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Abstract

Auxetic behaviour , the unphysical transverse expansion during uniaxial tension, is a com-

mon and undesirable feature of classical anisotropic hyperelastic constitutive models for

soft tissue. In this study we uncover the underlying mechanism of such behaviour; high

levels of in-plane compaction occurs due to increasing tension in strain-stiffening fibres,

leading to unphysical out-of-plane expansion. We demonstrate that auxetic behaviour is

primarily influenced by the ratio of fibre to matrix stiffness, and is accentuated by strain-

stiffening fibres in a constant stiffness matrix (e.g., the widely used neo-Hookean matrix

with exponentially stiffening fibres). We propose a new bilinear strain stiffening fibre

and matrix (BLFM) model which allows close control of the fibre-matrix stiffness ratio,

thereby robustly eliminating auxetic behaviour. We demonstrate that our model provides

accurate prediction of experimentally observed out-of-plane compaction, in addition to

stress-stretch anisotropy, for arterial tissue subjected to uniaxial tension testing.

Keywords: Hyperelasticity, Constitutive modeling, Anisotropy, Soft tissue, Auxetic

behaviour, Strain-stiffening fibre-matrix model

1. Introduction

The hyperelastic strain energy density function used to model fibrous soft tissues is

typically decomposed into an anisotropic part (representing the contribution of aligned

families of fibres), and an isotropic part (representing the contribution of non-fibrous

ground matrix). Common examples include models of arterial tissue (Gasser et al., 2006;

Nolan and McGarry, 2016a; Fereidoonnezhad et al., 2016; Holzapfel et al., 2015), carti-

lage (Dowling et al., 2013; Brown et al., 2009; Pierce et al., 2013; Deneweth et al., 2015),

and the annulus fibrosis (Guo et al., 2006; Peng et al., 2006). The most commonly imple-
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mented form for the strain energy density function entails exponentially strain-stiffening

fibres in parallel with a near-linear neo-Hookean ground matrix, following from the work

of Holzapfel, Gasser and Ogden (2000). While such an additive decomposition of soft tis-

sue stress into a fibre contribution and a ground matrix contribution is attractive in terms

of physical interpretation of the constitutive law, auxetic behaviour (i.e. orthogonal expan-

sion during uniaxial tension) is a common and undesired feature of such models (Skacel

and Bursa, 2016, 2019; Volokh, 2017). To better illustrate such auxetic behaviour , we re-

produce a simulation from the ‘Abaqus benchmarks Guide’ (input file adventitia_circ.inp)

of uniaxial tension of an adventitial strip cut along circumferential direction (Abaqus,

2017). The material is modelled using the well-known HGO constitutive model (Gasser

et al., 2006), with fibre families prescribed at±49.98 ◦, as shown in Figure 1A. As shown

in Figure 1 thickness in the out-of-plane 3-direction increases as the specimen is stretched.

While auxetic behaviour has been reported for certain classes of synthetic materials (e.g.

foams and lattice materials (Lim, 2015)), such auxetic behaviour is not observed in ex-

perimental tests of artery tissue (Skacel and Bursa, 2016). To the best of the authors

knowledge, auxetic behaviour has not been reported in any naturally occurring soft tissue

or tissue engineered collagen constructs. Therefore, in the context of soft tissue material

models, we refer to the computation of auxetic behaviour as unphysical.

Auxetic behaviour of soft tissue hyperlastic models has been the subject of three recent

studies. Skacel and Bursa (2016) demonstrated the computation of auxetic behaviour

(which they refer to as a negative Poisson’s ratio) for the anisotropic hyperelastic soft

tissue models of Holzapfel et al. (2000) and Gasser et al. (2006; 2012). The authors

incorrectly suggest that such unphysical auxetic response might be the result of model

incompressibility. In a follow-on study the authors later demonstrate that introduction

of volumetric compressibility into constitutive model in fact increases auxetic behaviour

of the models (Skacel and Bursa (2019)). The recent study by Volokh (2017) considers

an anisotropic hyperelastic model with exponential stiffening and fibre dispersion. The

author suggested that a more accurate consideration of the fibre dispersion could be used

to reduce the auxetic effect. Fibre dispersion is also taken into account in the models

investigated by Skacel and Bursa (Skacel and Bursa, 2016, 2019). However, in Section 7

of the current study, we demonstrate that dispersion can merely reduce, but not eliminate,

auxetic behaviour. Furthermore, fibre disperion is a physically motivated model feature
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Figure 1: Results of the Abaqus Benchmark Guide example Abaqus (2017) for uniaxial tension

of an adventitial strip cut along the circumferential direction. (A) Two fibre families oriented

as θ = ±49.98 ◦are considered. (B) Increase in the thickness of the strip in the case of fully

aligned fibres (κ = 0) at ∆L
L0

= 0.33. (C) An increase in the thickness of the strip is computed

for ∆L
L0

> 0.2 in the case of fully aligned fibres (κ = 0) and for 0.09 < ∆L
L0

< 0.3 in the case

of dispersed fibres (κ = 0.226) . The reader is refer to Abaqus (2017) for details of material

parameters and dimensions.

that must be calibrated to reproduce observed material anisotropy. It is therefore not an

independent parameter that can be used to control auxetic behaviour.

The three previous studies (Skacel and Bursa, 2016, 2019; Volokh, 2017) demon-

strate that incorrect computation of auxetic behaviour is a general problem for established

anisotropic hyperelastic soft tissue models. However, these studies do not uncover the

underlying mechanistic cause of such auxetic behaviour, but merely focus on secondary

factors such as compressiblity and fibre dispersion. No study to date has uncovered the

root cause of computed auxetic behaviour in anisotropic soft tissue models, and no study

has proposed a robust solution for such incorrect behaviour.

