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ABSTRACT

The COVID-19 pandemic continues to severely undermine the prosperity of the global health system.
To combat this pandemic, effective screening techniques for infected patients are indispensable.
There is no doubt that the use of chest X-ray images for radiological assessment is one of the
essential screening techniques. Some of the early studies revealed that the patient’s chest X-ray
images showed abnormalities, which is natural for patients infected with COVID-19. In this paper,
we proposed a parallel-dilated convolutional neural network (CNN) based COVID-19 detection
system from chest x-ray images, named as Parallel-Dilated COVIDNet (PDCOVIDNet). First,
the publicly available chest X-ray collection fully preloaded and enhanced, and then classified
by the proposed method. Differing convolution dilation rate in a parallel form demonstrates the
proof-of-principle for using PDCOVIDNet to extract radiological features for COVID-19 detection.
Accordingly, we have assisted our method with two visualization methods, which are specifically
designed to increase understanding of the key components associated with COVID-19 infection.
Both visualization methods compute gradients for a given image category related to feature maps
of the last convolutional layer to create a class-discriminative region. In our experiment, we used
a total of 2,905 chest X-ray images, comprising three cases (such as COVID-19, normal, and viral
pneumonia), and empirical evaluations revealed that the proposed method extracted more significant
features expeditiously related to suspected disease. The experimental results demonstrate that our
proposed method significantly improves performance metrics: the accuracy, precision, recall and F1
scores reach 96.58%, 96.58%, 96.59% and 96.58%, respectively, which is comparable or enhanced
compared with the state-of-the-art methods. We believe that our contribution can support resistance
to COVID-19, and will adopt for COVID-19 screening in AI-based systems.

Keywords COVID-19 · Chest X-ray · Convolutional Neural Network · Artificial Intelligence · Parallel dilation ·
Dilation rate
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1 Introduction

Coronavirus or covid-19 is a contagious disease that was caused by the SARS-CoV-2 (Severe Acute Respiratory
Syndrome Coronavirus 2). The disease was first discovered and became prevalent in Wuhan, Hubei Province, China,
and has since spread around the world. As we know, on March 11, 2020, the World Health Association (WHO)
proclaimed the flare-up of coronavirus pandemic [1]. Until now, coronavirus pandemic has devastatingly affected the
prosperity of the world economy and health system. As of July 12, 2020, more than 12,401,262 confirmed cases of
COVID-19 and 559,047 confirmed deaths due to the disease [2]. Contemporaneous observations detail that COVID-19
infection causes lung illness, hence, making it troublesome to breathe. As well, a person infected with coronavirus
spread the virus among others primarily through coughs or sneezes as tiny droplets, therefore, a legitimate social
framework for a disengagement is obligatory to delimit the disease. While attempting to deal with growing numbers of
COVID-19 infected cases, all nations try to increase testing to reduce the pandemic ahead of time. At present, it is vital
to extend an effective screening strategy within reach to distinguish COVID-19 cases and segregate infected individuals
from others while hospitals are striving with scaling up abilities to meet the increasing number of patients [3]. An
ultimate goal against COVID-19 battle is to provide prompt treatment to infected individuals using a viable screening
technique. As we all know, reverse transcriptase-polymerase chain reaction (RT-PCR) is a reliable and well-documented
screening technology, which has been accepted by researchers and clinical staff, but the flexibility and strict necessity
of conditions at the clinical laboratory will greatly delay the accurate detection of suspicious patients [4]. Moreover,
starting the results of RT-PCR testing in China indicated moderately poor sensitivity, and this issue occurred due to the
variable characteristics of testing [3]. Further, subsequent revelations illustrated a noteworthy factor that positive rate
declined with time after symptom incipience at once relied on how the specimen collected [5].

On the other hand, the limitations of RT-PCR testing have prompted researchers to find a rapid and definitive method
for diagnosing COVID-19 infection. Even though COVID-19 pandemic will significantly affect the global healthcare
system, a radiography testing such as a chest X-ray would be a discretionary screening technique that has as well
utilized for COVID-19 diagnosis. Certainly, chest X-ray is beneficial in emergency diagnosis and treatment considering,
the way that this system is quick and simple to operate, and radiologists can yet recognize. In the prior observations,
researchers observed that patients exhibit inconsistencies in chest X-ray images that are typical for those infected with
COVID-19 [6]. However, a few British hospitals are presently turning out artificial intelligence (AI) based disease
recognition systems to look for potential symptoms of Covid-19 infection in chest X-ray images, such as patterns of
opacity in the lungs [7]. Significant diagnostic accuracy in medical imaging, which is an indispensable objective of
automatic disease detection, has already achieved in recent years using CNN, as the core advancement of the rising AI.
Inspired by this, recently, a lot of research has already accomplished by utilizing CNN modalities to detect COVID-19
using chest X-ray images, and has obtained promising results [3, 8–11].

