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Abstract Purpose: The outbreak of the Coronavirus disease 2019 (COVID-
19) caused the death of a large number of people and declared as a pandemic
by the World Health Organization. Millions of people are infected by this virus
and are still getting infected every day. As the cost and required time of con-
ventional Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests
to detect COVID-19 is uneconomical and excessive, researchers are trying to
use medical images like X-Ray and Computed Tomography (CT) images to
detect this disease with the help of Artificial Intelligence (AI) based systems,
to assist in automating the scanning procedure.
Methods: In this paper, we reviewed some of these newly emerging AI-based
models that can detect COVID-19 from X-Ray or CT of lung images. We col-
lected information about available research resources and inspected a total of
80 papers till June 20, 2020.
Results: We explored and analyzed datasets, preprocessing techniques, seg-
mentation methods, feature extraction, classification, and experimental results
which can be helpful for finding future research directions in the domain of
automatic diagnosis of COVID-19 disease using AI-based frameworks. It is
also reflected that there is a scarcity of annotated medical images/datasets of
COVID-19 affected people, which requires enhancing, segmentation in prepro-
cessing, and domain adaptation in transfer learning for a model, producing an
optimal result in model performance.
Conclusion: This survey can be the starting point for a novice/beginner level
researcher to work on COVID-19 classification.
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1 Introduction

Coronavirus Disease 2019 (COVID-19) is an infectious disease that started
to proliferate from Wuhan China, in December 2019 [1]. Within a short pe-
riod of time, this disease is ravaged every corner of the world and the World
Health Organization declared this disease as a pandemic on 11 March 2020
[2]. This disease is caused by the strain of Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2). In July 2020, cases reached almost 12 million
worldwide, and death due to this disease kept rising day by day, and the death
toll is 562,039 [3]. From the Worldometers data, the total deaths and total
cures (based on month) is illustrated in Fig. 1 [3]. Observing the statistics and
properties of COVID-19 it can be asserted that this life-threatening virus can
unfurl from individual to individual via cough, sneezing, or even close contact.
As a result, it has become important to detect the affected people earlier and
isolate them to stop further spreading of this virus.

RT-PCR is a procedure of assembling samples from a region of a person’s
body where the coronavirus is most likely to congregate, such as a person’s
nose or throat. Then this sample is treated with chemicals to track down the
existence of the coronavirus. Though RT-PCR can distinctly identify coron-
avirus disease, it has a high false-negative rate where the model predicts the
result as negative but actually, it is positive (false-negative). Furthermore, in
many regions of the world RT-PCR’s availability is limited. Hence, medical
images like Computer Tomography (CT) and X-Ray images can be the next
best alternative to detect this virus as most of the medical/hospital commonly
have this apparatus to generate images. Also, CT or X-Ray images are read-
ily available where there is no RT-PCR. Moreover, RT-PCR is expensive and
consumes a considerable amount of time for the identification. Additionally,
proper training is required for the health workers to collect samples for PCR
whereas, it is relatively easy to handle and produce CT and X-Ray images.

To work on these medical images, deep learning methods are the most
conventional and might be the only direction. Deep Learning is an emerging
field that could play a significant role in the detection of COVID-19 in the
future. Till now researchers have used machine learning/deep learning mod-
els to detect COVID-19 using medical images such as X-Ray or CT images
and obtained promising results. Many researchers also used transfer learning,
attention mechanism [4], and Gradient-weighted Class Activation Mapping
(Grad-CAM) [5] to make their results more accurate. Shi F et al. [6] and Ilyas
M et al. [7] discussed some artificial intelligence-based models for diagnosis
of COVID-19. Also, Ulhaq A et al. [8] reviewed some papers that worked on
diagnosis, prevention, control, treatment, and clinical management of COVID-
19. However, as time goes by researchers are finding advanced and improved
architectures for the diagnosis of COVID-19. In this paper, we have tried to
review these new methods alongside with the basic structures of the earlier
COVID-19 classification models. This survey will cover the research papers
that are published or in pre-print format. Although it is not the most favor-
able approach due to the likelihood of below standard and research without
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Fig. 1: Total Case, Total Death, and Total Cured (By month) from Worldome-
ter

peer-review, we intend to share all proposals and information in a single place
while giving importance to the automatic diagnosis of COVID-19 in X-Ray
and CT images of lungs.

The fundamental aim of this paper is to systematically summarize the
workflow of the existing researches, accumulate all the different sources of
datasets of lung CT and X-Ray images, sum up the frequently used methods
to automatically diagnose COVID-19 using medical images so that a novice
researcher can analyze previous works and find a better solution. We oriented
our paper as follows:

– Firstly, the Dataset source and different types of images used in the papers
are described in section 2.

– Secondly, the methodology where data preprocessing and augmentation
techniques, feature extraction methods, classification, segmentation, and
evaluation that researchers obtained are charactized in section 3.

– Lastly, a discussion is made to aid the new researcher to find future works
in detecting COVID-19.

2 COVID-19 Dataset and Resouce Description

The diagnosis of any disease is like the light at the end of the tunnel. In the case
of the COVID-19 pandemic, the importance of earlier diagnosis and detecting
the disease is beyond measure. The initial focus must be on the data by which
we need to efficiently train a model. This data will help Machine Learning (ML)



4 Faisal Muhammad Shah et al.

or Deep Learning (DL) algorithms to diagnose COVID-19 cases. Due to the
disadvantages of RT-PCR, researchers adopted an alternative method which
is the use of Artificial Intelligence on chest CT or X-Ray images to diagnose
COVID-19. Fundamentally, a chest CT image is an image taken using the
computed tomography (CT) scan procedure where X-Ray images are captured
from different angles and compiled to form a single image. A depiction of the
CT images (COVID-19 infected and Normal) is illustrated in Fig. 2.

(a) (b)

Fig. 2: CT images (a) COVID-19 (b) Normal.

Although a CT scan consumes less time to demonstrate, it is fairly ex-
pensive. As a result, many researchers adopted X-Ray images instead of CT
images to develop a COVID-19 detection model. A chest X-Ray is a proce-
dure of using X-Rays to generate images of the chest. Also, it is relatively
economical and convenient to maintain. X-Ray images of different people with
COVID-19, viral pneumonia, bacterial pneumonia, and a person without any
disease (normal) are shown in Fig. 3. Further in this section, an overview of
the dataset sources used in the existing papers is characterized and datasets
of both CT and X-Ray images are illustrated and covered in this section.

2.1 Dataset and its Sources

Nowadays, the exchange of information between researchers and physicians
creates difficulties due to the lockdown phase. Hence, massive COVID-19 data
are out of reach or difficult to find for many researchers. As a deep learning
architecture needs a considerable number of images to learn a model appro-
priately and efficiently, the existing COVID-19 automation researches are still
in preliminary stages. However, some COVID-19 datasets are proposed and
employed by the researchers which show exceptional results in detecting the



A Comprehensive Survey of COVID-19 Detection using Medical Images 5

(a) (b) (c) (d)

Fig. 3: X-Ray images (a) COVID-19 (b) Viral Pneumonia (c) Bacterial Pneu-
monia (d) Normal from COVID19-XRay-Dataset

COVID-19 affected lungs. To corroborate a beginner researcher, we have ac-
cumulated the abstract information of the datasets and their sources. A list
of the dataset sources from February 2020 to June 2020 is embellished in Ta-
ble 1. In the following, we will cover both CT and X-Ray images and their
fundamental attributes.