The current paper (i) provides, for the first time, an explanation for the underlying
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mechanism of auxetic behaviour in anisotropic soft tissue models, and (ii) proposes a new

constitutive law for anisotropic soft tissue that robustly controls and eliminates auxetic

behaviour. The paper is structured as follows. In Section 2 we provide a mechanistic

explanation for the computation of auxetic behaviour in fibre reinforced soft tissue mod-

els. In Section 3 we demonstrate the key role of the fibre-matrix stiffness ratio in auxetic

behaviour. In Section 4 we demonstrate that strain stiffening fibres in a constant stiffness

matrix promotes auxetic behaviour at high strains. In Section 5 we propose a novel bi-

linear strain stiffening fibre and matrix model (BLFM model) and we demonstrate that

this new formulation allows robust control of out-of-plane deformation and elimination

of auxetic behaviour, resulting in accurate prediction of experimentally measured artery

anisotropic strain stiffening and out-of-plane contraction.

2. Why does auxetic behaviour occur?

In order to provide a clear explanation of the origin of auxetic behaviour for consti-

tutive models of fibrous tissue, we consider the simple case of a cube that consists of a

matrix material and two families of embedded collagen fibres. Following the typical ap-

proach for artery models, we assume that the fibres are confined to the (1-2) plane and are

symmetric about the 1-direction (see Figure 1A). Following the established approach for

the modelling of hyperelastic soft tissue, the strain energy density function is additively

decomposed into an isotropic matrix contribution and an anisotropic fibre contribution:

Ψ = Ψm + Ψf (1)

This leads to an additive decomposition of the Cauchy stress tensor:

σi = σmi + σfi (2)

Therefore, when the cube is subjected to uniaxial tension in the 1-direction, the equilib-

rium equations in the 2- and 3-directions can be written as:

σ2 = σm2 + σf2 = 0,

σ3 = σm3 + σf3 = σm3 = 0
(3)

where σm2 and σm3 are the 2- and 3-components of the matrix Cauchy stress tensor, re-

spectively. σf2 is the 2-component of the fibre Cauchy stress tensor. Because we assume
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that fibres are confined to the (1-2) plane without any out-of-plane contribution, σf3 is

equal to zero. Additionally, due to symmetry of the two fibre families about the loading

direction, the 1-, 2-, and 3-direction are the principal directions. Typically the constitutive

law for fibres assume significant strain stiffening (e.g. exponential stiffening of collagen

fibres) whereas matrix constitutive laws typically assume much lower strain stiffening

(e.g. neo-Hookean model without progressive stiffening). Therefore, when a high level

of stretching is imposed on the cube in the 1-direction, the fibres exert significant tension

in the 2-direction (in addition to a larger contribution in the 1-direction). Therefore, to

achieve stress equilibrium, the near constant stiffness matrix must develop large negative

strains in the 2-direction such that σm2 = −σf2 . As a result of extreme matrix compaction

in the 2-direction, the matrix may undergo expansion in the 3-direction in order to satisfy

stress equilibrium. Such expansion in a lateral direction during uniaxial stretching is re-

ferred to as auxetic behaviour. Such behaviour is not observed experimentally for arterial

tissue (Skacel and Bursa, 2016), or, to our knowledge, any other soft tissue. Therefore,

new modelling strategies to control and eliminate the computation of non-physical auxetic

behaviour must be developed for anisotropic fibrous soft tissue.

3. The simple case of linear fibres in a linear matrix

We begin our investigation with a simple parametric analysis of the sensitivity of

auxetic behaviour to (i) fibre to matrix stiffness ratio, (ii) fibres orientation and (iii) matrix

compressibility. In this Section we initially limit our analysis to linear fibre and linear

matrix behaviour in order to elucidate the factors underlying auxetic behaviour. Once

again, a cube with two fibre families confined to the (1-2) plane is considered, with applied

uniaxial extension in the 1-direction (Figure 2).
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Figure 2: Schematic of the uniaxial tension of a fibre-reinforced cube with two fibre families.

(a) undeformed cube (b) deformed cube without auxetic behaviour , and (c) deformed cube with

auxetic behaviour . The fibres are distributed in (1-2) plane.

Hyperelastic constitutive models for arterial tissue and other fibrous soft tissues are

defined through the strain energy density function Ψ as follows:

Ψ(C, a0i) = Ψm(C) +
∑
i=4,6

Ψfi(C, a0i) (4)

Ψm(C) and Ψfi(C, a0i) are the strain energy density contributions of the ground matrix

and collagen fibres, respectively. Two fibre families (i = 4, 6) are represented in equa-

tion (4), as commonly assumed for arterial tissue. C = FTF is the right Cauchy–Green

tensor, where F is the deformation gradient tensor. Typically for soft tissue (e.g. arter-

ies) two fibre families are represented, and a0i are two fibre directions in the reference

configuration. Typically Ψm(C) is decomposed into isochoric and volumetric matrix con-

tributions, such that

Ψm(C) = Ψvol(J) + Ψm(C). (5)

C = J−2/3C is the isochoric modified right Cauchy–Green tensor, while J = det F > 0 is

the volumetric jacobian. The simple neo-Hookean formulation is generally used to model

the ground matrix of soft tissues, such that:

Ψm(C) =
K

2
(J − 1)2 +

µ

2
(Ī1 − 3) (6)
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where K is the effective bulk modulus and µ is the effective shear modulus. Ī1 = trC is

the first invariant of C. This formulation provides near-linear stress-strain behaviour. It is

convenient to define Em, the effective matrix stiffness under conditions of uniaxial stress,

such that Em = 9Kµ/(3K + µ). Note that the volumetric contribution in equation (6) is

appropriate for soft tissues that do not undergo large deformations (e.g. arteries (Nolan

and McGarry, 2016b)). However, for materials that exhibit large volume changes the

reader is referred to Moerman et al. (2020) for more complex volumetric strain energy

density functions. For the initial investigation in this section we consider a simplified

constant stiffness fibre strain energy density function is given as

Ψfi = E1f (
2

3
λ3
fi − λ2

fi +
1

3
) (7)

which leads to a linear relationship between fibre Cauchy-stress and fibre stretch, where

