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Abstract

Objective: Non-invasive continuous blood pressure monitoring is not yet part of routine practice inrenal dialysis units but could be a valuable tool in the detection and prevention of significant variationsin patient blood pressure during treatment. Feasibility studies have delivered an initial validation of amethod which utilises pressure sensors in the extra-corporeal dialysis circuit, without any direct contactwith the person receiving treatment. Our main objective is to further develop this novel methodologyfrom its current early development status to a continuous-time brachial artery pressure estimator.
Method: During an in vivo patient feasibility study with concurrent measurement validation by Finapres
Nova experimental physiological measurement device, real-time continuous dialysis line pressures, andintermittent occluding arm cuff pressure data were collected over the entire period of (typically 4-hour)dialysis treatments. There was found to be an underlying quasi-linear relationship between arterial lineand brachial pressure measurements which supported the development of a mathematical function todescribe the relationship between arterial dialysis line pressure and brachial artery BP. However, unmod-elled non-linearities, dynamics and time-varying parameters present challenges to the development ofan accurate BP estimation system. In this paper, we start to address the problem of physiological pa-rameter time variance by novel application of an iterative learning run-to-run modeling methodologyoriginally developed for process control engineering applications to a parameterised BP model.
Results: The iterative run-to-run learning methodology was applied to the real-time data measured dur-ing an observational study in 9 patients, supporting subsequent development of an adaptive real-timeBP estimator. Tracking of patient BP is analysed for all the subjects in our patient study, supported onlyby intermittent updates from BP cuff measurements.
Conclusion: The methodology and associated technology is shown to be capable of tracking patient BPnon-invasively via arterial line pressure measurement during complete 4-hour treatment sessions. Arobust and tractable method is demonstrated, and future refinements to the approach are defined.

Blood pressure measurement, extracorporeal pressure sensors, fistula, hemodialysis, continuous bloodpressure measurement model parameter optimisation, iterative learning, control engineering run-to-runcontrol, iterative learning

1 Introduction
Continuous monitoring of blood pressure (BP) during dialysis [1] has the potential to improve patient out-comes [2, 3, 4] and could ultimately inform treatment regime or close a personalised therapeutic inter-vention loop via modulation of dialysis time and/or duration, dialysate sodium concentration and/or tem-perature on a per patient basis. Of particular interest is intradialytic hypotension (IDH), a decrease in sys-tolic blood pressure [5], generally a relatively sudden event with associated symptoms include dizzinessor fainting, muscle cramps, abdominal discomfort, nausea and vomiting, often results in truncated dialysis
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treatments with increased risk of cerebral ischemic incidents. IDH prediction, detection and mitigation isthe primary application area of the work described in this paper.
BP monitoring is normally conducted in a clinical setting via the use of an air-filled occluding arm cuff thatprovides a robust, but irregular and intermittent measurement that disrupts the normal blood flow, andconsequently requires a significant settling time between measurements [6]. Additionally, there are threealternative distinct methods for non-invasive monitoring of BP which have occasionally been used in re-search settings. Arterial applanation tonometry [7], where a transducer is positioned above a superficialartery compressing it against an underlying bone [8], has been used in cardiology and anaesthetised proce-dures to avoid the insertion of an arterial cannula [9, 10]. Pulse Transition Time (PTT) [11] is based on mea-sured photoplestimography (PPG) and electrocardiogram (ECG) signals during several cardiac cycles, whichmay not be accurate due in part to the unaccounted physiological factors in the blood pressure regulationmechanism and reliance on accurate ECG triggering [12]. Finally, the volume clamp (or vascular unloading)method [6] utilises an inflatable finger-cuff combinedwith an embedded photodiode tomeasure the diam-eter of finger artery. Cuff pressure is adjusted to maintain a constant artery diameter, and the changes incuff pressure are used to calculate a BP curve in the brachial artery. In use, patients frequently report painor discomfort at the fingertips where cuffs are placed, and this device can be unreliable in patients withreduced blood flow to the digits, often manifest in dialysis patients [11]. All three non-invasive methodsare sensitive to patient movement (especially ECG signals) [13] which would result in an unacceptable anduncomfortable restriction placed on patients during a four-hour dialysis treatment.