Table 1: Summary of different data sources used by papers

TYPE DATASET NAME DATASET SOURCE PAPERS
CT The Lung Image Database Consortium (LIDC) https://doi.org/10.1118/1.3528204 [9], [10]
CT China University Hospitals of Geneva (HUG) www.ChainZ.cn, El-Camino Hospital (CA), Zhejiang Province [11]
CT Societa Italiana di Radiologia Medica e Interventistica https://www.sirm.org/ [12]
CT Lung Segmentation and Candidate Points Generation https://www.kaggle.com/arturscussel/lung-segmentation-and-candidate-points-generation [13]
CT COVID-19 CT segmentation dataset http://medicalsegmentation.com/COVID19/ [14], [15], [16], [17]
CT COVID-CT https://github.com/UCSD-AI4H/COVID-CT [18]
X-Ray and CT COVID-19 X rays https://www.kaggle.com/andrewmvd/convid19-X-rays [19], [20], [21], [22]
X-Ray and CT BIMCV COVID-19+ https://bimcv.cipf.es/bimcv-projects/bimcv-COVID19/ [23]

X-Ray COVID-chestxray-dataset https://github.com/ieee8023/COVID-chestxray-dataset

[8], [24], [25], [26], [19], [27], [28], [29],
[13], [30], [31], [32], [20], [?], [33], [34],
[35], [36], [37], [38], [21], [39], [40], [22],
[41], [42], [43], [44]

X-Ray Chest X-Ray Images (Pneumonia) https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia [24], [25], [28], [29], [31], [?], [45], [43]
X-Ray COVID-19 Radiography Database https://www.kaggle.com/tawsifurrahman/COVID19-radiography-database [46], [47], [48], [41], [49]
X-Ray British Society of Thoracic (BSTI) https://www.bsti.org.uk/training-and-education [28]
X-Ray Radiopedia https://radiopaedia.org/articles/normal-chest-imaging-examples?lang=gb [28], [30], [33], [50], [42]
X-Ray COVID-19 Chest X-ray Dataset Initiative https://github.com/agchung/Figure1-COVID-chestxray-dataset [47], [48]
X-Ray ActualMed COVID-19 Chest X-ray Dataset Initiative https://github.com/agchung/Actualmed-COVID-chestxray-dataset [47], [48]
X-Ray COVID-19 Image Data Collection https://arxiv.org/abs/2003.11597 [51], [48]
X-Ray COVID-19 database https://www.sirm.org/category/senza-categoria/COVID-19/ [51], [52], [30], [53], [33], [49]
X-Ray Optical Coherence Tomography (OCT) https://data.mendeley.com/datasets/rscbjbr9sj/2. [54], [22], [44]
X-Ray COVID-19 X-ray dataset (COVID-CAPS) https://github.com/ShahinSHH/COVID-CAPS [55]
X-Ray Kaggle RSNA Pneumonia Detection Dataset https://www.kaggle.com/c/rsna-pneumonia-detection-challenge [47], [32], [56], [35], [36], [48], [39], [42]
X-Ray NIH Chest X-ray Dataset https://www.kaggle.com/nih-chest-xrays/data [?], [57]
X-Ray Pneumonia Classification https://drive.google.com/open?id=1J9I-pPtPfLRGHJ42or4pKO2QASHzLkkj [50]
X-Ray COVID-19 https://github.com/muhammedtalo/COVID-19 [57]
X-Ray COVIDGR-1.0 https://github.com/ari-dasci/COVIDgr [58]

2.2 CT Image Sources

As CT images are said to be detailed than X-Ray images, the diagnosis of
COVID-19 and developing a model becomes more convenient by employing the
CT-scan images. For CT images-based works, four papers used the COVID-19
CT segmentation dataset to develop a classification architecture. This dataset
contains hundred axial CT images from forty patients ([14], [15], [16], [17]).
Chen X et al. [14] and Qiu Y et al. [16] achieved 89% and 83.62% accuracy
respectively using this dataset. Furthermore, two authors adopted the Lung
Image Database Consortium (LIDC) dataset and accomplished an accuracy
above 90% ([9], [10]). Besides these, some authors used Societa Italiana di
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Radiologia Medica e Interventistica to generate datasets [12], Lung Segmenta-
tion, and Candidate Points Generation [13], COVID-CT [18] and HUG dataset
[11] for their purpose. A representation of these dataset sources is character-
ized in Table 1 and depicted in Fig. 4 (based on months). From the table,
we can infer that the COVID-19 CT segmentation dataset [14], [15], [16], [17]
was used mostly in April 2020 and Lung Image Database Consortium (LIDC)
dataset was used in March 2020 and June 2020. Some researchers also used
other lung disease images apart from these mostly used datasets. Nevertheless,
they collected CT images from different hospitals to build these datasets.

Fig. 4: A bar chart showing seven publicly available CT datasets used from
March, 2020 to June, 2020.

2.3 X-Ray Image Sources

X-Ray image dataset is more available than the CT images as the cost of
capturing an X-ray image is considerably more economical than a CT im-
age. Studying the existing literature, most of the authors used the COVID-
chest X-ray dataset ([59], [29], [39], [44]). Moreover, Kaggle RSNA Pneumo-
nia Detection Dataset ([47], [32], [42]), COVID-19 database ([51], [30], [49]),
Chest X-Ray Images (Pneumonia) ([24], [56], [43]) is adopted to evaluate their
model. These are the most common dataset for Chest X-Ray based COVID-
19 research (Table 1). However, these datasets contain a limited number of
COVID-19 infected lung images which is not efficient to train a deep learn-
ing model as the model can overfit the data. For this purpose, most of the
researchers utilized different preprocessing techniques to increase the dataset
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size, one of them is data augmentation. Furthermore, the existing works are
trained on a hybrid dataset combining the COVID-19 dataset and normal lung
images from another repository. For X-Ray based works, Al-antari MA et al.
[41] used COVID-19 Radiography Database for alternative lung diseases. An
illustration of the eighteen X-Ray dataset usage is depicted in Fig. 5. From
there it can be noticed that the COVID-chest x-ray dataset was used by most
of the authors followed by Kaggle’s Chest X-Ray images (Pneumonia) which
was used mostly in March 2020, April 2020 and June 2020. Some papers also
used both CT and X-ray images from the COVID-19 X rays and BIMCV
COVID-19+ datasets. From both Fig. 4 and Fig. 5 it can be observed that
BIMCV COVID-19+ emerged in June 2020 in terms of developing a COVID-
19 classification model.