E1f is the fibre stiffness and λfi is the fibre stretch obtained as: λ2
fi = Ii = a0i.Ca0i.
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Figure 3: Influence of the fibre to matrix stiffness ratio (A, D), fibre angle (B, E) and compress-

ibility (C, F) on the in-plane (first row) and out-of-plane stretch λ3 (Second row) for the uniaxial

extension of a cubic element of fibrous materials. A neo-Hookean matrix with a linear fibre model

with the reference parameters value of θ = ±45 ◦, Em = 0.5, Ef/Em = 10 and K/µ = 100

have been used in all plots (blue curves). λ1 is the stretch in the loading direction.

The results of our initial parameter study for linear fibres in a linear matrix are shown

in Figure 3. Computed in-plane contractions λ2 (Figure 3A, C, E) and the corresponding
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out-of-plane deformations λ3 (Figure 3B, D, F) are plotted as a function of the applied

stretch in the x-direction λ1. λ3 > 1 indicates that unphysical auxetic behaviour has been

computed. As shown in Figure 3 (A, D), an increase in the fibre to matrix stiffness ratio

results in in-plane contraction in the 2-direction, and a corresponding increase in out-of-

plane expansion in the 3-direction. Significant auxetic behaviour is computed for all cases

in Figure 3, except for the case where the fibre and matrix stiffnesses are equal (i.e. the

material is essentially isotropic). In summary, stretching of stiff fibres results in a high

component of fibre tension in the 2-direction. Therefore, mechanical equilibrium requires

a significant matrix compaction in the 2-direction, with a corresponding matrix expansion

in the 3-direction.

Figures 3 B and E show the effect of initial fibre orientation (with respect to the loading

direction (1-direction)). As expected, no auxetic behaviour is observed for the case of θ =

0 ◦; fibres contribute only to the 11 component of the stress tensor, and the deformation in

the 2- and 3-directions is dependent only on the matrix properties. Similarly for the case

of θ = 10 ◦, fibres are closely aligned to the loading direction and contribute weakly to the

22 component of the stress tensor. Therefore deformations in the 2- and 3- directions are

primarily governed by the matrix properties and, again, no auxetic behaviour is computed.

For θ = 30 ◦auxetic behaviour is computed from the onset of stretching. This occurs due

to a high component of fibre tension in the 2-direction. Stress equilibrium therefore results

in high matrix compaction in the 2-direction, and consequently an auxetic expansion in

the 3-direction. λ3 is observed to peak at an applied stretch of λ1 ≈ 2. Further stretching

results in further rotation of the fibres towards the loading direction and a consequent

slight reduction in λ3. A similar trend is observed for a fibre angle of θ = 45 ◦, with λ3

peaking at a higher stretch of λ1 ≈ 2.8.

For fibre angles greater than θ = 45 ◦, the fibres are in compression at the start of the

deformation. Since fibres are not capable of bearing compressive loads (McEvoy et al.,

2018; Holzapfel and Ogden, 2017; Holzapfel and Fereidoonnezhad, 2017), during the ini-

tial stages of stretching the material behaves like an isotropic matrix with no fibre contri-

bution and consequently no auxetic behaviour . However, as the deformation increases the

fibres rotate towards the stretching (1-) direction and develop a tensile 22-Cauchy stress

component. Eventually auxetic behaviour begins to appear and progressively gets worse.

The effect of material compressibility on auxetic behaviour is also investigated ( Figure 3
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C, F). It is observed that auxetic behaviour increases with increasing material compress-

ibility. Figure 3 presents a limited parametric investigation to illustrate the mechanisms

underlying auxetic behaviour. It should be noted that the full range of interactions be-

tween the governing parameters is not presented. For example, auxetic behaviour will be

computed for θ = 10 ◦if a fibre to matrix stiffness ratio of Ef

Em
= 30 is considered.

4. Auxetic behaviour is increased by strain–stiffening fibres in a linear matrix

The isotropic neo-Hookean model with a linear fibre model has been used for the illus-

tration of the auxetic behaviour and parameter studies in Section 2. However, experimen-

tal data of fibrous soft tissue exhibits anisotropic strain-stiffening behaviour . Typically

this is captured using a strain-stiffening constitutive model for fibres in parallel with a

neo-Hookean matrix.

In order to systematically analyse the role of fibre strain stiffening on auxetic be-

haviour we propose a new bilinear strain-stiffening fibre (BLF) constitutive law. Fibre

deformation is considered to consist of three distinct regimes: (i) an initial compliant

quasi-linear region to model the stretching of coiled collagen fibres; (ii) a non-linear tran-

sition region to model the uncoiling of fibres; (iii) a stiff quasi-linear region to model fully

uncoiled fibres.

