltzmann equation
in [58] led to BCC lattices named ‘RD3Q27’. A novel BCC
lattice model named RD3Q67 is also proposed in [8]. Refer-
ence [49] adds capital roman numerals to ‘DdQb’ lattices de-
pending on their underlying relaxation time scheme in Mul-
tiple Relaxation Time, MRT, models, thus yielding D2Q9-I
to D2Q9-IV lattice model designations.

Velocity count-based lattice naming ambiguities arose
in [63], in which the di�erent yet homonymous ‘D1Q5’
lattices from references [70, 20]—one with {0,±1,±2},
and the other with {0,±1,±3} velocity sets—were distin-
guished by an ‘A’ or ‘B’ su�x, making them D1Q5A and
D1Q5B.

Finally, a space-�lling regular Bravais D2V169 lattice,
comprised of 169 velocity vectors, with corresponding weights
and scaling factor appears in [24, p. 68].

3. Discussion
From the lattice naming systems survey of the previous

Section, one �nds that many lattice naming schemes have
appeared over the years, with each new variety either intro-
duced as to accommodate or re�ect a new aspect brought
in the research, as with [76, 21, 65, 4, 58], or to organize
and distinguish multiple lattices within a publication, as
with [72, 65, 61, 55, 49].

The present survey is unaware of any published e�ort
in the direction of major standardizations across multiple
lattice types and features, as well as of the existence of any
concise naming2 system that would allow for uniqueness
by ruling out name ambiguity.

Lattice naming variety appears to be due to (i) the inher-
ent decentralized nature of research, (ii) the inherent novelty
and discovery associated to the practice of research, mak-
ing future features, ideas, and demands unforeseeable to
previous studies, as well as to (iii) the variety of lattice types.

On this last aspect, the history of the method has seen
(a) space-�lling, regular, Bravais types in linear, square, trian-
gular (hexagonal), cubic, and projected hypercubic geome-
tries; (b) irregular, non-space-�lling ones; (c) those based on
spherical coordinate systems; (d) those with shifted reference
velocity frame; and (e) those more heavily focused on spatial
space discretization rather than on momentum space. This
facet alone may at best di�cult e�orts in creating concise,
unambiguous lattice naming schemes of general scope.

With respect to the continuation and adoption of lattice
naming systems, the Euclidean dimension, velocity count-
ing based ‘DdQb’ template of 1990 due to Qian [71], and
of 1991 of Qian and coauthors [72] seems to be the clos-
est thing to a present-time de-facto standard for LB stencil
naming, being thus acknowledged on research [73] and on
review [2] papers, as well as textbooks [56, 48]. Nonetheless,
reaching this current status hasn’t been a quick process, as
it seemingly took a considerable amount of years until the
naming scheme became widely adopted in the LB literature,
as evidenced by the lack of its usage in the 1998 review pa-
per of Chen and coauthors, which refer to some of them as
‘LBM models based on 21 and 25 velocities’ [17, p. 357], and
on the 2002 review paper by Succi and coauthors, which
refer to Qian and coworkers’ model as ‘LBGK’ [81, p. 1215]
after the collision model.

2As opposed to velocity listing.
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Moreover, other naming conventions such as the ‘Ed
D,n’

one due to Shan and coworkers [76], the ‘DdVb’ one due
to Philippi and coworkers [65], and the ‘DdQb’-based varia-
tions such as ‘-ZOT’ su�x and integer power velocity count
ones due to Chikatamarla and Karlin [21] frequently re-
appear in many subsequent publications, but its adoption
seem to be more or less con�ned to the proposing author’s
research groups, and to direct citations—so that one may
perceive then to be in competition.

It is worth noting that all ‘mainstream’ lattice naming
schemes—whether ‘Ed

D,n’, ‘DdQb’ and its variations—are
able to describe space-�lling, Bravais lattices. Yet, all such
lattice naming schemes are velocity count based and there-
fore su�er from ambiguity, as, for instance, the sole ‘D2Q25’
(or ‘D2V25’, or ‘D2Q52’) information can mean many dif-
ferent lattice con�gurations, having completely di�erent
envelope shapes, conception strategy, set of populated en-
ergy levels, and optional shiftings, since it only speci�es a set
of 25 discrete velocities in two Euclidean space dimensions,
and, in the case of the ‘Ed

D,n’ scheme, the resulting order of
approximation.

Aiming at space-�lling, regular, Bravais types in one- to
three-dimensional Euclidean spaces with complete, fully-
populated energy levels, the authors conjecture [57] that
a scheme with (i) energy-level-based primitives, (ii) that al-
lows for operations such as (tensor product) extensions and
shiftings; is able to produce relatively concise and unambigu-

ous lattice names, while being su�ciently generic within its
category.

4. Citations by Year
The following are the citations indexed by year in chrono-

logical order: 1949: [34], 1954: [12], 1973: [37], 1976:
[36], 1986: [33, 87], 1987: [32, 80], 1988: [54], 1989:
[44, 45], 1990: [9, 11, 14, 71, 83], 1991: [7, 13, 16, 23, 26,
31, 35, 47, 72, 79], 1992: [10, 68], 1993: [3, 67, 69], 1994:
[18], 1996: [41], 1997: [40, 39], 1998: [17, 62, 70], 2001:
[25], 2002: [81], 2003: [6, 50, 60, 85], 2005: [51], 2006:
[20, 19, 65, 76, 86], 2007: [61, 66, 78, 84], 2008: [15, 21,
46, 59, 73, 75], 2009: [22, 82], 2010: [2, 1, 43, 74], 2011:
[38, 56], 2012: [4], 2013: [42, 53], 2014: [52, 55, 77],
2015: [27], 2016: [5, 28, 29, 58, 64], 2017: [49, 63], 2018:
[8, 48], 2019: [24], 2020: [30, 57].

5. Conclusions
A survey of lattice naming systems for lattice-Boltzmann

(LB) methods, from its Lattice-Gas Automata (LGA) his-
toric predecessor to the present time has been performed,

which correspond to the period of years of our Lord from
1973 to 2020.

From the survey, key �ndings include: (i) the appear-
ance (and discontinuance) of many lattice naming schemes
over the years, (ii) an apparent lack of published e�orts solely
geared towards major lattice name standardizations, (iii) the
existence of a great diversity of lattice types, (iv) the promi-
nence of Qian’s (and coworkers)’ [71, 72] velocity-count
based ‘DdQb’ naming scheme—such as D2Q9—being the
closest thing to a de-facto standard in the LB literature;
(v) the existence of other, seemingly competing, velocity
count naming standards; and (vi) the ambiguity of velocity-
count based lattice naming schemes, plainly evident in [55,
63].

From the survey and from the diversity of lattice types,
it becomes somewhat clear that (a) probably there will be
no generic and concise ‘one-size-�ts-all’ naming scheme for
all surveyed models, let alone, published ones, and (b) a
concise, unambiguous naming scheme, at least for the more
regular lattice types is in order, as to enable the necessary
distinctions between models of same dimensionality and
velocity count. An upcoming work from the authors [57] is
to make a proposition.
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