Figure 1: Sensor and data acquisition signal flow
The iTrend (Intelligent Technologies for Renal Dialysis) programme is a long-term collaborative project per-formed by a multidisciplinary research team from the Universities of Derby and Nottingham and the RoyalDerby Hospital Renal Unit in the UK [19, 20], developing supporting technologies, real-time analysis algo-rithms and heuristics to enable personalised and precision treatment in end-stage kidney disease (ESKD)[14, 15]. Blood pressure monitoring to diagnose hypertension and hypotension [16, 17] typically relies onplethorperidialytic and intermittent intradialytic BP measurements. The ability to continuously monitorBP both in terms of absolute measures and blood pressure variability could lead to new diagnostic andprognostic criteria for IDH as well as optimal and personalised treatment strategies.
A feasibility study of a novel method for continuously monitoring BP has previously been conducted (Fig.1),which introduced the placement of pressure transducers onto the venous and arterial blood lines that con-nect a patient to a haemodialysis machine during treatment [18], and experimentally derived relationshipsbetween pressures in these extra-corporeal blood lines and brachial BP. Pressure sensors were attachedto the blood lines rather than making use of the pressure sensors present within the dialysis machines,and utilised the existing ports and connection points which are common and standardised on most dialysisblood line sets.
The experimental relationship between brachial cuff MAP and corresponding measured arterial line pres-sure for 11 sessions in the patient study is shown in figure 2, with a linear least squares fit of

y = 0.8x− 1.5e+ 02, (1)
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Figure 2: Brachial cuff MAP vs Arterial line pressures in 11 patient sessions
Root Mean Squares Error 10.3, R2 0.615, p-value 6.35e-20, and is strongly associated with the physicalcomponents of the dialysis procedure (pump, pump speed, dialysis line set), with variance from the linedominated by unmodelled physiological andmechanical effects In order to further examine this hypothesis,
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Figure 3: Brachial cuffMAP vs Arterial line pressures in 11 patient sessions, following compensation for timevarying effects during treatment
it is possible to negate the time varying effects in the data by taking amean value for each individual patienttreatment, and recalculating the data scatter, and is shown in figure 3. A linear least squares fit of y =
0.82x−1.5e+02, RootMean Squares Error 6.54,R2 0.852, p-value 2.93e-38. There are a number of salientfeatures in this plot. Firstly, the gradient of the fit has only changed by 2.5%, indicating a relatively accuratemodel for themachine and lines system. Secondly, the dataR2 value has risen by 38.5% to 0.852, indicatingthat it should be possible to design a tractable and useable time-invariant model. The feasibility studyconfirmed that it is potentially possible to estimate brachial BP continuously and non-invasively during theperiod of a dialysis session in a clinical setting with measurement of venous and arterial line pressure, andoccasional measurement of brachial blood pressure by arm cuff.
1.1 Structure of this paper
This paper describes the development, application and performance analysis of an adaptive model param-eter optimisation scheme based on iterative run-to-run learning control. The aim of this development wasto compensate for the time-dependent changes of model parameters which describe the arterial line toBP relationship during 4-hour dialysis treatments. The paper is divided into the following sections:

• Section I: Introduction
• Section II: Run-to-run BP Estimator describes the application of run-to run iterative learningmethod-ology
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• Section III:Method describes the processing methodology for the real-time patient data sets
• Section IV: Results examines the effectiveness of the BP estimation scheme
• Section V: Conclusions assesses the overall modeling-predictor method and draws conclusions forfurther work

For clarity, where a patient’s BP ismentioned, this should be taken tomean brachial blood pressure.

2 Run-to-Run BP Estimator
The system under consideration (Fig.4) is discrete-time and non-stationary, with continuous dialysis linepressures sampled at 1kHz. This measurement constitutes the basis of calculations to estimate instanta-neous, real-time BP. Patient arterial pressure is measured by occluding arm-cuff with an irregular samplerate of approximately 30 minutes, and this constitutes an accurate, repetitive measurement of BP, albeitat extremely widely spaced time-instances. The challenge addressed in this paper is to devise a methodto, as accurately as possible, ’fill in the gaps’ between BP cuff measurements. This is critically important,as patient BP can vary significantly at the time-scale of 30 minute measurement samples.
For processes such as this, which are fundamentally repetitive or cyclical by nature and resemble a batch
process delineated by cuffmeasurements, iterative learning approaches are generally tractable approachesto modeling and control [21]. These approaches are generally applied to the problem of repetitive refer-
ence tracking control for example in themanufacturing of semiconductors [22]. In the application describedhere, the methodology (Fig. 4) will be adapted to form a model-based BP estimator. Estimation of BP isbased on measured arterial line pressure, however, an accurate measurement of BP to update the modelparameters is only infrequently available (at best every 30mins). Run-to-run control was developed duringthe 1990s [23, 24] for this class of repetitive batch process. The model structure can take any form, how-ever linear regressions and response surface structures are generally implemented [25], which assumethat the process drift is slow enough to compensate with parameter updates when measurements be-come available. In this application, a model parameter update becomes available at the instant of BP cuffmeasurement.