The proposed bilinear stress-strain relation for the collagen fibres is given as:

σaniso =
∑
i=4,6

σfiai ⊗ ai,

σfi =


E1f (λfi − 1) λfi − 1 ≤ D1f

pf (λfi − 1)2 + qf (λfi − 1) + rf D1f < λfi − 1 < D2f

E2f (λfi − 1−D2f ) + (pfD
2
2f + qfD2f + rf ) λfi − 1 ≥ D2f

(8)

where, E1f and E2f are slopes of the linear regimes, D1f andD2f are the values of the

nominal fibre strain at the end of the first linear regime and at the beginning of the second

linear regime, ai, i = 4,6 are the directions of the fibres in deformed configuration and σ

stands for the Cauchy stress. It is noted that the material parameters of the BLF model in

equation (8) have a clear physical meaning that can be related to a soft tissue experimental

stress-stretch curve. During the initial regime the collagen fibres are tightly coiled. As

the initial regime reaches D1f and enters the transition regime the collagen fibres uncoil
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which leads to the rapid stiffening of the stress-stretch curve. At D2f , the point where the

second linear regime is entered, the collagen fibres are completely uncoiled and behave

as straight stiff elastic fibres. Moreover, pf , qf and rf are not independent parameters; in

order to maintain C0 and C1 continuity the following relations must be enforced:

pf =
E1f − E2f

2(D1f −D2f )
, qf = E1f − 2D1fpf , rf = (E1f − qf )D1f − pfD2

1f , (9)

The corresponding fibre strain energy density function is given as:

Ψaniso =
∑
i=1,2

Ψfi,

Ψfi =


E1f (

2
3
λ3
fi − λ2

fi + 1
3
) λfi − 1 ≤ D1f

2
3
λ3
fi(qf − 2pf ) +

pf
2
λ4
fi + λ2

fi(pf − qf + rf ) + ψ01 D1f < λfi − 1 < D2f

2E2f

3
λ3
fi + λ2

fi(pfD
2
2f + qfD2f + rf − E2f − E2fD2f ) + ψ02 λfi − 1 ≥ D2f

(10)

where, ψ01 and ψ02 are two constants which ensure the continuity of strain energy.

Figure 4 contains a schematic illustration of the material parameters of the proposed BLF

model and functionality of stress and strain energy. An alternative form of the BLF model

that uses a single function, rather than the piece-wise function, is presented in Appendix

A.
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Figure 4: A schematic illustration of a typical σf -λf (A) and Ψf -λf (B) curves for the proposed

BLF model. The nature of the parameters E1f , D1f , E2f and D2f , and the uncoiling of the

collagen fibres during each deformation regime are illustrated. D1f is the nominal strain at the

end of the first linear regime which is controlled by the initial slope E1f . D2f is the nominal

strain at the beginning of the second linear regime which is controlled by the slope E2f . The low-

stiffness and the high-stiffness linear regime are connected by a transition regime between D1f

and D2f .
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Figure 5: The influence of fibre strain-stiffening and transition strain on the stress (A, D), in-

plane transverse stretch (B, E) and out-of-plane stretch (C, F). Reference parameters E1f/Em =

1.5, θ = 45o, E2f/Em = 6, D1f = 0.2, D2f = D1f + 0.2 have been used.

The BLF model is placed in parallel with a linear neo-Hookean matrix and subjected
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to uniaxial tension boundary conditions. The influence of the fibre strain stiffening in

regimes (ii) and (iii) is investigated in Figure 5. In the low-stiffness regime no aux-

etic behaviour is observed. The onset of fibre strain stiffening in the transition regime

leads to an increased rate of compaction in the 2-direction and the onset of auxetic be-

haviour (λ3 > 1). The degree of auxetic deformation increases with increasing fibre

strain-stiffening. However, even at low ratios of fibre stiffness to matrix stiffness (e.g.

E2f/Em = 4) auxetic deformation occurs upon the onset of fibre strain stiffening. In

order to accurately model the anisotropic strain-stiffening behaviour observed in exper-

imental testing of arteries, a high fibre stiffness is required at high strains, so that aux-

etic behaviour becomes unavoidable if a linear neo-Hookean (constant stiffness) matrix

is used. Moreover, increasing the transition strain D1f leads to postponing the auxetic

behaviour as it postpones the fibre strain-stiffening (Figure 5 D, E, F). However, it is im-

portant to note that the parameters explored in Figure 5 (i.e. the fibre-matrix stiffness

ratio (E2f/Em) and the values of transition strain (e.g. D1f or D2f ) are calibrated to fit

experimental stress-strain curves, and cannot be arbitrarily chosen to eliminate auxetic

behaviour.

5. A strain–stiffening matrix with a strain–stiffening fibre reduces auxetic behaviour

As demonstrated in Figures 3 and 5, auxetic deformation is strongly influenced by the

ratio of fibre to matrix stiffness. Auxetic deformation is accentuated by strain-stiffening fi-

bres in a constant stiffness matrix. Therefore, in this section we propose a strain-stiffening

isotropic matrix model with near bilinear behaviour (BLM model), placed in parallel

with the BLF model described in Section 4. This approach allows precise control of

the fibre-matrix stiffness ratio at small and large deformations, facilitating the simulation

of anisotropic strain- stiffening behaviour without unphysical auxetic behaviour.

Assuming the isotropic strain energy function Ψm(λ̄1, λ̄2, λ̄3) for matrix, where λ̄i, i =

1, 2, 3 are the modified principal stretches, the Cauchy stress components, σi are deter-

mined from the following relationship (Holzapfel, 2000):

Jσi = λ̄i
∂Ψm

∂λ̄i
− 1

3

3∑
j=1

λ̄j
∂Ψm

∂λ̄j
, i = 1, 2, 3 (11)

Using the Valanis-Landel hypothesise the strain energy function Ψm(λ̄1, λ̄2, λ̄3) is
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presented as

Ψm(λ̄1, λ̄2, λ̄3) = Ψiso(λ̄1) + Ψiso(λ̄2) + Ψiso(λ̄3) (12)

In order to simulate an isotropic matrix material that exhibits bi-linear type strain-stiffening

we propose a isochoric strain energy density function such that:

Si = λ̄i
∂Ψiso(λ̄i)

∂λ̄i

=


E1m(λ̄i − 1) |λ̄i − 1| ≤ |D1m|

pm(λ̄i − 1)2 + qm(λ̄i − 1) + rm |D1m| < |λ̄i − 1| < |D2m|

E2m(λ̄i − 1−D2m) + (pmD
2
2m + qmD2m + rm) |λ̄i − 1| ≥ |D2m|

(13)

where the parameters E1m, E2m, D1m and D2m have the same meaning as the corresponding

parameters in the fibre model (equation (8)) and pm, qm, and rm are obtained in a similar manner as

equation (9) by using the corresponding matrix parameters. After a straightforward manipulation

the strain energy function associated with equation (13) is obtained as:

Ψiso(λ̄i) =
E1m(λ̄i − ln λ̄i − 1) |λ̄i − 1| ≤ |D1m|

pm(
λ̄2i
2 − 2λ̄i + ln λ̄i) + qm(λ̄i − ln λ̄i) + rm ln λ̄i + ψ01m |D1m| < |λi − 1| < |D2m|

E2m(λ̄i − (1 +D2m) ln λ̄i) + (pmD
2
2m + qmD2m + rm) ln λ̄i + ψ02m |λi − 1| ≥ |D2m|

(14)

where, ψ01m and ψ02m are two constants which ensure the continuity of strain energy. As

an alternative formulation to the piece-wise strain-stiffening constitutive law above, we

propose a non-piece-wise equivalent formulation in Appendix A (based on error function

strain stiffening). It is shown that identical material behaviour can be obtained, both in

terms of stress and strain energy density.

This proposed BLM model is used in parallel with our BLF (equation (10)) to inves-

tigate the control/elimination of auxetic deformation under uniaxial tension. Henceforth,

this combination of matrix and fibre models is called BLFM model for convenience. In

Figure 6 we explore the influence of matrix strain-stiffening on auxetic behaviour. Ma-

trix strain-stiffening is characterised by the ratio of the matrix tangent modulus at high

strains (E2m) to that at low strains (E1m). Increasing E2m/E1m > 1 results in reduced

compaction in the 2-direction at higher applied stretch, and consequently a significant

reduction in auxetic behaviour. For the parameter sets considered in Figure 6, values of
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λ3 > 1 are computed only for the case of a non-strain stiffening matrix (E2m/E1m = 1).

We also explore the influence of the matrix transition strain parameter D1m on auxetic

behaviour (with E2m/E1m = 3). If the value of D1m is increased, the matrix strain-

stiffening is delayed, and may be preceded by significant fibre strain-stiffening. Auxetic

behaviour occurs if D1m is significantly higher than D1f . However, if the fibre and the

matrix undergo strain-stiffening at similar levels of deformation, auxetic behaviour may

be eliminated.
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Figure 6: The influence of matrix stiffening and transition strain on the stress (A, D), in-

plane transverse stretch (B, E), and auxetic behaviour (C, F). Reference parameters D1f =

0.2, D2f = 0.4, E1f/E1m = 1.5, θ = 45o, E2f/E1m = 8, D1m = 0.2, D2m = D1m +

0.2, E2m/E1m = 3, K/E1m = 30 have been used.

To demonstrate the practical importance of our findings, we use our new fibre/matrix

strain-stiffening formulation to simulate experimental test data for aorta tissue (FitzGib-

bon and McGarry, 2020). The results, as shown in Figure 7, reveal that the BLFM model

is not only able to acccurately capture experimentally measured anisotropic stress-stretch

data, but also correctly predicts the non-auxetic (λ3 < 1) out-of-plane stretch with rea-

sonable accuracy. In contrast, if a non-strain stiffening linear matrix (L-BLF) model is

used, significant auxetic behaviour (λ3 > 1) is incorrectly computed.
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Figure 7: The capability of the BLFM model to reproduce the stress-stretch experimental data

of the uniaxial tension of ascending aorta FitzGibbon and McGarry (2020) (A) and out-of-plane

stretch in circumferential test (B). FE results of the uniaxial tension tests for BLFM model and

L-BLF models are also shown (C). ”L-BLF” stands for a linear matrix model in parallel with the

BLF model.

6. Auxetic behaviour using an exponentially stiffening fibre model

The strain energy density function for the classical exponential form for collagen fibre

strain-stiffening (Holzapfel et al. (2000)), is given as:

Ψaniso(C, a04, a06) =
k1

2k2

∑
i=4,6

{
exp

[
k2(Ii − 1)2

]}
(15)

where k1 and k2 are material parameters. Note that equation (15) is the modified anisotropic

(MA) form for slightly compressible materials ((Nolan et al., 2014)) requiring the use

of the full anisotropic invariants I4,6 instead of the isochoric anisotropic invariants Ī4,6.

This exponential fibre component is placed in parallel with a neo-Hookean matrix (equa-

tion (6)). This exponential-fibre formulation combined with neo-Hookean matrix has been

widely used following implementation in leading commercial FE software programs such
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as Abaqus (Abaqus, 2017), FEAP (Taylor, 2013), Ansys (Ansys, 2017) and ADINA (Ad-

ina, 2017). It worth to note that although the contribution of the fibres in compression

is usually excluded, ANSYS implementation does not include the tension-compression

switch of the fibres.

The response to a unixial tension test of this exponential-fibre formulation combined

with neo-Hookean matrix is demonstrated in Figure 8 using material parameters cali-

brated for human coronary arteries (Holzapfel, 2002). Strong strain stiffening and anisotropy

is evident in Figure 8A. However, significant auxetic behaviour is evident (Figure 8B),

with λ3 > 1 when λ1 > 1.15.
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Figure 8: Comparison of Ogden and neo-Hookean matrix in parallel with the exponential fibre

model. The combination of Ogden with exponential fibre model postpones the development of

auxetic behaviour in comparison to the neo-Hookean matrix with exponential fibre model (B)

while the stress-stretch curves are the same for both models (A). The parameters µ = 0.0014 MPa,

k1 = 0.0051 MPa and k2 = 15.4 have been used for NH-Exp model and two parameter sets (i.e.,

set 1: µ1 = µ2 = 0.0014 MPa, α1 = −α2 = 1.5, k1 = 0.0051 MPa, k2 = 15.4 and set 2:

µ1 = µ2 = 0.0024 MPa, α1 = −α2 = 4, k1 = 0.0015 MPa, k2 = 15.4 ) have been used for

Ogden-Exp model.