Fig. 5: A bar chart showing eighteen publicly available X-Ray datasets used
from March, 2020 to June, 2020

2.4 Types and Properties of Images in the Dataset

Diseases such as Pneumonia, Severe Acute Respiratory Syndrome (SARS),
Middle East Respiratory Syndrome (MERS), Influenza and Tuberculosis af-
fect the lungs like COVID-19 which can lead to misclassification of X-Ray and
CT images. To avoid this problem, researchers have adapted their dataset to
have images of diseases affecting similar regions as COVID-19. Moreover, it
is important to correctly distinguish COVID-19 patients from people who do
not have COVID-19. For this purpose, the authors also used normal lung im-
ages collected from healthy people. These datasets are developed by combining
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Table 2: Summary of different type of lung disease and normal (healthy pa-
tients) CT images used by papers

Paper Normal Pneumonia COVID-19 Other Lung Diseases
[3] 175 224 219 N/A
[60] 86 100 88 N/A
[69] N/A 14469 20886 N/A
[70] 1325 1735 1296 N/A
[71] N/A 1027 1658 N/A
[72] 91 NS 877 450
[9] 100 N/A 106 N/A
[64] N/A 40 1266 N/A
[73] N/A N/A N/A N/A
[61] 28873 30345 14944 15466
[28] 153 N/A 203 N/A
[11] 1126 N/A 938 N/A
[12] 6000 N/A 6000 N/A
[13] 247 N/A 178 N/A
[14] NS NS NS N/A
[74] N/A N/A 150 N/A
[75] 75541 N/A 64771 N/A
[76] 397 N/A 349 N/A
[77] 195 N/A 275 N/A
[18] 339 N/A 391 N/A
[15] N/A N/A 373 N/A
[78] 495 N/A 449 N/A
[16] N/A N/A 100 N/A
[79] NS 740 325 N/A
[53] 344 N/A 439 N/A
[80] N/A 1027 1495 N/A
[17] N/A N/A N/A N/A
[81] 397 N/A 349 83
[10] 3308 2296 2228 N/A
[82] 463 N/A 349 N/A
Total 120438 50268 121700 15999

COVID-19 images, other lung disease images like Viral pneumonia ([3], [25],
[19], [46], [20]), Bacterial pneumonia ([60], [19], [61], [62], [20], [63]), fungal
pneumonia [64], SARS ([65], [66], [67], [57]), MERS [66], Influenza [10], Tu-
berculosis ([61], [67], [68]) and images of healthy people. The distribution of
different types of lung disease or normal images and the number of CT images
used by papers are illustrated in Table 2. There ‘Not specified (NS)’ indicates
that papers used that type of image but did not state the number explicitly
and ‘N/A’ indicates those types of images were not used.

Furthermore, the number of different types of CT images used in the papers
is presented in Fig. 6. From there it can be seen that the number of COVID-
19 CT images used for classification is 121,700. A total number of normal
CT Images, Pneumonia CT Images, and Other lung disease CT images are
120,438, 50,268, and 15,999 respectively.

Additionally, the distribution of different types of X-Ray images is depicted
in Table 3 where the total number of different images used in fifty research
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Fig. 6: The total number of CT images of different diseases and normal CT
images used from February 2020 to June 2020.

works from February to June is represented. In Table 2, the distribution of
different types of images was shown for thirty papers which were also from
February 2020 to June 2020. Moreover, ‘Not specified (NS)’ and ‘N/A’ are
used in Table 3 with the same purpose as it did in Table 2.

A depiction of the total number of COVID-19, normal, Pneumonia, and
other lung disease X-Ray images used by papers is shown in Fig. 7. From the
figure, it can be seen that fifty papers used 21,062 COVID-19 images, 168,223
normal images, 127,456 Pneumonia images, and 114,094 other lung disease
images were used in total. It can be said that more CT images of COVID-19
were used than COVID-19 X-Ray images by comparing Fig. 6 and Fig. 7.

3 Methodologies

After data collection, several preeminent steps must be followed to diagnose
COVID-19, hence this section depicts different techniques employed by differ-
ent papers. Firstly, preprocessing techniques along with their characteristics
and properties is described. Secondly, feature extraction methods are thor-
oughly discussed. After that, segmentation methods and classification tech-
niques are reviewed. Lastly, the results obtained in the existing studied papers
are briefly described. The workflow of diagnosing COVID-19 from X-Ray im-
ages demonstrated in Fig. 8.
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Table 3: Summary of different type of lung disease and normal (healthy pa-
tients) X-Ray images used by papers

Paper Normal Pneumonia COVID-19 Other Lung Diseases
[59] 25 N/A 25 N/A
[24] 50 N/A 50 N/A
[25] 504 700 224 N/A
[26] N/A 1431 100 N/A
[19] 1583 4290 68 N/A
[46] 1579 1485 423 N/A
[27] 15 N/A 25 N/A
[28] 85 N/A 85 N/A
[47] N/A 5551 358 N/A
[51] 3450 N/A 455 N/A
[83] 8066 5538 259 N/A
[29] 207 N/A 207 N/A
[30] N/A 320 135 N/A
[84] 179 179 179 N/A
[31] 310 654 284 N/A
[62] 7595 8792 313 N/A
[55] N/A N/A 120 N/A
[32] 8851 6054 180 N/A
[85] 2400 2600 536 N/A
[20] 127 127 127 N/A
[56] 137 N/A 137 N/A
[33] 350 322 225 50
[34] 8066 5521 183 N/A
[35] 44993 14777 167 N/A
[36] 9039 2306 318 N/A
[86] 8851 6045 215 N/A
[37] 1591 4706 105 N/A
[38] 191 131 180 N/A
[50] 1000 54 90 N/A
[87] N/A N/A 462 N/A
[48] 8066 5551 358 N/A
[65] 80 N/A 105 11
[21] 1000 1000 239 N/A
[66] N/A N/A 423 287
[88] 1579 2760 462 N/A
[39] 15000 15000 99 N/A
[40] 8851 6045 386 N/A
[67] 1126 Not specified 1050 112566
[68] 388 1000 500 303
[89] 2880 5179 415 N/A
[22] 1000 2000 309 N/A
[45] 25 N/A 25 N/A
[41] N/A 120 326 866
[57] 3520 500 250 11
[63] N/A 1583 305 N/A
[49] 13410 13450 8640 N/A
[42] 554 554 154 N/A
[43] 505 512 236 N/A
[58] 377 N/A 377 N/A
[44] 668 619 132 N/A
Total 168223 127456 21062 114094
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Fig. 7: The total number of X-Ray images for different disease and normal
patients used from February, 2020 to June, 2020

Fig. 8: The overall methodology of diagnosing COVID-19 from X-Ray images

3.1 Preprocessing Techniques

There is a high chance that a COVID-19 dataset is built with some obscure,
duplicate, blur, etc. images that degrade the performance of a model. Hence, it
is necessary and mandatory to perform preprocessing techniques on redundant
images. Various types of preprocessing techniques can be carried out based on
the difficulties of the dataset. One of the major problems of deep learning is
overfitting. To minimize the effect of overfitting data augmentation is used in
the pre-processing stage. Resizing, scaling, cropping, flipping, rotating are the
most employed data augmentation techniques. Some of these data augmenta-
tion techniques are discussed below:

– Resizing is necessary because the images are not always within the same
estimate which postures an issue whereas preparing the model. To gener-
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alize the dataset all the images are resized into a fixed dimension like 224
× 224 or 299 × 299.

– Flipping or Rotating is done to increase the sample size of the datasets.
Mainly horizontal and vertical flipping is used to do this as depicted in Fig.
9a.

– Scaling or Cropping is the next most used augmentation technique is scal-
ing or cropping. All the portions of the images are not necessary to use.
So, to reduce the redundancy researchers used the cropping method as
illustrated in Fig. 9b.

– Brightness or Intensity adjusting is mandatory to increase or reduce the
brightness of the images. An example is shown in Fig. 9c.

As the COVID-19 dataset is built with an insufficient number of COVID
infected images, Generative Adversarial Networks (GAN) can be employed to
generate COVID affected lung images which can be a path to avoid overfitting
or data insufficiency. GAN is an unsupervised learning process structured on
generative modeling embedded with deep learning architectures. It finds the
patterns, similarities in the input datasets and generates new data which is
similar to the input dataset. GAN [90] increases the sample size in the dataset
but the quality of the samples is not guaranteed.