Figure 4: BP estimator system
A linear regression model of the form

y(t) = ax(t) + b(t) + ε(t) (2)
is generally implemented, where t = 1, 2, ... denotes the time index; y is the model output, estimatedBP inmmHg; x is the input, measured arterial line pressure inmmHg; a is the slope coefficient; b is the
drift coefficient, and ε is the disturbance coefficient. The update objective for y is y∗, and if a and b areaccurately known, then the optimal model for the system is

x(t) = a−1(y∗ − b(t)) (3)
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Model inaccuracies when compared to the system are inevitable, particularly given the non-stationarynature of the physiological process, unmodelled nonlinearities and stochastic events. Consequently, aniterative parameter adjustment is implemented to update the estimation of a and b

b(t) = λ[y(t− 1)− ax(t− 1)] + ((1− λ)b(t− 1)) (4)
which is an exponentially weighted moving average filter [22], tuned by adjusting variable λ in the interval
0 < λ < 1. Combining (4) with (3) gives

b(t) = λ[y(t− 1)−AA−1[y∗ − b(t− 1)]] + (1− λ)b(t− 1)

b(t) = b(t− 1) + λ[y(t− 1)− y∗]

(5)
which, in its general form is

x(t) = αx(t− 1)− r(t) (6)
where 0 < α < 1 and r(t) are respectively the forgetting factor and update law for the model. Typicallythe system gain a is modeled in advance via designed experiment [26]. In the case under considerationhere, the fitted linear relationship for the study population has been derived (eq.1) as y = 0.8x−1.5e+02where x is the measured variable Brachial cuff BP and y is the corresponding output variable Arterial Line
Pressure. Given its successful history in the design and implementation of controllers for batch processes,the methodology has been applied to the design of a real-time BP estimator, which is described in the nextsection.

3 Method
In total 12 participants were recruited with 11 completed monitored dialysis sessions. 1 participant movedout of area before a session could be completed. 58.3% of participants were male, with a median age of65 (IQR 48-78). All participants had continuous non-invasive monitoring of haemodynamics using pulsewave analysis (Finapres NOVA) during a single dialysis treatment of typically 4 hours duration, and dataperiodically verified by intermittent arm-cuff measurements. Two pressure sensors were attached to thedialysis lines: one between the arterial dialysis needle and dialysis line and the other directly onto thevenous-line bubble trap. Datawas continuously recorded fromall sensors at a sampling rate of 1kHz.
The study protocol was approved by theWestMidlands - Coventry andWarwickshire Research Ethics Com-mittee and participants gave written informed consent.
A typical real-time data set for a patient study is shown in Figure 5. Measurements taken during the obser-vational study are acquired and stored for each patient as data sets containing the following datastreamssampled at 1kHz and covering the entire treatment period, typically 4 hours;

• Time: continuous from National Instruments board
• Arterial line pressure: continuous from pressure sensor
• Venous line pressure: continuous from pressure sensor
• Occluding cuff BP: intermittent from Finapres Nova
• Reconstructed systolic, diastolic and mean arterial pressure: continuous from Finapres Nova fingercuff

We will now consider the data from a single typical treatment session for patient IT54. Figure (5) showsthe reconstructed systolic, diastolic and mean arterial pressures calculated by the Finapres Nova unit froma vascular unloading finger cuff. It is found in practice that this method causes patient discomfort whichgenerally precludes continuous use, hence in this case approximately 2 hours of data at the beginningof treatment and 30 mins of data at the end of treatment are recorded. This was the case for all of theparticipants in the study, with 30 minute sessions being the average period for finger cuff measurements
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Figure 5: Typical patient real-time data - reconstructed systolic, diastolic and mean arterial pressure (IT54)
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Figure 6: Typical patient real-time data - venous and arterial line pressure, estimated blood pump flow rate(IT54)
before the device causes discomfort. Additionally, as the cuff is fitted to a finger on the non-dialysing arm,it can also interfere with run-of-the-mill activities such as refreshment breaks and reading.
Figure (6) shows the directly measured venous and arterial line pressures, along with estimated bloodpump flow rate which is derived from the venous line pressure data.
Figure (6) reveals a venous line pressure waveform which is time varying with respect to both mean andamplitude. This measurement is taken at a port on the venous bubble trap which is situated close to thedialyser blood pump. As is to be expected, the waveform dynamics are dominated by the action of thetwo lobes of this peristaltic pump Fig. (7). This dominating waveform shape should be closely related tothe angular speed of the pump and hence should support the derivation of flow rate through the dialysislines. The time varying nature of the waveform renders this derivation potentially problematic, leading tothe application of Fourier modelling to calculate the fundamental frequency of the pump. This methodsupports the derivation of instantaneous, and hence, time varying pump speed [27]. The problem can beposed as a moving window length L over the real-time venous line pressure data stream which is periodicover the interval 0 ≥ x ≤ L, then f(x) can be derived as