The purpose of this research is to extend the curative effect using chest X-ray images showing COVID-19 infection.
In this regard, we consider the CNN-based framework as it is renowned for its excellent recognition performance in
object classification. In CNN, convolution is one of the core operations to regulate the architecture through its dilation
rate. The traditional discrete convolution performs the convolution process at a dilation rate of 1, while the dilated
convolution [12] uses a different dilation rate to perform the convolution process, and the proposed PDCOVIDNet varies
dilation rate in a parallel stack of convolution layer in CNN, thus reflecting more distinctive features. In our experimental
evaluation, 219 chest X-ray images of COVID-19, 1341 normal, and 1345 viral pneumonia were collected and processed
and used to train, validate, and test the proposed method. The benchmark data set is publicly accessible [13], and the
authors of this benchmark generated data from three different open access data repositories containing chest X-ray
images [14–16]. The pipeline of PDCOVIDNet starts with the data augmentation strategy, and then optimizes and
fine-tunes the settings to train CNN modalities that expand in parallel, through generating dominant features at different
scale shifting receptive fields. Next, the generated features are fused into a neural network system to produce the final
prediction. Also, we use two gradient-weighted class activation maps (such as Grad-CAM [17] and Grad-CAM++ [18])
to aid our system. These maps provide predictive explanations, and can identify important features related to COVID-19
infection. From experimental evaluation, it shows that the proposed method can identify important features related to
COVID-19 disease, and the best accuracy achieved is 96.58%. The contributions of this paper are as follows:

• We propose and develop a novel CNN framework called PDCOVIDNet to detect COVID-19 from chest X-ray
images. Our proposed framework uses a dilated convolution in the parallel stack of convolutional blocks that
can capture and propagate important features in parallel over the network which enhances detection accuracy
significantly.

• We visualize the X-ray images to analyze the COVID and non-COVID cases, and further investigate the
incorrect classification.

• Finally, we empirically evaluate our approach with the state-of-the-art approaches to highlight the effectiveness
of PDCOVIDNet in detecting COVID-19.

2



A PREPRINT - JULY 15, 2020

We organize the rest of this paper in the following ways. Section 2 reviews the state-of-the-art models used in detecting
COVID-19 using chest X-ray images. The benchmark dataset and the augmentation strategy are described in Section 3.
Next, Section 4 explains the main details of the proposed model and its adjustment to the detection of COVID-19 cases.
In Section 5, we provide the experimental results and show the comparison between PDCOVIDNet and other models.
Observation on visualization techniques and incorrect classification results are illustrated in Section 6 and Section 7,
respectively. Finally, Section 8 provides the conclusion of this paper with the future research direction.

2 Related Works

With the rapid spread of COVID-19 in many countries around the world, imaging technology can quickly detect
COVID-19, which helps to control the spread of disease. Chest X-ray is a promising imaging technology with a
historical prospect of an image diagnosis system. It can be fully explored through various feature extraction methods,
thereby playing an important role in the diagnosis of COVID-19 disease.