(a) (b)

(c)

Fig. 9: Some examples of applying Pre-processing Techniques [(a) flipping by
180 degree, (b) Cropping, and (c) adjusting brightness]

A representation of the papers — applying augmentation techniques on
their model is characterized in Table 4 and the percentage usage of these aug-
mentation techniques is depicted in Fig. 10. From there it can be seen that
resize and flipping has the highest percentage of 27.9% and 27.0% respectively.
Scaling or Cropping, Contrast Adjusting, Brightness Adjusting, and GAN is
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Table 4: Summary of the preprocessing and augmentation methods used by
the papers

Augmentation Techniques Paper Count

Resize

[70], [59], [24], [25], [64] ,[26], [19], [46],
[27], [28], [47], [51], [11], [12], [29], [14], [74],
[31], [62], [18], [32], [15], [56], [38], [39], [40],
[68], [89], [22], [45], [57], [63], [49], [43]

34

Flipping or Rotating

[3], [72], [72], [26], [19], [46], [47], [51], [12],
[83], [29], [14], [30], [74], [75], [55], [32], [85],
[16], [34], [86], [87], [48], [65], [81], [82], [39],
[67], [45], [41], [57], [49], [44]

33

Scaling or Cropping
[3], [71], [72], [9], [25], [64], [26], [19], [28],
[12], [29], [14], [74], [75], [62], [55], [18], [32],
[16], [34], [86], [48], [82], [39], [89], [41], [43]

27

Contrast adjusting
[73], [19], [27], [51], [29], [84], [74], [77],
[79], [87], [65], [66], [82], [68], [49]

15

Brightness or Intensity adjusting [73], [47], [12], [29], [84], [34], [86], [48], [82] 9
GAN [54], [18], [17], [58] 4

22.1%, 12.3%, 7.4%, and 3.3% respectively. Besides these techniques, some
authors used various traditional image preprocessing techniques such as His-
togram Equalization [66], Adaptive Winner Filter [77], Affine Transformation
[26], [37], Histogram Enhancement [37], Color Jittering [26].

Fig. 10: Pie chart illustrates the augmentation techniques used by different
papers (Here the percentage of usage of six different augmentation techniques
is shown)



14 Faisal Muhammad Shah et al.

3.2 Segmentation

It is necessary to train a model with the most significant features as unnec-
essary features or image region discredit the performance of the model. So,
extracting the Region of Interest (ROI) is the preeminent task before the
training stage. For that purpose, segmentation comes into the hand as it can
segregate the irrelevant and unnecessary regions of an image. In digital image
processing and computer vision, image segmentation is defined as the tech-
nique of partitioning a digital image into different segments based on some
pre-defined criteria where a segment delineates as a set of pixels. Like other
areas of medical image processing, segmentation boosts the effectiveness of
COVID-19 detection by finding the region of interest (ROI) like the lung re-
gion. Areas of the image that are redundant and not related to the significant
feature area (out of the lung) could meddle the model performance. By using
segmentation methods, only ROI areas are preserved which reduces this ad-
verse effect of considering the out of the boundary features. Segmentation can
be carried out manually by radiologists, but it takes a substantial amount of
time. Several open-source automatic segmentation methods such as — region-
based, edge-based, clustering, etc. are feasible to adopt. In the following, we
will try to describe the prominent segmentation architecture and their prop-
erties.

The U-Net architecture is built with the help of CNN (Convolutional Neu-
ral Network) and it is modified such that it can achieve better segmentation
in the domain of medical imaging [52]. The main advantage of U-Net is that
the location information from the downsampling path and the contextual in-
formation in the upsampling path are combined to get general information —
containing context and localization, which is the key to predicting a better
segmentation map. U-Net based strategies were utilized in ([69], [70], [72], [9],
[73], [11], [14], [74], [77], [62], [15], [78], [10], [35], [37], [58]) for efficient and
programmed lung segmentation extracting the lung region as the region of
interest (ROI).

For CT images, to keep contextual information between slices some re-
searchers applied 3D versions of U-Net for lung segmentation named 3D U-
Net ([3] [72]). Due to the low contrast at the infected areas in CT images and
because of a large variety of both body shape, position over diverse patients,
finding the infected areas from the chest CT scans was very challenging. Con-
sidering this issue, Fei Shan et al. [24] developed a deep learning-based network
named VB-Net. It is a modified 3D convolutional neural network based on V-
Net [91]. In some other existing works, this segmentation method is adopted
which alleviates the performance of the model ([71] [80]).

Additional segmentation methods such as OpenCV, Dense-Net, NABLAN,
DeepLab were also used for the segmentation of lung images in different papers.
The different segmentation methods used by different papers are illustrated in
Table 5 and the number of papers in which a specific segmentation method is
used is shown by a bar chart in Fig. 11.
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Table 5: Summary of different segmentation methods used in COVID-19 de-
tection

Segmentation Methods Papers Count

U-Net
[69], [70], [72], [9], [73], [11], [14], [74], [77],
[62], [15], [78], [10], [35], [37], [58]

16

3D U-Net [3], [72] 2
VB-Net [71], [80] 2
OpenCV [60] 1
DeepLab [14] 1
NABLAN [13] 1
Dense-Net [64], [38] 2
MiniSeg [16] 1

Fig. 11: A bar chart showing number of times different segmentation models
used in different papers

3.3 Feature Extraction Methods

Feature extraction is an essential step for classification as the extracted fea-
tures provide useful characteristics of the images. For image feature extraction,
Deep Neural Networks (DNN) have extraordinary capabilities to extract the
important features from a large-scale dataset. As a result, these are used ex-
tensively in computer vision algorithms and Convolutional Neural Network
(CNN) which is also known as ConvNet. In the following, some of the feature
extraction models are briefly described.

3.3.1 Convolutional Neural Network (CNN)

In visual imagery fields, CNN architectures are mostly employed and adopted
methods [92]. A CNN architecture is built with various types of network layer
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— pooling layer, convolutional layer, flatten, etc. corroborating the develop-
ment and performance of a model.

Convolution layer is the core building block of a CNN. The layer’s param-
eters are made up of a set of discoverable kernels or filters which have a little
responsive field but enlarge through the full input volume. Non-linear layer is
the layer where the change of the output is not proportional to the change
of the input. This layer uses activation functions to convey non-linearity to
data by adding after each convolution layer. Used activation functions can be
Rectified Linear Unit (ReLU) [93], Tanh, etc.

Pooling layer is another important part of CNN architecture where it is
used to downsize the matrix. Pooling can be done in several methods: Max
Pooling, Min Pooling, Average Pooling, and Mean Pooling. Fully connected
layer is the layer where every Neuron of a layer is connected with every other
neuron of another layer. Traditional Multilayer Perceptron neural networks
(MLP) and this layer have common principles.

3.3.2 Existing Pre-trained CNN Models

Most of the COVID-19 diagnosis architectures used various pre-trained CNN
models. A representation of the usage of this pre-trained model is shown in
Table 6 (CT images) and Table 7 (X-Ray images). To work with CT im-
ages, Residual Network (ResNet), Densely Connected Convolutional Network
(DenseNet), Visual Geometry Group (VGG), SqueezeNet architecture are the
most adopted pre-trained architectures by researchers (Table 6) and ResNet,
DenseNet, VGG, Inception, InceptionResNet models are employed for X-Ray
images (Table 7). Some of the most used existing pre-trained CNN models are
described in the following.