f(x) = a0 +

∞∑
n=1

[
ancos

(
2πnx

L

)
+ bnsin

(
2πnx

L

)]
(7)
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Figure 7: Typical patient real-time data - venous line pressure detail (IT54)
which is the Fourier trigonometric series for the function f(x). In the case under examination here, thefundamental frequency of the blood pump is sought, so calculations are constrained to n = 1.Examination of Figs. (5 - 7) reveals waveforms which comprise cyclical elements which are varying in bothamplitude and mean in addition to measurement noise. In order to smooth the signals to facilitate realtime calculations, moving average filters with a window length of 5000 samples or 5s was implementedon all data lines with the exception of BP which has a single value at each measurement event. The win-dow length was chosen as being over twice the length of the period of a slow heart rate (HR) of 30bpm inorder to avoid aliasing. The pump frequency is calculated and updated in real-time over this sliding win-dow. Additionally, arm cuff measurements are characterised as steady-state phenonomena as they arediscrete measurements without dynamics. Derived pump frequency is converted to flow in units ofmls−1by

fl =

((
fr(rads−1)

2π

)
× 60

)
×
(
πr2Ln

) (8)
where fl is flow inmls−1, fr is pump frequency in rads−1, r is the radius of the dialysis line within thepump inmm and Ln is the effective length of line within the pump inmm. In the example shown in Fig.(6) the estimate of 290ml/min agrees with the flow rate recorded in the patient’s record.
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Figure 8: Typical patient real-time data - occluding arm cuff pressure, mean arterial line pressure, meanreconstructed arterial pressure (IT54)
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Table 1: Baseline participant characteristicsVARIABLE (n=7)Age (years) 53 (*IQR 49 to 70)Male [n (%)] 3 (43)White ethnicity [n (%)] 5 (71)Current smoking [n (%)] 1 (14)Diabetes [n (%)] 2 (29)Ischaemic heart disease [n (%)] 2 (29)Dialysis vintage (months) 6 (6 to 23)Dialysis adequacy (Kt/V ) 1.24 (0.97 to 1.46)Fistula blood flow assessment (QA) 670 (635 to 1072)
Vascular access typeBrachiocephalic arteriovenous fistula [n (%)] 4 (57)Radiocephalic arteriovenous fistula [n (%)] 3 (43)

Needle gauge2x 14g [n (%)] 3 (43)2x 15g [n (%)] 3 (43)Arterial 15g; Venous 16g [n (%)] 1 (14)Post-dialysis weight (kg) 78.6 (64.1 to 98.2)Body mass index (kg/m2) 26.3 (24.4 to 34.4)*IQR, interquartile range

Filtered mean arterial line pressure and reconstruced arterial waveforms are shown in Fig. (8) with corre-sponding arm cuff MAP measurements during the treatment period.
Real-time code has been developed in Matlab/Simulink [28] to perform calculations on patient measure-ment data streams acquired during dialysis treatment. The algorithm is structured as follows;

1. pre-calculate recursive least fit for the patient populations previously measured and recorded BP -arterial line pressure pairs Fig. (2). In this case, with x as the measured variable arterial line pressureand y as the predictor variable BP, we derive the relationship of the form y(t) = ax(t)+ b(t)+ ε(t))Eq. 2 as y = 0.619x+ 138.8 + ε

2. the a coefficient in Eq.(2) is thus fixed as 0.619 for this patient and will be updated for future treat-ments as more data is acquired
3. initial estimates of BP are conducted with the population derived fit until the first new BP/line pres-sure measurement is received
4. the relationship y(t) = ax(t) + b(t) + ε(t)) is updated according to Eq. 4
5. estimates of BP are conducted with the updated estimator
6. new measurements received
7. repeat from item 4