Due to the need for a faster interpretation of chest X-ray images, a CNN-based AI system provides [19] a comprehensive
overview of the latest application areas of AI for COVID-19, which mentions medical imaging for diagnosis. Halgurd et
al. [20] proposed a customized CNN and pre-trained AlexNet [21] model through chest X-ray images, the results showed
very promising accuracy in detecting patients infected either COVID-19 or normal with 98% and 94.1% accuracy
respectively. By using the pre-trained ResNet50 [22] model, Narin et al. [8] obtained 98% accuracy. The authors also
evaluated several CNN architectures for COVID-19 detection. The Inception [23] transfer learning model modified to
extract radiological features for accurate COVID-19 diagnosis, and then experienced internal and external validation
with an accuracy of 89.5% [24]. Also, the CNN architecture based on transfer learning, named as COVID-Net [3], used
to classify chest X-ray images into three categories: normal, non-COVID and COVID-19 infections. It showed that
COVID-Net achieved the best accuracy by achieving a test accuracy of 93.3%. In [10], transfer learning adopted in
state-of-the-art convolutional neural network architectures, results demonstrated the proof-of-principle for using CNN
with transfer learning to extract radiological features from small data sets. Biraja et al. [25] investigated the uncertainty
in the CNN solution based on Bayesian Convolutional Neural Network (BCNN) to improve the diagnostic performance
of COVID-19. Another CNN based on ResNet50 used by Bukhari et al. [26] to prove the usefulness and diagnostic
accuracy of patients infected with COVID-19 having accuracy of 98.18%. The authors [27] of proposed a deep
learning architecture for COVID-19 detection utilizing their benchmark in which images exhibit COVID-19 disease
verified by radiologists, by fine-tuning four renowned pre-trained convolutional models (ResNet18 [22], ResNet50,
SqueezeNet [28], and DenseNet121 [29]), thereby yielded promising results in terms of sensitivity and specificity. A
deep learning framework based on EfficientNet [30] proposed by Eduardo et al. [31]. Contrasted with some popular
baseline models (such as VGG16 [32] and ResNet50), the learning parameters have greatly reduced, and the COVID-19
case has a 100% positive prediction. Farooq et al. [33] proposed a method called COVID-ResNet that uses a three-step
technique, which includes gradually adjusting the size, looping the learning rate search and discriminating the learning
rate, and then fine-tuning the pre-trained ResNet50 architecture to improve model performance. A deep learning
model called DarkCovidNet [34] proposed for the automatic detection of COVID-19 using chest X-ray images. The
average classification accuracy of binary classification (such as COVID and No-Findings) was 98.08%, and the average
classification accuracy of multi-class classification (such as COVID, No-Findings and pneumonia) was 87.02%. Finally,
the author provided an intuitive explanation and evaluated by expert radiologists.

In a case of AI-based COVID-19 diagnostics system, it is obligatory to verify results with expert radiologists. Almost
all methods have shown encouraging results. To the best of our knowledge, a few methods are different only if they
have verified by radiologists. Several methods focus only on quantitative analysis, while other methods focus on
qualitative analysis using visualization and localization techniques to prove that their analysis can be used for COVID-19
detection, which aids to allow for human-interpretable explanation. In literature reviews, there are a few model and
prediction level integration strategies to mitigate variance errors and enhance the performance and generalization
of CNN models. Finally, due to the inadequate number of COVID-19 cases, creating ample benchmarks is a major
challenge in COVID-19 detection. Considering a small data set, running a large number of iterative CNN architectures
can lead to overfitting.

3 Data Pre-processing

First, we will introduce the benchmark data set and the expansion strategy in detail to aid the training of the proposed
model. Next, we will discuss in detail the proposed PDCOVIDNet architecture design method and the training strategy
covering the optimal parameter adjustment. Finally, in order to make suspicious disease detection more convincing, we
will integrate visualization techniques to highlight key issues with visual markers.
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3.1 Chest X-ray image benchmark

The benchmark data set [13] used in our experimental evaluation consists of three main categories (such as COVID-19,
Normal, and Viral Pneumonia), yielding 219 COVID-19 positive, 1341 normal and 1345 viral pneumonia chest X-ray
images. In the case of accumulating COVID-19 positive images, the authors used two open-access repositories, such as
the Italian Society of Medical and Interventional Radiology (SIRM) COVID-19 database [14], and the Novel Corona
Virus 2019 dataset developed by Joseph et al. [15]. On the other hand, P. Mooney [16] created normal and viral
pneumonia images from the chest X-ray image (pneumonia) database used for this benchmark [13]. Moreover, the
benchmark is public, and metadata is distributed to provide appropriate document guidance to generate references to
each image. Since resizing is one of the essential steps in data preprocessing, all images resized to 224× 224 pixels.
Figure 1 shows sample images from the benchmark dataset, including COVID-19, normal and viral pneumonia. As
shown in the Table 1, we have trained, validated and tested the images in an appropriate ratio.

(a) COVID-19 (b) Normal (c) Viral Pneumonia

Figure 1: Some image labels available in the benchmark dataset [13].

Table 1: Images partition in Training, Validation and Testing
Category COVID-19 Normal Viral Pneumonia Total
Training 175 1072 1076 2323

Validation 21 134 134 289
Testing 23 135 135 293

3.2 Data Augmentation

In order to properly train the CNN model, it is often useful to manually increase the size of the data set using data
enhancement that reduces noise and preserves the original quality. This process is executed just-in-time during the
training process, so the performance of the model can be improved by solving the problem of overfitting. For image
augmentation, we have many options to choose values of different scales, including horizontal flip, height and width
offset, rotation, shearing, zoom, and fill modes. Each option has its ability to represent images in different ways to
provide important features during the training phase and thus enhances the model’s performance better. Table 2 shows
the image augmentation settings used in our experiment.