Based on our proposed concept of using a non-linear matrix to control auxetic be-

haviour (Section 5), here we next explore the combination of the exponential fibre model

(equation (15)) with the established Ogden strain-stiffening isotripic hyperelastic model
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for the matrix. The Ogden hyperelastic strain energy function is given as:

Ψm(λ̄1, λ̄2, λ̄3) =
N∑
i=1

2µi
α2
i

(
λ̄αi

1 + λ̄αi
2 + λ̄αi

3 − 3
)

(16)

where, λ̄1, λ̄2 and λ̄3 are isochoric principal stretches and µi and αi are material constants

and we assumed N = 2 in this paper. Additionally, we retain the isotropic volumetric

strain energy density function (first term on RHS of equation (6)) and enforce near in-

compressibility with K = 1.4 MPa. The material parameters of the ‘Ogden-Exponential’

model was chosen to reproduce the anisotropic strain-stiffening behaviour of the afore-

mentioned ‘neo-Hookean-Exponential’ model (see Figure 8A). Two parameter sets have

been found for ‘Ogden-Exponential’ model which fit the corresponding stress-stain curve

of the ‘neo-Hookean-Exponential’ curve, as shown in Figure 8A. In parameter set 1 a low

rate of matrix strain-stiffening is considered. In parameter set 2 a higher rate of matrix

strain-stiffening is considered. As shown in Figure 8B, using the Ogden model in place

of a neo-Hookean model for the matrix does not eliminate auxetic behaviour, but merely

postpones it (in this specific case λ3 > 1 when λ1 > 1.4.) The stiffness ratio between ex-

ponentially stiffening fibres and the power-law stiffening matrix will changes rapidly with

increasing applied strain, resulting in uncontrolled auxetic behaviour. In contrast, our pro-

posed BLFM model facilitates control of stiffness ratios and, consequently, elimination

of auxetic behaviour.

7. Does including fibre dispersion reduce auxetic behaviour?

In this section the influence of fibre dispersion on auxetic behaviour is investigated.

To this end, we have implemented a discrete fibre dispersion method around two mean

fibre directions for the exponential (MA) model and the BLF model via the user-defined

subroutine UMAT in Abaqus where the mechanical contribution of all fibres under com-

pression are excluded. We consider that fibres can exist in m discrete directions in a 3D

sphere at each integration point of a finite element model. A non-uniform segmentation

of the unit sphere has been done such that higher density of segmentation around the

mean fibre direction is obtained. A sensitivity analysis of the number of fibre directions

m revealed that convergence is achieved for m = 50.

For each fibre family, the transversely isotropic and π-periodic von-Mises probability

distribution function (PDF) ρi, as proposed by Gasser et al., (2006), is used to describe
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fibre dispersion, whereby

ρi =
1

π

√
b

2π

exp
[
2b(a0,i.a0,mean)

]
erfi(
√

2b)
(17)

where a0,i is a unit vector indicating one of the m discrete directions, a0,mean is a

unit vector indicating the mean fibre direction, b is a constant dispersion parameter, and

erfi(x) denotes the imaginary error function. The introduction of fibre dispersion results

in a fibre contribution in the 3-direction. Therefore, in equation (3), the 33-component of

the fibre stress tensor σf3 will not be zero, and may therefore influence the computation of

auxetic behaviour.

The results for the BLF model and exponential (MA) fibre model, both with a neo-

Hookean matrix, are presented in Figure 9.
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Figure 9: Effects of fibre dispersion on the stress-stretch curve and auxetic behaviour, for bilinear

(B,C) and exponential (D,E) fibre models with neo-Hookean model for the matrix. The probability

density function, ρ, for the fibres dispersion around the mean fibre directions (θ = ±45◦) is also

shown in (A).

Figure 9 suggests that the inclusion of fibre dispersion does decrease the auxetic de-

formation in both BLF and exponential MA models. As fibre dispersion is increased the

level of auxetic behaviour decreases. However, even for highly dispersed fibres (b = 10)

auxetic behaviour occurs in both the BLF and exponential MA model. Only in the case

of a nearly isotropic fibre distribution (i.e. an isotropic material with nearly equal fibre

contribution in all directions) auxetic behaviour is eliminated.
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8. Summary and conclusions

In this study we uncover the underlying mechanism of auxetic behaviour in anisotropic

hyperelastic soft tissue models that comprise of strain-stiffening fibres in parallel with an

isotropic matrix. High levels of in-plane matrix compaction due to increasing tension

in strain-stiffening fibres leads to unphysical out-of-plane expansion, i.e. auxetic be-

haviour. Previous papers have reported the secondary influence of compressibility (Ska-

cel and Bursa, 2016, 2019) and fibre dispersion (Volokh, 2017) on the degree of auxetic

behaviour, but no previous study has uncovered this primary underlying mechanism. Fur-

thermore, we propose a new bilinear strain-stiffening fibre and matrix (BLFM) model

which facilitates close control of the fibre-matrix stiffness ratio, thereby robustly elimi-

nating auxetic behaviour. We demonstrate that our model provides accurate prediction of

experimentally observed out-of-plane compaction, in addition to stress-stretch anisotropy,

for arterial tissue subjected to uniaxial tension testing. The key findings of our study are

summarised as follows:

• Auxetic deformation is strongly influenced by the ratio of fibre to matrix stiffness.

• Auxetic deformation is accentuated by strain-stiffening fibres in a constant stiffness

matrix (e.g., the widely used neo-Hookean matrix with exponentially stiffening fi-

bres).