Residual Network (ResNet) is a CNN architecture, designed to enable hun-
dreds or thousands of convolutional layers. While previous CNN architectures
had a drop off in the effectiveness of additional layers, ResNet [94] can effi-
ciently add a large number of layers leads to strong performance as an outcome
of the model. ResNet is convenient and efficient for data-driven approaches. It
has different variants such as — ResNet18, ResNet169, ResNet50, ResNet152,
etc. focusing on distinct perspectives. Moreover, studying the works we can
infer that, ResNet is the most used architecture for both CT and X-Ray based
COVID-19 research. Fourteen papers that have used ResNet in their proposed
models for CT image-based works are shown in Table 6 and twenty-seven
papers are used for X-Ray based works are represented in Table 7.

Densely Connected Convolutional Networks (DenseNet) is one of the cur-
rent neural networks for visual object recognition [95]. It is quite similar to
the architecture ResNet but has some fundamental differences. This model
ensures maximum information flow between the layers in the network that
helps to extract the optimal features. By matching feature map size all over
the network, the authors connected all the layers directly to all of their sub-
sequent layers — a Densely Connected Neural Network, or simply known as
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DenseNet. DenseNet made strides in the data stream between layers by propos-
ing these distinctive network designs. Unlike many other networks like ResNet,
DenseNets do not sum the output feature maps of the layer with the incoming
feature maps but concatenate them. This architecture has different types of
variants (DenseNet101, DenseNet169, DenseNet201, etc.) and it has an input
shape of 224 x 224. In Table 6 (CT image), DenseNet architecture is used by
four papers, and from Table 7 (X-Ray image), it is used by seventeen papers.

Visual Geometric Group (VGG) is another important CNN architecture for
the purpose of feature extraction. VGG Network consists of 16 or 19 convolu-
tional layers and is very convenient to demonstrate because of its very uniform
architecture [96]. In our survey, we studied four papers who work with VGG
for COVID-19 detection purposes to get the features from CT images that
were illustrated in Table 6, and fifteen papers from X-Ray based works were
shown in Table 7.

Inception is a transfer learning-based method consists of two segments:
feature extraction from images with the help of CNN and classification with
softmax and fully connected layers [97] [98]. Various versions of Inception
architectures are used in the medical imaging field. Among these, InceptionV1,
InceptionV2, InceptionV3, and InceptionV4 are the prominent ones with an
input image shape of 299 x 299. Twelve papers used an Inception based model
for X-Ray based classification of COVID-19 given in Table 6 and only one
paper [79] for CT images used this model to classify COVID-19 disease.

InceptionResnet is the similar architecture as InceptionV4 [99]. Inception-
ResNetv1 is a half breed Initiation adaptation that encompasses a similar
computational fetched to Inceptionv3. InceptionResNetV2 is a convolutional
neural arrangement that is prepared on more than a million pictures from the
ImageNet [100] database. The arrangement is 164 layers profound and can
classify images into 1000 distinct categories. Eight papers are given in Table
7 utilized this strategy for X-Ray pictures including extraction.

Table 6: Summary of image feature extraction methods used by different pa-
pers for CT images

CNN Paper Count
ResNet [3],[60],[70],[72],[9],[61],[11],[12],[75],[76],[17],[81],[10],[82] 14
DenseNet [60],[64],[76],[82] 4
VGG [60],[12],[75],[76] 4
SqueezeNet [53],[81] 2
AlexNet [28] 1
CrNet [76] 1
EfficientNet [[76] 1
FCN-8s [72] 1
GoogLeNet [12] 1
Inception [79] 1

The number of different CNN models used for CT Images is shown in Fig.
12 (based on month). For feature extraction from CT images, researchers used
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various types of CNN models from which ResNet is the most used architec-
ture within these five months. In February 2020 three types of CNN models
are used, two papers used ResNet, one paper used DenseNet, and another
paper used VGG. During March 2020 four papers used ResNet, and AlexNet
and FCN-8s used once. Whereas in April 2020 ResNet was used four times,
three papers used VGG and SqueezeNet, CrNet, EfficientNet, GoogLeNet,
and Inception are used once. Moreover, in May 2020 ResNet is used twice and
SqueezeNet is used once, and finally, in June 2020 DenseNet and ResNet are
used by one and two papers respectively.

Fig. 12: A bar chart for describing used CNN for CT images (By month)

Different CNN models and the number of times of its usage per month is
shown for X-Ray images in Fig. 13. where ResNet is one of the most used mod-
els for feature extraction. In our survey, during March 2020, ResNet is used six
times, DenseNet two times, VGG three times, Inception four times, Inception-
ResNet three times, Xception two times, and AlexNet, SqueezeNet one times
each. In April 2020 ResNet is used ten times, DenseNet eight times, VGG six
times, Inception three times, InceptionResNet three times and Xception five
times. AlexNet, GoogLeNet, and ShuffleNet are both used twice. SqueezeNet,
Inception, and InceptionResNet are used three times each. NASnet and Ef-
ficientNet are used once each time. During May 2020 ResNet is used five
times, DenseNet and Inception are used two times each, VGG, SqueezeNet,
and GoogLeNet three of them are used only once. Finally, in June 2020 ResNet
is used seven times, DenseNet and VGG both are used five times each. Incep-
tion, InceptionResNet, Xception, AlexNet, GoogLeNet, and NASnet are used
three, two, one, three, one, and two times respectively.
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Table 7: Summary of image feature extraction methods used by different pa-
pers for X-Ray images

CNN Papers Count

ResNet
[59],[24],[26],[19],[46],[47],[54],[83],[30],[32],[85],[20],[56],[34],
[36],[86],[37],[38],[65],[21],[66],[88],[39],[40],[67],[68],[43],[58]

27

DenseNet
[59],[46],[83],[29],[84],[62],[20],[56],[35],[86],[37],[66],[88],
[39],[68],[22],[43]

17

VGG
[59],[25],[46],[83],[30],[62],[20],[56],[34],[21],[67],[68],[89],
[45],[57]

15

Inception [59],[24],[25],[46],[62],[20],[56],[38],[66],[88],[49],[43] 12
InceptionResNet [59],[24],[25],[62],[20],[56],[39],[43] 8
Xception [59],[25],[31],[62],[32],[20],[56],[44] 8
AlexNet [28],[54],[20],[67],[68],[42] 6
SqueezeNet [46],[54],[84],[85],[66] 5
GoogLeNet [54],[20],[21],[67] 4
NASnet [56],[39],[22] 3
ShuffleNet [84],[20] 2
EfficientNet [34] 1
Simple CNN [28] 1

Fig. 13: A bar chart describing the use of different CNN models for X-Ray
images (by month)

3.3.3 Specialized CNN Methods for COVID-19

Some researchers developed several architectures especially for COVID-19 de-
tection with the backbone of basic CNN. These architectures have additional
capabilities to classify images into multiple classes like COVID-19, Viral pneu-
monia, Bacterial Pneumonia, and Normal case. Because in the primary stage,
these models are trained on ImageNet, and then it is trained on various lung
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diseases CT or X-Ray images. In the following, a brief discussion on the en-
semble or specialized CNN methods to detect COVID-19 is described.

COVID-19 Detection Neural Network (COVNet) architecture was intro-
duced by Li et al. [70] which is a 3D deep learning architecture to detect
COVID-19. This architecture can extract both 2D local and 3D global illus-
trative features. The COVNet architecture is built with a ResNet architecture
as the base model. A max-pooling operation is used for the feature extraction
which is carried out for all slices of an image. Moreover, the feature map is
connected with a fully connected layer and the author used a softmax acti-
vation function for the probability score to accurately classify multiple class
(COVID-19, Community-Acquired Pneumonia (CAP), and non-pneumonia).