Table 2: Images augmentation settings
Option Value

rotation range 30
height shift 0.15
width shift 0.15
shear range 0.10
zoom range 0.10

fill mode nearest
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4 PDCOVIDNet Architecture

In this section, we will briefly describe our proposed PDCOVIDNet architecture. In our proposed model, we have three
main components, such as feature extraction, detection, and visualization. First of all, our proposed PDCOVIDNet is a
parallel stack of convolutional layers, activation layer and max-Pooling layer. Then, we add parallel layers at the feature
level, and perform a convolution again with activation on resulting feature maps. Afterward, the flattened features
provide into two layers of Multi-Layer Perceptrons (MLP), but an adjustment needs to determine the proportion of
neurons at each layer that drop, to avoid overfitting. Finally, the last layer with softmax activation function performs the
classification task, and then generates a class activation map, which acts as an interpreter of classification, merged with
the last convolution layer. Figure 2 shows the overall system architecture of the proposed PDCOVIDNet. We split the
workflow into two parts: the feature extraction phase and the classification and visualization phase. In the next section,
we will briefly explain the feature extraction process.

4.1 Feature Extraction

PDCOVIDNet Feature Extraction Phase Classification & Visualization Phase
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Figure 2: An overall system architecture of PDCOVIDNet.

To obtain a suitable network architecture, different numbers of filters in each convolution layer, filter sizes, different
layers in MLP and different hyper-parameters have experimented. In the first stage, PDCOVIDNet consists of five
dilated convolutional blocks, expressed as PDr=iconv(n=X), that are alternately max-pooled. Figure 3 illustrates how
dilated convolution is incorporated into our proposed model. As shown in Figure 3, the input image provides in two
PDr=iconv(n=X) blocks in parallel, only changing the dilation rate, such as d = 1, ..., N . A convolution with a dilation
rate of 1 is equivalent to a standard convolution, while a convolution with a dilation rate of greater than 1 expands the
receptive field when processing input at a higher resolution, thereby achieving fine details of the image. The receptive
field refers to the portion of the image where a filter extracts feature without change filter size, and is simply an input
with a fixed gap, i.e., if there is dilation of d, then each input skips of d − 1 pixels. According to this definition,
considering that our input is a 2D image, the dilation rate of 1 is a standard convolution, and dilation rate of 2 means
that each input skips a pixel. To understand the relation between the dilation rate of d and the receptive field size of rf ,

5



A PREPRINT - JULY 15, 2020

d =1

d =2

*

n=X,3x3

*

n=X,3x3

1

9

6

5

7

2

5

5

7

8

2

3

1

4

2

3

5

2

9

3

9

8

2

6

1

2

9

2

6

5

3

9

0

5

0

4

3

4

7

1

3

8

1

6

1

6

2

8

5

1

9

6

5

7

2

5

5

7

8

2

3

1

4

2

3

5

2

9

3

9

8

2

6

1

2

9

2

6

5

3

9

0

5

0

4

3

4

7

1

3

8

1

6

1

6

2

8

5

Figure 3: Dilated convolution and its activation in PDCOVIDNet. At the top, we have a dilated convolution
with a dilation rate of 1, and the corresponding receive field size is 3× 3, which is equivalent to the standard
convolution. It has a 5× 5 receiving field size at the bottom and a dilation rate of 2. All dilated convolutions
have a kernel size of 3× 3 and n filters.

it is often useful to understand the effect of d on rf when the kernel is fixed in size. Equation 1 [35] depicts the form of
a receptive field size where the kernel of size k is dilated by the factor d.

rf = d(k − 1) + 1. (1)
Equation 1 refers to form the following equation that renders the size of the output o, where m×m input with a dilation
factor, padding and stride of d, p and s respectively.

o =

⌊
m+ 2p− rf

s

⌋
+ 1. (2)

After using two receptive fields of different sizes, it captures important features in the observation area at different
scales. In our proposed model, each PDr=iconv(n=X) block includes two convolution layers and activation layers, where
each block consists of a different number of filter response (i.e. X=[64, 128, 256, 512, 512]) of 3× 3 filter size having
stride and dilation rate with 1 and d, respectively. We define a convolution layer with filters F ∈ R1×n given as