• Our proposed bilinear strain-stiffening fibre-matrix constitutive model (BLFM model)

facilitates robust control of the fibre to matrix stiffness ratio in the low and high de-

formation regime, consequently eliminating the computation of unphysical auxetic

behaviour.

• Our BLFM model is shown to accurately capture experimentally reported anisotropic

stress-stretch data for aortic tissue, in addition to correctly predicting the degree of

(non-auxetic) compaction in the out-of-plane direction. In contrast, if a non-strain

stiffening linear matrix model is used, significant auxetic behaviour is incorrectly

computed.

Several studies demonstrate that removal of active cellular contractility, using cytochalasin-

D, exposes non-linear strain-stiffening passive behaviour, e.g. (Reynolds et al., 2014;
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Reynolds and McGarry, 2015). Therefore, the concept of a strain stiffening matrix intro-

duced in our model may be motivated by the presence of the non-linear passive contri-

bution of endothelial cells, smooth muscle cells, and fibroblasts in arterial tissue, or the

passive contribution of cardiac myocytes in cardiac tissue. Of course, the complete de-

scription of the non-linear anisotropic behaviour of such tissues requires the addition of

our anisotropic fibre component.

The new modelling framework will provide improved predictions of artery deforma-

tion during physiological loading and stent deployment without incorrectly predicting

auxetic behaviour under such large-strain deformation. Therefore, the new BLFM model

can potentially improve current practices in the field of design and regulatory approval of

medical devices. Future extensions of the model should consider viscoelasticity (Jacopo

and Paola, 2020), viscoplasticity (Weickenmeier and Jabareen, 2014), damage (Ferei-

doonnezhad et al., 2016; Holzapfel and Fereidoonnezhad, 2017), and non-affine matrix-

fibre interaction. The modelling framework should also be considered for anisotropic

contractility of smooth muscle cells and fibroblasts (McEvoy et al., 2019), in addition to

passive non-linear behaviour of the cell cytoplasm (Reynolds and McGarry, 2015; Weafer

et al., 2013). While we specifically calibrate and validate our novel modelling approach

using experimental data for aortic tissue, we also explore the ability of our model to ro-

bustly eliminate computation unphysical auxetic behaviour over a wide range of applied

deformations (including very high deformations that may be encountered for skin (Lanir

and Fung, 1974) or urinary bladder samples (Farhat et al., 2008). Future work should

precisely calibrate the model using experimental data for several types of soft tissues,

including myocardium (McEvoy et al., 2018), cartilage (Dowling et al., 2013) and skin

(Annaidh et al., 2012b,a; Limbert, 2019).
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Appendix A.

An alternative non–piece-wise constitutive formulation is proposed in this appendix.

This formulation uses error functions to describe transition from low stiffness to the high

stiffness regimes. First, we propose the following form for the derivative of the stress

term Si:

dSi
dλ̄i

=
d

dλ̄i

(
λ̄i
dΨiso(λ̄i)

dλ̄i

)
= Bt + Atft(λ̄i) +Bc + Acfc(λ̄i),

ft(λ̄i) = erf
( λ̄i − at

bt

)
, fc(λ̄i) = erf

( λ̄i − ac
bc

) (A.1)

in which, the following parameters are introduced:

At =
Et

2m − E1m

ft(1 +Dt
2m)− ft(1 +Dt

1m)
, Bt =

E1m

2
− Atft(1 +Dt

1m).

at = 1 +
Dt

2m +Dt
1m

2
, bt =

√
2

βm
(Dt

2m −Dt
1m)

Ac =
Ec

2m − E1m

fc(1 +Dc
2m)− fc(1 +Dc

1m)
, Bc =

E1m

2
− Acfc(1 +Dc

1m).

ac = 1 +
Dc

2m +Dc
1m

2
, bc =

√
2

βm
(Dc

2m −Dc
1m)

(A.2)

To enforce symmetric tension–compression matrix behaviour in terms of Cauchy

stress, the following relationship between parameters should be maintained:

Dc
1m = −Dc

1m = D1m, Dc
2m = −Dc

2m = D2m, Et
2m = Ec

2m = E2m (A.3)

where, the material parameters D1m, D2m, E1m, and E2m have the same meaning as the

corresponding parameters in Equation (13). Moreover, to get a monotonic transition from

the low stiffness region to the high stiffness region, same as the piece-wise formulation,

the value of parameter βm should be chosen in the range of 5 ≤ βm ≤ 10. Integrating

equation (A.1) results in the following:

Si = λ̄i
dΨiso(λ̄i)

dλ̄i
=

∫ (
Bt + Atft(λ̄i) +Bc + Acfc(λ̄i)

)
dλ̄i

= Btλ̄i +
Atbt√
π

exp
(
− (λ̄i − at)2

b2
t

)
+ At(λ̄i − at)erf

( λ̄i − at
bt

)
+Bcλ̄i +

Acbc√
π

exp
(
− (λ̄i − ac)2

b2
c

)
+ Ac(λ̄i − ac)erf

( λ̄i − ac
bc

)
+ c1

(A.4)
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where the integration constant c1 is obtained from the condition that the material is

stress-free in the undeformed configuration, i.e.,(
λ̄i
dΨiso(λ̄i)

dλ̄i

)
λ̄i=1

= 0→

c1 = −At
bt√
π

exp

(
−(1− at)2

b2
t

)
− At(1− at)erf

(
1− at
bt

)
−Bt

− Ac
bc√
π

exp

(
−(1− ac)2

b2
c

)
− Ac(1− ac)erf

(
1− ac
bc

)
−Bc

(A.5)