COVID-Net architecture is specially adapted for COVID-19 detection from
chest X-Ray images. It has high architectural diversity and selective long-range
connectivity. The massive use of a projection-expansion-projection design pat-
tern in the COVID-Net [48] architecture is also observed for the classification.
COVID-Net architecture is incorporated into a heterogeneous association of
convolution layers. The proposed COVID-Net is pre-trained on the ImageNet
dataset and then applied to the COVIDx dataset. Applying this architecture,
they achieved accuracy about 93.3% on the COVIDx dataset.

ChexNet is originally a DenseNet-121 type of deep network which is trained
on Chest X-ray images introduced by the paper [88]. So, this architecture has
been specially designed to diagnose COVID-19.1024-D feature vectors are ex-
tracted for the compact classifiers in ChexNet. They used the Softmax activa-
tion function to classify COVID-19, Normal, Viral Pneumonia, and Bacterial
Pneumonia. The number of trainable parameters in this model is 6,955,906.

COVID-CAPS is a capsule-based network architecture invented by Afshar
et al. [55]. This model consists of four convolutional layers and three capsule
layers. The primary layer is a convolutional layer, then batch-normalization is
attached. The second layer is also a convolutional layer, followed by a pooling
layer. Correspondingly, the third and fourth layers are convolutional, and the
fourth layer is reshaped as the first capsule layer. Three Capsule layers are
embedded in the COVID-CAPS to perform the routing. The last Capsule
layer contains the classification parameters of the two classes of positive and
negative COVID-19. The trainable parameter is 295,488 for this model. and
achieved 98.3%.

Detail-Oriented Capsule Networks (DECAPS) architecture is introduced
by Mobiny et al. [18] which uses a ResNet with three residual blocks. This
architecture is trained in CT images. This model obtained an area under the
curve (AUC) of 98%. Besides these, some papers adopted different types of
ensemble approaches like Details Relation Extraction neural network (DRE-
Net) [60] — ResNet-50 on Feature Pyramid Network [FPN] for extracting top
K details from each image. Furthermore, an attention module is combined
to learn the importance of every detail. In the training stage, [71] and [10]
employed the Least Absolute Shrinkage and Selection Operator (LASSO) to
traverse the optimal subset of clinical-radiological features for classification.
Moreover, GLCM, HOG, and LBP are used by [20]. Additionally, [9] used com-
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mercial off-the-shelf software that detects nodules and small opacities within
a 3D lung volume and subsystem.

Besides some authors applied transfer learning [83], [62], [?], [85] approach
with the basic CNN models for better results. Basically, transfer learning is
a technique for foretelling modeling on a different but somehow the same
problem that can then be reused partially or fully to expedite the training and
develop the performance of a model on the problem. In deep learning, transfer
learning means regenerating the weights in one or more layers from a pre-
trained network architecture in a new model and either keeping the weights
fixed, fine-tuning them, or adapting the weights entirely when training the
model.

3.4 Interpretability

Fundamentally, a learning model consists of algorithms that try to learn pat-
terns and relationships from the data source. To make the results obtained
from machines interpretable, researchers use different techniques such as Class
Activation Mapping (CAM), Gradient-weighted Class Activation Mapping
(Grad-CAM) based on a heatmap. CAM is a method that creates heatmaps
to show the important portions from the images, especially which regions are
essential in terms of the Neural Network. CAM has various versions such as
Score CAM and Grad-CAM. The heatmap generated by CAM is a visualiza-
tion that can be interpreted as where in the image the neural net is searching
to make its decision. This is very important in image classification and object
localization problems.

In our survey, there are few papers that utilized CAM [101] and few papers
[70], [9], [19], [11], [83], [62], [53], [33], [35], [36], [37], [38], [39], [63], [44] utilized
Grad-CAM with heatmap for better understanding of the region it is centering
on. At the same time, heatmaps can also provide the radiologists with more
useful information and further help them.

3.5 Classification

Almost all of the COVID-19 diagnosis models use Convolutional Neural Net-
work [96] as a feature extractor and as a classifier, it uses softmax or sigmoid.
Some authors also attempted to amplify CNN with a sigmoid layer. The au-
thors of [45] merged CNN with the softmax layer along with the SVM classifier
[102]. SH et al. [56] used CNN with softmax layer along a decision tree, random
forest, XGBoost [103], AdaBoost [104], Bagging Classifier [105] and LightGBM
[106]. Furthermore, the authors of [88] also merged CNN with KNN, support
estimator network, and SVM classifier. Nonetheless, these models need a large
amount of data for training which is in shortage of COVID-19 images.

Essentially there are two ways of classifying COVID-19 images, Binary
Classification, and Multiclass classification. In Binary Classification authors
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tried to separate COVID-19 and non-COVID-19 patients, but this technique
is very inaccurate as other types of lung diseases (viral pneumonia, viral pneu-
monia, bacterial pneumonia, and Community-Acquired Pneumonia) can be
classified as COVID-19. For that reason, many authors differentiate COVID-
19, viral pneumonia, bacterial pneumonia, community-Acquired Pneumonia,
and normal images by classifying them using a softmax classifier. In terms
of accuracy of detecting COVID-19 images, multiclass classifiers performed
better than binary classifiers. A summary of different classification techniques
used by different papers is illustrated in Table 8 and Table 9.

Table 8: Summary of classification methods used by different papers both for
CT and X-Ray images

Classification Methods Papers Count

Binary Classification

[71], [9], [24], [25], [64], [73], [46], [28], [54], [12],
[29], [13], [30], [84], [74], [31], [75], [55], [76],
[18], [85], [78], [20], [56], [79], [53], [35], [38],
[80], [87], [81], [88], [82], [39], [67], [68], [89],
[22], [45], [41], [43], [58], [44]

43

Multiclass Classification

[3], [60], [69], [70], [72], [59], [25], [26], [19], [46],
[61], [47], [51], [11], [83], [13], [14], [62], [76],
[32], [78], [33], [34], [36], [86], [37], [50], [48], [65],
[21], [66], [81], [10], [39], [57], [49], [42]

37

Table 9: Summary of classification methods used by different papers both for
CT and X-Ray images (month-wise)

Month Binary Count Multiclass Count
February, 2020 — 0 [3], [60] 2

March, 2020
[5], [9], [24], [25],
[64], [73], [46], [28]

8
[69], [70], [72], [59],
[25], [26], [19], [46],
[61], [47]

10

April, 2020

[54], [12], [29], [13],
[30], [84], [74], [31],
[75], [55], [76], [18],
[85], [78], [20], [56],
[79], [35]

19

[51], [11], [83], [13],
[14], [62], [76], [32],
[78] [33], [34], [36],
[86]

13

May, 2020 [38], [80], [87], [81] 4
[37], [50], [48], [65],
[21], [66], [81]

7

June, 2020
[88], [82], [39], [67],
[68], [89], [22], [45],
[41], [43], [58], [44]

12 [10], [39], [57], [49], [42] 5

Some authors also tried to detect COVID-19 in several stages. In the begin-
ning, the authors separated normal and pneumonia images. After that, they
classify COVID-19 by filtered pneumonia images. Several-stage classification
helps the models to memorize various leveled connections. In paper [35] and
[37], authors used several-stage classification rather than an end to end method
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to detect COVID-19 which outperforms several the end to end techniques. On
the flip side, the performance of multiclass classification relies on datasets.
If there is a shortage of dataset, the model cannot become familiar with the
various leveled connections between classifications like Pneumonia to Viral
Pneumonia to COVID-19.