F =
[
fk×k
1 fk×k

2 · · · fk×k
n=X

]
, (3)

where k × k is filter size and X is total number of filters. For a dilated convolution with a dilation rate of d on m×m
input feature maps at layer l , the convolution generates feature maps from the input, denoted as Xm×m

l , and calculated
by

Xo×o
l = Xm×m

l−1,d=i ∗ Fl +Bl, (4)

where Bl is a bias of the l-layer, and Fl is the l-layer filter of size k × k. The features of layer l are generated at the
dilation rate of d with the feature map in layer (l − 1). After the convolution layer, we introduce a nonlinear layer
with an activation function that uses the features generated at an earlier stage to create a new feature map as output.
In the case of activation, we prefer the rectified linear unit (ReLU) [36] because it can integrate the nonlinear layer
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and the rectification layer in CNN. ReLU has several advantages, and most importantly, it can effectively propagate
gradients. Therefore, if the initial weight takes into account the unique characteristics of CNN, the possibility of
gradient disappearance can be reduced. Note that the activation function performs element-by-element operations on
the input feature map, so the output is the same size as the input. Assuming that the layer l is the active layer of the
n-th filter, it obtains the input feature Xm×m

(l−1),n with the feature map m×m from the previous convolution layer, and
generates the same number of features defined as:

Xm×m
l,n = max(Xm×m

(l−1),n, 0) (5)

where Xm×m
l,n maps negative values to zero.

The proposed model has a PDr=iconv(n=X) block, followed by a max-Pooling layer, and is set five times in parallel
successive form. The proposed model has a PDr=iconv(n=X) block, followed by a max-Pooling layer five times in
parallel successive form. Max-Pooling, which takes the maximum value in each window, is an efficient approach to
downscale the filtered image, because when using a filter size of 2× 2 with a stride of 2, three-fourths of generated
features are ignored in each layer substantially it reduces the computational complexity for the next layer. The max-
pooling window used in our experiment was 2 × 2 and the stride was 2, because as reported in earlier studies [37],
the overlapping window did not improve significantly over the non-overlapping window. Then, in Figure 2, we see
that the features generated from the parallel branches are concatenated and provided to the next convolution layer.
The inspiration behind this concatenation-convolution operation is that each branch generates features from images at
different layers of CNN have different properties, so we concatenate low-level features of parallel branches to explore
feature relationship of dilated convolution hence final convolution layer might detect dominant features for classification.
In the last convolution layer, a total of 512 filters with a filter size of k × k and a dilation rate of 1 are applied to create
final low-level features followed by ReLU activation. After that, we inaugurate a flatten layer, which converts the square
feature map into a one-dimensional feature vector and prepares it for the next phase, which is finally a classification
task. Our final task is the classification and visualization phase, which will briefly illustrate in the next section.

4.2 Classification and Visualization

At this stage, a two-layer MLP (often called a fully connected (FC) layer) feeds the results of the flatten layer through
two neural layers to perform the classification task. It attempts to render the activation from the previous FC layers into
class scores (i.e., in classification). In addition, we include a Dropout cite JMLR: v15: srivastava14a layer after each
FC layer. This layer can randomly discard some FC layer weights during training to reduce overfitting. The number
of randomly selected weight drops is defined by the dropout limit, which ranges from 0 to 100%. Indeed, the best
adjustment is to determine the optimal number of weights to use in each layer and the dropout ratio to avoid overfitting
at the same time, making the network more robust. In this study, we chose a dropout size of 0.3, two FC layers of size
1024 and 1024, respectively, and used the softmax activation function to determine the classes of the input chest X-ray
images as COVID-19, normal and viral pneumonia. Finally, the layer details of the proposed model are shown in Table
3.

Although CNN models are powerful in producing impressive results, there are still many questions about why and how to
produce such good results. Owing to its black-box nature, it is sometimes challenging to adopt it in a real-life application
(such as a medical diagnosis system) where we need an interpretable model. However, early studies [17, 18, 38] focused
their attention on visualizing the behavior of CNN models, and various visualization methods emphasized the importance
of distinguishing classes, so they could execute models with interpretability. In our proposed model, we use Grad-CAM
and Grad-CAM++ to highlight the important regions that are class-discriminative saliency maps, where the model
emphasizes a gradient-based approach that computes the gradients for a target image class on the feature maps of the
final convolution layer in a CNN model. For a given image, let Ak

i,j denotes the activation map at a spatial location
(i, j) for the k-th filter. The class-discriminative saliency map Lc for the target image class c is then computed as [17]:

Lc
i,j = ReLU(

∑
k

wc
kA

k
i,j) (6)

In Eq.6, the role of ReLU is to capture features that have a positive impact on the target class. Then, in the case of
Grad-CAM, gradients that are flowing back to the final convolutional layer are globally averaged to calculate the target
class weights of the k-th filter, as described in Eq.7. Here, Z is the total number of pixels in the activation map, and Y c

is the probability that the target category is classified as c.

wc
k =

1

Z

∑
i

∑
j

∂Y c

∂Ak
i,j

(7)