4 Results
9 complete treatment data sets were processed and subsequently analysed, characteristics of the patientsin the study are given in Table 1
Fig. 9 shows the typical updating of the model over an approximately 4-hour treatment period as newBP/line pressure measurements are acquired.
The associated BP estimator for this treatment is shown in Fig. 10. Blood pump flow for this treatment isconsistent at 280ml/min.
The initial estimate at 3500s is based upon the initial population fit model and exhibits a relatively widedivergence from the incoming accurate BP measurement. Subsequent pairs show the incoming BP mea-surement, with the estimate from the predictor model prior to update, and exhibit improved accuracy

8



-140 -120 -100 -80 -60 -40 -20

Arterial Line Pressure (mmHg)

40

60

80

100

120

140

B
P

 (
m

m
H

g
)

Initial Population Fit

Fit 1

Measurement 1

Fit 2

Measurement 2

Fit 3

Measurement 3

Fit 4

Measurement 4

Fit 5

Measurement 5

Fit 6

Measurement 6

Fit 7

Measurement 7

Figure 9: IT62 Initial population fit predictor, incoming measurements and predictor updates over 4 hourtreatment
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Figure 10: IT62 measured and predicted BP, arterial line pressure and blood pump flow over 4 hour treat-ment
when compared to the first estimate in all patients.
Performance of the estimator scheme for patients in the study is shown in Table 2. Maximum errors areexclusively associated with the initial estimates derived from the population model. Errors then tend todecrease significantly after the first BP update. The average RMS error for all the sessions analysed here(including initial modelling error) is 11.5mmHg. Eliminating the initial modeling error reduces the averageRMS error to 7.9mmHg

Finally for completeness, we can examine the performance of the estimator against dynamic, continuousBP measurement (Fig. 11). There is reasonable performance in tracking the cuff BP measurements, how-ever, with the continuous BP measurement provided by the Fiapres Nova finger cuff there are obviousshortcomings. This is to be expected when comparing the performance of a steady-state linear modelagainst the output of a dynamic non-linear system.
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Table 2: Estimator performance over treatment sessions when compared to incoming BP measurements(mmHg) Patient RMS Error Max Error Min ErrorIT62 12.27 26.38 0.71IT58 7.47 14.89 2.08IT57 11.19 21.17 0.38IT54 28.48 51.45 1.7IT62 11.51 28.68 0.38IT60 7.47 18.9 1.22IT57 12.94 25.68 1.06IT56 6.76 13.08 0.77IT55 5.56 14.33 2.01
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Figure 11: IT57 measured and predicted static and dynamic BP, arterial line pressure and blood pump flowover 4 hour treatment
5 Conclusion
A non-invasive, recursive BP estimator has been designed and analysed on real-time data sets from anobservational patient study. The parameterised run-to-run adaptive model described is initially fitted todata from the study population, and subsequently updated with the individual’s line and BP data whenit is available. The problem of defining initial conditions for the estimator model and reliance on sparseupdate data is extremely challenging. There are a number of significant outcomes from this phase of theresearch programme. Firstly, in this study, and a previous 50 patient study which examined heart rate andblood pressure variability in dialysis treatment [29], it is apparent that continuous monitoring technologycurrently faces challenges in applications with long treatment times. The method described in this papersuccessfully conducts estimation of BP based only on the pressure measurements from sensors placedin the dialysis lines, and intermittent BP measurements. As such it fulfills the requirements of a usablenon-invasive, continuous estimator.
In its current form, the estimator can track trends in patient BP albeitwith an averageRMSerror of 7.9mmHgbetween prediction and updated BP measurement. Consequently, it represents a significant step forwardin this area as the ability to repeatably track changes in BP rather thanmeasure instantaneous BP with highlevels of accuracy is currently a critical necessity during treatment. Examination of Fig. 11 reveals the mis-match between the performance of the linear steady-statemodel and the non-linear dialyser-physiologicalpatient dynamics. Future work will develop a non-linear parameterised model estimator, which will stillutilise measured BP updates, but will have more reliance on the complex interaction between the venousand arterial lines real-time pressure measurements. In this way, the model will have less reliance on a pop-ulationmodel for initial conditions, and in particular will be able to estimate both steady-state and dynamicBP response, which should enable more accurate real-time estimates rather than trend estimation from

10



the current estimation scheme.
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