3.6 Experimental results of the papers

Researchers used different evaluation metrics to analyze their COVID-19 model’s
performance. Among them, the most popular and used metrics for detecting
COVID-19 are Accuracy, Precision, Recall/Sensitivity, F1 Score, Specificity,
and Area Under Curve (AUC). In our work, we tried to record the perfor-
mance with these metrics from all the papers which is represented in Table 10
for CT and in Table 11 for X-Ray images. Also, we have given the number of
COVID-19 images from the total images used for training, testing, and valida-
tion purpose. Some papers explicitly stated the train-test split of COVID-19
images and for some papers, we calculated the split according to the ratio that
is provided in the paper. Even so, for some papers, it is not clearly stated how
they distributed their dataset ([71], [13], [14], [20], [17]). Additionally, some
papers explicitly stated the use of data for validation ([60], [70], [59], [24], [64],
[46], [61], [29], [30], [84], [78], [79], [53], [35], [86], [37], [38], [66], [81], [41], [49]).

A summary of the results obtained by the studied models using CT images
is illustrated in Table 10. These papers with their Accuracy, AUC, Sensitivity,
and Specificity are given along with their distribution of COVID-19 images in
training, testing, and validation set. It can also be observed that CT image-
based models gained a minimum accuracy of 79.50% for the paper [82] and
maximum accuracy of 99.56% for the paper [13].

Table 10: Summary of result evaluation for CT images

Publication Image Training
Testing+
Validation

Result(%) Citation

February 21, 2020 [3] 618 189 30 + N/A Accuracy:86.70 117

February 25, 2020
[60]

274 79 25 + 9
Accuracy:94.00
AUC:91.00

22

March 01, 2020 [69] 46096 691 636 + N/A
Accuracy:98.85
Sensitivity:94.34
Specificity:99.16

37

March 19, 2020 [70] 4356 1048 131 + 117
Sensitivity:90.00
Specificity:96.16
AUC:96.00

172

March 22, 2020 [71] 2685 NS NS + NS

Accuracy:87.90
Sensitivity:90.70
Specificity:83.30
AUC:94.20

24

March 23, 2020 [72] 1418 723 154 + N/A
Sensitivity:97.4
Specificity:92.2
AUC:99.10

13

March 24, 2020 [9] 206 50 56 + N/A
Sensitivity:98.20
Specificity:92.20
AUC:99.60

87
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Publication Image Training
Testing+
Validation

Result(%) Citation

March 26, 2020 [64] 5372 1266 102 + 92

Accuracy:85.00
Sensitivity:79.35
Specificity:71.43
AUC:86.00

8

March 26, 2020 [73] 630 289 76 + N/A
Accuracy:90.10
Sensitivity:90.70
Specificity:91.10

35

March 30, 2020 [61] 89628 7543 4887 + 2514
Accuracy:98.80
Sensitivity: 98.20
Specificity: 98.90

2

March 31, 2020 [28] 361 339 17 + N/A
Accuracy:94.10
Sensitivity:90.00
Specificity:100.00

11

April 06, 2020 [11] 2064 829 109 + N/A
Sensitivity:94.00
Specificity:98.00
AUC:99.40

11

April 07, 2020 [12] 12000 4500 1500 + N/A
Accuracy:98.93
Sensitivity:97.60
Specificity:97.63

5

April 10, 2020 [13] 420 375 45 + N/A Accuracy:99.56 2
April 12, 2020 [14] 110 NS NS + 10-Fold Accuracy:89.00 7

April 14, 2020 [74] 360 120 30 + N/A

Accuracy:89.20
Sensitivity:88.60
Specificity:87.60
AUC:92.30

4

April 15, 2020 [75] 79396 2794 64711 + N/A
Sensitivity:95.00
Specificity: 93.00

11

April 17, 2020 [76] 746 191 98 + 60
Accuracy:83.00
AUC:87.00

4

April 17, 2020 [77] 470 165 110 + N/A
Accuracy:93.65
Sensitivity:94.25
Specificity:92.79

1

April 17, 2020 [18] 746 286 105 + N/A
Accuracy:87.60
Specificity:85.20
AUC:96.10

2

April 21, 2020 [15] 829 298 75 + NS
Sensitivity:86.70
Specificity:99.30

1

April 21, 2020 [78] 1044 349 50 + 50

Accuracy:86.00
Sensitivity:94.00
Specificity:94.00
AUC:93.00

3

April 21, 2020 [16] 100 60 40 + N/A
Accuracy:83.62
Sensitivity:97.42

3

April 24, 2020 [79] 1065 340 N/A + 290
Accuracy:89.50
Sensitivity: 87.00
Specificity:88.00

77

April 24, 2020 [53] 783 251 108 + 80
Accuracy:83.00
Sensitivity:85.00
Specificity:81.73

2

May 07, 2020 [80] 2522 1196 299 +5 fold

Accuracy:97.79
Sensitivity:93.05
Specificity:89.95
AUC:96.35

1

May 21, 2020 [17] 130 NS NS + NS
Sensitivity:72.50
Specificity:96.00

10

May 28, 2020 [81] 746 178 95 + 76

Accuracy:99.40
Sensitivity:100.00
Specificity:98.60
AUC:99.65

0

June 02, 2020 [10] 4260 751 NS + NS
Sensitivity:90.19
Specificity:95.76
AUC:97.17

12

June 17, 2020 [82] 812 349 N/A + N/A
Accuracy:79.50
AUC:90.10

35
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Publication Image Training
Testing+
Validation

Result(%) Citation

Total = 30

Average
Accuracy: 90.69
Sensitivity:91.48
Specificity:92.26
AUC: 94.46

A summary of the results obtained by the studied models using X-Ray im-
ages is illustrated in Table 11. Papers with their Accuracy, AUC, Sensitivity,
and Specificity are given along with their distribution of COVID-19 images
in training, testing, and validation set. It can also be seen that X-Ray image-
based models gained a minimum accuracy of 89.82% for the paper [19] and
maximum accuracy of 99.94% for the paper [13]. For both Table 10 and Table
11, the publication date, the total number of images used by the respective pa-
pers is provided. Also, cited by (Number of papers) indicates the total number
of papers that have cited the specific paper up to July 10, 2020.