Integrating equation (A.4) is then results in

Ψiso(λ̄i) = (Bt +Bc)λ̄i + c1 ln λ̄i

+
Atbt√
π

∫
1

λ̄i
exp
(
− (λ̄i − at)2

b2
t

)
dλ̄i + At

∫
erf
( λ̄i − at

bt

)
dλ̄i

− Atat
∫

1

λ̄i
erf
( λ̄i − at

bt

)
dλ̄i +

Acbc√
π

∫
1

λ̄i
exp
(
− (λ̄i − ac)2

b2
c

)
dλ̄i

+ Ac

∫
erf
( λ̄i − ac

bc

)
dλ̄i − Acac

∫
1

λ̄i
erf
( λ̄i − ac

bc

)
dλ̄i

(A.6)

The integrals in equation(A.6) are then computed as:∫
erf
( λ̄i − at

bt

)
dλ̄i =

bt√
π

exp

(
−(λ̄i − at)2

b2
t

)
+ (λ̄i − at)erf

( λ̄i − at
bt

)
,∫

erf
( λ̄i − ac

bc

)
dλ̄i =

bc√
π

exp

(
−(λ̄i − ac)2

b2
c

)
+ (λ̄i − ac)erf

( λ̄i − ac
bc

)
.

(A.7)

Moreover, by choosing zt =
λ̄i − at
bt

, zc =
λ̄i − ac
bc

, and integrating by part, other inte-

grals in the RHS of equation (A.6) can be expressed as:∫
1

λ̄i
erf(

λ̄i − at
bt

)dλ̄i =

∫
1

zt + at
bt

erf(zt)dzt

= erf(zt) ln (zt +
at
bt

)− 2√
π

∫
ln (zt +

at
bt

) exp (−z2
t )dzt,∫

1

λ̄i
erf(

λ̄i − ac
bc

)dλ̄i =

∫
1

zc + ac
bc

erf(zc)dzc

= erf(zc) ln (zc +
ac
bc

)− 2√
π

∫
ln (zc +

ac
bc

) exp (−z2
c )dzc,

(A.8)

and, ∫
1

λ̄i
exp(−(λ̄i − at)2

b2
t

)dλ̄i =

∫
1

zt + at
bt

exp(−z2
t )dzt

= exp(−z2
t ) ln (zt +

at
bt

) +

∫
2zt ln (zt +

at
bt

) exp (−z2
t )dzt∫

1

λ̄i
exp(−(λ̄i − ac)2

b2
c

)dλ̄i =

∫
1

zc + at
bc

exp(−z2
c )dzc

= exp(−z2
c ) ln (zc +

ac
bc

) +

∫
2zc ln (zc +

ac
bc

) exp (−z2
c )dzc.

(A.9)
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Substituting equations (A.7)-(A.9) into equation (A.6), the strain energy density function,

Ψiso, is obtained as:

Ψiso(λ̄i) = (Bt +Bc)λ̄i + c3 ln λ̄i

+
Atbt√
π

(
exp(−z2

t )(ln (zt +
at
bt

) + 1)

)
+ At

(
(λ̄i − at)erf(

λ̄i − at
bt

)− at erf(zt) ln (zt +
at
bt

)

)
+

2At√
π

∫
(at + btzt) ln (zt +

at
bt

) exp (−z2
t )dzt

+
Acbc√
π

(
exp(−z2

c )(ln (zc +
ac
bc

) + 1)

)
+ Ac

(
(λ̄i − ac)erf(

λ̄i − ac
bc

)− ac erf(zc) ln (zc +
ac
bc

)

)
+

2Ac√
π

∫
(ac + bczc) ln (zc +

ac
bc

) exp (−z2
c )dzc + ψ0m

(A.10)

where the constant value ψ0m ensures that the strain energy function Ψiso(λ̄i) is zero in

the undeformed configuration (λ̄i = 1). Finally, substituting zt =
λ̄i − at
bt

, zc =
λ̄i − ac
bc

in equation (A.10) results in:

Ψiso(λ̄i) = (Bt +Bc)λ̄i + c3 ln λ̄i

+
Atbt√
π

[
exp

(
−(λ̄i − at)2

b2
t

)(
ln (

λ̄i
bt

) + 1

)]
+ At

(
(λ̄i − at)erf(

λ̄i − at
bt

)− at erf(
λ̄i − at
bt

) ln (
λ̄i
bt

)

)
+

2At√
πbt

∫
λ̄i ln (

λ̄i
bt

) exp

(
−(λ̄i − at)2

b2
t

)
dλ̄i

+
Acbc√
π

[
exp

(
−(λ̄i − ac)2

b2
c

)(
ln (

λ̄i
bc

) + 1

)]
+ Ac

(
(λ̄i − ac)erf(

λ̄i − ac
bc

)− ac erf(
λ̄i − ac
bc

) ln (
λ̄i
bc

)

)
+

2Ac√
πbc

∫
λ̄i ln (

λ̄i
bc

) exp

(
−(λ̄i − ac)2

b2
c

)
dλ̄i + ψ0m

(A.11)

This error function based formulation can, of course, also be used for the fibre strain

energy function rather than the piece-wise formulation (10). In Figure A1 we demonstrate

that the piece-wise formulation (14) and the alternative error function based formulation

(A.11) give identical results in terms of matrix stress and strain energy density function.
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However, it should be noted that the piece-wise formulation has a simpler closed–form so-

lution for the strain energy density function compared to the error function model. There-

fore, we suggest that the piece-wise formulation is more convenient when calculation of

the strain energy density function is required (in addition to the calculation of the stress),

e.g., in energy-based damage models (Holzapfel and Fereidoonnezhad, 2017; Fereidoon-

nezhad et al., 2017).

Figure A1: Comparison of the two proposed strain-stiffening models for matrix in tension and

compression; (A) Stress-stretch, (B) strain energy density function, (C) the strain energy den-

sity surface for the error function formulation (equation (A.11)), and (D) the strain energy den-

sity surface for the piece-wise formulation (equation (14)). The material parameters of D1m =

0.2, D2m = 0.5, E1m = 1, E2m = 3, and βm = 5 have been used.
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