On the other hand, Grad-CAM++ contributes to the weighted average of pixel-level gradients rather than the global
average of gradients, so the pixel weights in a particular feature map contribute to the overall decision of detection.
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Table 3: PDCOVIDNet layer details
Layer filter size/X, Stride PDCOVIDNet (Output Size)

Input -
Branch

PDr=1conv(n=X) PDr=2conv(n=X)
Conv2D 3× 3/64, 1 224× 224× 64 224× 224× 64
Conv2D 3× 3/64, 1 224× 224× 64 224× 224× 64

MaxPooling2D 2× 2/64, 2 112× 112× 64 112× 112× 64
Conv2D 3× 3/128, 1 112× 112× 128 112× 112× 128
Conv2D 3× 3/128, 1 112× 112× 128 112× 112× 128

MaxPooling2D 2× 2/128, 2 56× 56× 128 56× 56× 128
Conv2D 3× 3/256, 1 56× 56× 256 56× 56× 256
Conv2D 3× 3/256, 1 56× 56× 256 56× 56× 256

MaxPooling2D 2× 2/256, 2 28× 28× 256 28× 28× 256
Conv2D 3× 3/512, 1 28× 28× 512 28× 28× 512
Conv2D 3× 3/512, 1 28× 28× 512 28× 28× 512

MaxPooling2D 2× 2/512, 2 14× 14× 512 14× 14× 512
Conv2D 3× 3/512, 1 14× 14× 512 14× 14× 512
Conv2D 3× 3/512, 1 14× 14× 512 14× 14× 512

MaxPooling2D 2× 2/512, 2 7× 7× 512 7× 7× 512
Add - 7× 7× 512

Conv2D 3× 3/512, 1 7× 7× 512
Flatten - 25088

FC - 1024
FC - 1024

Softmax - 3

Grad-CAM++ redevelops Eq.7 to ensure that their contribution to the weighted average of the gradients remains
unchanged without losing generality, i.e.,

wc
k =

∑
i

∑
j

αkc
i,j .ReLU(

∂Y c

∂Ak
i,j

) (8)

αkc
i,j =

∂2Y c

(∂Ak
i,j)

2

2 ∂2Y c

(∂Ak
i,j)

2 +
∑

a

∑
bA

k
a,b

∂3Y c

(∂Ak
i,j)

3

(9)

In Eq.9, (i, j) and (a, b) are iterators over the same activation map Ak [18].

5 Experimental Evaluation

In this section, we will present the performance of our proposed model to classify chest X-ray images, broadly
categorized into three classes: COVID-19, Normal and Viral Pneumonia. In Section 4, a brief description of the
benchmark data set used in the experiment and the augmentation approach are discussed. The experiment sets the
training, validation, and test ratios to 80%, 10%, and 10%, respectively. We compared our proposed PDCOVIDNet with
VGG16, ResNet50, InceptionV3 [39] and DenseNet121, and did not use any pre-trained weights (such as ImageNet)
since ImageNet weights come from images of general objects, not chest X-ray images. All of our experiments are
executed in Keras with the TensorFlow backend.

5.1 Hyper-parameters Tuning

Hyper-parameters become critical because they directly control the behavior of the model, so fine-tuned hyper-
parameters have a huge impact on the performance of the model. We used the Adam [40] optimizer to train 50
epochs for each model with a learning rate of 1e− 4, with a batch size of 32. In addition, we applied the categorical
cross-entropy loss function to the training, which measures the loss between the probability of the class predicted from
the softmax activation function and the true probability of the category.
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5.2 Performance Evaluation Metrics

For experimental evaluations, we utilized several evaluation metrics such as Accuracy, Precision, Recall, and F1 score,
i.e.,

Accuracy =
TP + TN

Total Samples
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 = 2× Precision×Recall
Precision+Recall

(13)

where TP stands for true positive, while TN , FP , and FN stand for true negative, false positive, and false negative,
respectively. The F1 score may be a more reliable measure because the benchmark dataset is unbalanced, such as
COVID-19 with 219 images and non-COVID with 2686 images. Subsequently, we used the ROC (Receiver Operating
Characteristics) curve to display the results and measured the area under the ROC curve (often called AUC (Area Under
the Curve)) to provide information about the effectiveness of the model.