Table 11: Summary of result evaluation for X-Ray images

Publication Image Training
Testing+
Validation

Result(%) Citation

March 24, 2020 [59] 50 10 5 + 10

Accuracy: 90.00
Sensitivity:100.00
Precision:100.00
F1 Score: 91.0
AUC:90.00

38

March 24, 2020 [24] 100 40 10 + 8

Accuracy:98.00
Sensitivity:96.00
Specificity:100.00
Precision:100.00
F1 Score:98.00

93

March 25, 2020 [25] 1427 202 22 + N/A
Accuracy:96.78
Sensitivity:98.66
Specificity:96.46

86

March 27, 2020 [26] 1531 70 30 + N/A
Accuracy:96.00
AUC:95.18

35

March 27, 2020 [19] 5941 54 14 + N/A Accuracy:89.82 19
March 29, 2020 [46] 3487 304 85 +34 Accuracy:99.94 25

March 30, 2020 [27] 40 N/A N/A + N/A
Accuracy:97.48
Sensitivity: 95.27
Specificity:99.70

5

March 31, 2020 [28] 170 120 50 + N/A
Accuracy:98.00
Sensitivity:100.00
Specificity:96.00

11

March 31, 2020 [47] 13975 N/A N/A + N/A
Accuracy:96.23
Precision:100.00
F1 Score:100.00

25

April 01, 2020 [51] 3905 409 46 + N/A
Accuracy:99.18
Sensitivity:97.36
Specificity:99.42

9

April 02, 2020 [54] 5863 N/A N/A + N/A

Accuracy:99.00
Precision:98.97
Sensitivity:98.97
F1 Score:98.97

9

April 09, 2020 [83] 16995 181 78 + N/A
Accuracy:91.60
Sensitivity:92.45
Specificity:96.12

6
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Publication Image Training
Testing+
Validation

Result(%) Citation

April 09, 2020 [29] 414 146 31 + 30 Accuracy:98.00 1
April 10, 2020 [13] 5216 NS NS + NS Accuracy:94.52 2

April 13, 2020 [30] 455 102 33 + 36
Accuracy:91.24
AUC:94.00

12

April 13, 2020 [84] 537 125 36 + 18
Accuracy:93.5
AUC:94.00

6

April 14, 2020 [31] 1300 N/A N/A + N/A
Accuracy:89.60
Precision:93.00
Sensitivity:98.20

8

April 16, 2020 [62] 16700 286 27 + N/A
Accuracy:99.01
AUC:99.72

4

April 16, 2020 [55] 864 70 50 + N/A

Accuracy:95.70
Sensitivity:90.00
Specificity:95.80
AUC:97.00

19

April 17,2020 [32] 15085 149 31 + N/A
Accuracy:99.56
Sensitivity:80.53

3

April 20,2020 [85] 5071 31 40 + N/A
Sensitivity:97.50
Specificity:95.00
AUC:99.60

8

April 22,2020 [20] 381 NS NS + NS
Accuracy:95.33
Sensitivity:95.33
F1 Score:95.34

43

April 22,2020 [56] 274 137 NS + N/A Accuracy:99.00 3
April 24,2020 [33] 109203 180 45 + N/A Accuracy:95.30 1
April 28,2020 [34] 13800 152 31 + N/A Accuracy:93.90 5
April 30,2020 [35] 59937 89 35 + 43 AUC:88.04 2

April 30,2020 [36] 11663 258 60 + N/A

Precision:98.15
Sensitivity:88.33
AUC:98.50
F1 Score:92.98

1

April 30,2020 [86] 15111 175 20 +20 Accuracy:89.40 0
May 01,2020 [37] 6297 105 10 + 10 Accuracy:97.10 1

May 05,2020 [38] 502 126 36 + 18
Accuracy:88.90
Specificity:96.40
F1 Score:84.40

9

May 06,2020 [50] 1144 63 27 + N/A F1 Score: 89.60 8

May 08,2020 [87] 6286 370 92 + 5-fold
Accuracy:95.90
Sensitivity:98.50
Specificity:95.70

3

May 11,2020 [48] 13975 258 100 + N/A
Accuracy:93.30
Sensitivity:91.00
F1 Score:98.90

128

May 17,2020 [65] 196 74 31 + N/A Accuracy:95.12 18
May 21,2020 [21] 2239 191 48 + N/A Accuracy:97.01 4
May 23,2020 [66] 701 270 85 + 68 Accuracy:97.73 0

June 07,20[88] 5824 4659 1165 + N/A
Accuracy:99.49
Sensitivity:99.43
Specificity:99.81

0

June 18,2020 [39] 30099 88 11 + N/A
Accuracy:98.00
AUC:99.00

2

June 16,2020 [40] 15282 286 100 + N/A Accuracy:98.06 0

June 23,2020 [67] 51960 736 314 + N/A
Accuracy:97.54
Sensitivity:97.88
Specificity:97.15

0

June 23,2020 [68] 2071 350 150 + N/A Accuracy:98.90 0
June 11, 2020 [89] 8474 7626 848 + N/A Accuracy:98.60 0

June 18, 2020 [22] 3300 247 62 + N/A
Sensitivity:100.00
Specificity:99.50

0

May June [45] 50 20 5 + N/A
Accuracy:91.00
Sensitivity:100.00
Specificity:80.00

0
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Publication Image Training
Testing+
Validation

Result(%) Citation

June 19,2020 [41] 1312 228 65 + 33
Accuracy:97.40
Sensitivity:85.15
Specificity:99.05

0

June 09,2020 [57] 6523 N/A N/A + N/A
Accuracy:98.00
Sensitivity:96.00
Specificity:98.00

0

June 20,2020 [63] 305 N/A N/A + N/A Accuracy:97.40 0
June 18,2020 [49] 35500 7340 7340 + 500 Accuracy:98.00 0

June 09,2020 [42] 1262 100 54 + N/A
Sensitivity:90.74
Specificity:95.57

1

June 10,2020 [43] 1302 142 94 + N/A
Precision:88.90
Sensitivity: 85.10

0

June 02,2020 [58] 754 302 75 + 5 fold Accuracy:97.37 0

June 08,2020 [44] 1419 106 26 + k fold
Accuracy:98.94
Sensitivity:96.00

0

Total = 52

Average
Accuracy:96.00
Sensitivity:91.09
Specificity:96.45
AUC:95.50

Comparing Table 10 and Table 11, it can be said that the X-Ray image-
based models performed better than the CT image-based models. The average
Accuracy, Sensitivity, Specificity, and AUC for CT Image-based models are
90.69 %, 91.48%, 92.26%, and 94.46% respectively and for X-Ray based models
are 96.00%, 91.09%, 96.45%, and 95.50% respectively.

4 Conclusion

As COVID-19 is spreading worldwide expeditiously, accurate and faster de-
tection of the disease has become the most essential objective to defend this
outbreak. In this article, we tried to present a comprehensive survey of AI-
empowered methods that use medical images to combat this pandemic. The
fundamental purpose of this survey is to represent the current information
so that researchers understand and aware of the up-to-date knowledge and
build a model that can accurately detect COVID-19 disease at an economi-
cal cost and relatively faster in time. We surveyed a total of 80 COVID-19
diagnosis architectures among which 28 are using CT images, 50 are using
X-Ray images and 2 are using both CT and X-Ray images. Till now none of
these models are proved to be as reliable to replace RT-PCR tests and still,
researchers are trying to improve these techniques. From our survey, it is no-
ticeable that the X-Ray image dataset is more widely available than the CT
Image dataset as a CT scan procedure is costlier and more time-consuming
than an X-Ray. So, most of the researchers utilized Chest X-ray images for
diagnosing COVID-19. After analyzing the existing research works in this do-
main, we find out that there exists a shortage of annotated medical images
of COVID-19 affected people. Enriching quality annotated medical images of
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COVID-19 affected people can play a significant role to boost up the per-
formance of the mentioned data-hungry models. Furthermore, we remarked
that using segmentation as preprocessing has an extensive impact on model
performance. We also observed that domain adoption in transfer learning is
the widely used technique which gives a promising result. Furthermore, many
researchers used Gradient-weighted Class Activation Mapping (Grad-CAM)
with heatmap to interpret the performance of the model. Though this survey
paper cannot claim to be an in-depth think about those studies, it presents a
practical outlook and shows a valid comparison of the researches in this field
over these months which can be the conductor for the researcher to find future
direction.
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