5.3 Evaluation of individual model

The overall results are shown in Table 4 and Table 5, where Table 4 describes the class-wise classification results on
different evaluation metrics, and Table 5 shows the weighted average results. From the table 4, we can see that almost
all models tend to enhance the classification of most categories (such as normal and viral pneumonia) because they have
more training weights than the COVID-19 case. For COVID-19, the highest performance belongs to PDCOVIDNet,
whose precision, recall, and F1 scores are 95.45%, 91.30%, and 93.33%, respectively. Our model provides consistent
results for the precision, recall, and F1 under normal cases, with each performance index being 97.04%, and the recall
for ResNet50 is 97.78%, slightly higher than PDCOVIDNet. Also, the precision and F1 scores of DenseNet121 are
95.52% and 95.17%, respectively, which is comparable to PDCOVIDNet. Next, in the case of viral pneumonia, the
precision, recall, and F1 score of PDCOVIDNet are 96.32%, 97.04%, and 96.68%, respectively. In particular, for cases
of viral pneumonia, ResNet50 is only 1% better precision than PDCOVIDNet. In the Table 4, the accuracy of all
evaluation models is summarized, and it can be seen that PDCOVIDNet is superior to other models. At the same time,
it is evident that PDCOVIDNet has the ability to resist class imbalances since COVID-19 cases are smaller than normal
or viral pneumonia cases. However, the more structured residual blocks of the model, the worse the classification
performance (e.g., ResNet50). As shown in Table 5, considering the weighted average of all performance evaluation
indicators, the best results are obtained by using PDCOVIDNet. In the weighted average comparison, PDCOVIDNet’s
results are much better than other models, which can be explained by the fact that the proposed model can extract
feature maps at different scales from chest X-ray images. In particular, compared with PDCOVIDNet, Densenet121
is missing 2% in each evaluation indicator. Although ResNet50 provides the best performance for normal and viral
pneumonia, unexpectedly, it fails to achieve the most successful model in the performance measurement.

It is often hard to measure the performance of the model using precision, recall and accuracy, so we need to look at the
ROC curve which allows a false positive rate since it plots the true positive rate against a false positive rate. In Figure
4, ROC curves show the micro and macro average and class-wise AUC scores achieved with the PDCOVIDNet, and
show consistent AUC scores across all classes, indicating stable predictions of the proposed model. In ROC curves, we
obtained AUC scores of 0.9918, 0.9927, and 0.9897 for COVID-19, normal and viral pneumonia, respectively. We
can see that the area under the curve of all classes is relatively similar, but normal’s AUC is slightly higher than other
classes.

Figure 5 shows the confusion matrices for all evaluated models. In Figure 5, it is clear that of the 23 test images, two of
the COVID-19 images are classified as normal and viral pneumonia, and of the 135 images, only one image of viral
pneumonia is related to COVID-19, but none of the normal images belong to COVID-19. One of the reasons may be
that COVID-19 is an especial case of viral pneumonia, so they have common features that mislead the PDCOVIDNet
model. It becomes clear that the VGG16 model has the same recall for the classification of normal and viral pneumonia,
although it shows a significant decline in the positive prediction of COVID-19 cases. However, ResNet50 shows the
ability to detect normal images, but in the case of COVID-19 detection, it shows almost the same performance as the
VGG16 model, although it shows inadequate performance when predicting viral pneumonia images. As shown in the
confusion matrix (Figure 5(d)), we can say that InceptionV3 can correctly classify more cases of viral pneumonia than
COVID-19 and normal cases. Next, DenseNet121 demonstrates the same performance as InceptionV3 in detecting
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Table 4: Class-wise classification results of individual model
Method Class Precision Recall F1 Accuracy

PDCOVIDNet
COVID-19 95.45 91.30 93.33

96.58Normal 97.04 97.04 97.04
Viral Pnemunia 96.32 97.04 96.68

VGG16
COVID-19 90.48 82.61 86.36

93.86Normal 93.43 94.81 94.12
Viral Pnemunia 94.81 94.81 94.81

ResNet50
COVID-19 94.74 78.26 85.71

92.15Normal 87.42 97.78 92.31
Viral Pnemunia 97.56 88.89 93.02

InceptionV3
COVID-19 83.83 86.96 85.11

93.51Normal 96.15 92.59 94.34
Viral Pnemunia 92.81 95.56 94.16

DenseNet121
COVID-19 95.24 86.96 90.91

94.54Normal 95.52 94.81 95.17
Viral Pnemunia 93.48 95.56 94.51

Table 5: Weighted average results of each model
Method Precision Recall F1
PDCOVIDNet 96.58 96.59 96.58
VGG16 93.84 93.86 93.83
ResNet50 92.67 92.15 92.12
InceptionV3 93.60 93.52 93.53
DenseNet121 94.54 94.54 94.53

Figure 4: Comparison of the ROC curve for COVID-19, Normal and Viral Pneumonia using PDCOVIDNet

COVID-19, and shows nearly the same performance with VGG16 in detecting viral pneumonia and normal cases.
Finally, we can claim that PDCOVIDNet is powerful in detecting COVID-19 cases from chest X-ray images. For this
reason, we believe that the proposed model focuses on discriminating features that can help distinguish between other
types (e.g., normal and viral pneumonia).

6 Visualization using Grad-CAM and Grad-CAM++

In our evaluation, we used Grad-CAM and Grad-CAM++ visualization methods to visually represent the salient regions
where PDCOVIDNet insisted on making the final classification decision on chest X-ray images. Accurate and decisive
salient region detection is important for the interpretation of classification, while also ensuring the reliability of the
results. In this regard, a two-dimensional heat map is generated from feature weights with different brightness, which
corresponds to the importance of the feature. The heat map is overlaid on the input image to locate the salient region.
Figure 6 shows the visualization results of Grad-CAM and Grad-CAM++ using PDCOVIDNet to locate salient regions
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Figure 5: Confusion matrix of all evaluated models with test set. Classes 0, 1, and 2 represent COVID-19,
Normal, and Viral Pneumonia.

when the input image is classified as COVID-19 or normal or viral pneumonia, where the regions distinguishing the
classes in the lung have been localized. For COVID 19, both Grad-CAM and Grad-CAM++ generate seemingly the
same results, so for the detection of critical areas, the overlapping positions of the heat maps can be considered. In
the case of viral pneumonia, the salient regions detected using Grad-CAM and Grad-CAM++ are undifferentiated,
while under normal class there are differences, and seems to fail to detect the salient regions as the heat map highlights
outside X-ray than inside the lung. To help AI-based systems, it is certainly effective to provide the system with some
human-understandable numerical measures (such as probability) as shown in Figure 6.

7 Investigation on the incorrect classification

In this section, we will further investigate the incorrect classification caused by the use of PDCOVIDNet. The total
number of incorrectly classified images is 10, as shown in Figure 7. Two COVID-19 images are classified as normal and
viral pneumonia, and in both cases, COVID-19 is far behind the prediction as the probability of COVID-19 prediction is
very low compared with others. Normal images are not classified as COVID-19, but among the four images with normal
classification errors, one prediction is on the edge of viral pneumonia, while the other predictions are very different.
Correspondingly, among the four incorrectly classified images of viral pneumonia, one image belongs to COVID-19
and the other images are normal, and one of the predictions is very close.

8 Conclusion and Future Work

In this paper, we proposed a CNN-based method, called PDCOVIDNet, for detecting COVID-19 from chest X-ray
images. As we have seen, PDCOVIDNet can effectively capture COVID-19 features by dilated convolution in the
parallel stack of convolution blocks, so it has an excellent classification performance compared to some well-known
CNN architectures. The dataset used in the experiment has a limited number of COVID-19 images, and at once, it is
still developing, but data augmentation techniques have able to surmount the challenge as CNN based architecture needs
more data for effective training. Our experimental evaluation shows that PDCOVIDNet outperforms the state-of-the-art
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True :COVID-19
Input Image Grad-CAM Grad-CAM++ Pred :COVID-19(0.9977)

True :Normal
Input Image Grad-CAM Grad-CAM++ Pred :Normal(0.8203)

True :Viral Pneumonia
Input Image Grad-CAM Grad-CAM++ Pred :Viral Pneumonia(0.9807)

Figure 6: Input images and their Grad-CAM, Grad-CAM++, and human-understandable prediction with
probability score according to the PDCOVIDNet. The first row provides input with COVID-19, as well as two
types of visualization effects, and finally the prediction results.The second and third rows show the investigation
of normal and viral pneumonia, respectively. Here, True means the actual class of the image, and Pred. means
the predicted class.

models, with its precision and recall are 95.45% and 91.3%, respectively. As well, PDCOVIDNet demonstrates its
potential through other performance metrics such as the weighted average of precision, recall and F1 scores, and
finally the overall model accuracy. We apply the proposed model as well as two visualization techniques to identify
the class-discriminative regions because they have a greater influence in classifying the input chest X-ray image into
its anticipated classes. Finally, we believe that the current findings will hopefully overcome intellectual challenges to
detect more cases of COVID-19 and use them to screen for COVID-19 cases in AI-based systems, especially in clinical
practice.

As future work, we will explore and incorporate a diversified data set with more COVID-19 cases to make our proposed
model more robust.
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Figure 7: Investigation on the incorrectly classified images with the probability of predicted class and actual
class
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