
For Peer Review

Method for stereotactic biopsy guidance based on analysis 
of OCT images in two polarization channels

Journal: Journal of Biophotonics

Manuscript ID Draft

Wiley - Manuscript type: Full Article

Date Submitted by the 
Author: n/a

Complete List of Authors: Moiseev, Alexander; Institute of Applied Physics RAS, 

Keywords:  

 

Wiley - VCH

Journal of Biophotonics



For Peer Review

Journal header will be provided by the publisher

Copyright line will be provided by the publisher

Method for stereotactic biopsy guidance based on 

analysis of OCT images in two polarization channels

Alexander A. Moiseev*,1, Elena B. Kiseleva2, Konstantin S. Yashin2, Sergey S. Kuznetsov2, Grigory V. Gelikonov1, Igor. 
А. Medyanik2, Leonid Ya. Kravets2, Elena V. Zagaynova2, Ludmila B. Snopova2, and Natalia D. Gladkova2

1Institute of Applied Physics Russian Academy of Sciences, 603950 Ulyanova St., 46, Nizhny Novgorod, Russia
2 Privolzhskiy Research Medical University, 603950 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
* Corresponding author: e-mail: aleksandr.moiseev@gmail.com, Phone: +7 9308000038

Received zzz, revised zzz, accepted zzz
Published online zzz

Key words: Cross-polarization optical coherence tomography (CP OCT), image processing, biopsy guidance

The study aimed to create a machine learning method for 
differentiating diagnostically valued tumorous tissue from 
diagnostically “non-valued” non-tumorous tissues in the 
human brain, using cross-polarization optical coherence 
tomography (CP OCT) in order to provide guidance for 
stereotactic biopsies. A method of feature extraction from 
OCT data in two orthogonal polarization channels has 
been proposed and a classification algorithm for the 
resulting feature vectors has been created. If used for 
stereotactic biopsy guidance, the proposed approach could 
decrease the number of excised diagnostically non-valued 
samples and minimize the invasiveness of the procedure 
and the risk of excessive bleeding.

Visualization of feature vector formation process from 
OCT cross-sectional images in two polarization channels.

1.  Introduction

Gliomas are the most common tumors (34 %) of the 
central nervous system [1, 2], but there has been little 
progress in the survival rate of the patients despite 
substantial advances in medical treatment [3, 4]. These 
kinds of tumor can be characterized by aggressive 
infiltrative growth into the surrounding brain tissues 
and thereby the absence of clear boundaries between 
the cancer and non-cancer tissues, which makes it 
difficult to distinguish them during surgery in order to 
minimize the required extent of tumor resection. The 

introduction of intraoperative fluorescence diagnostics 
into clinical practice allows a significant enhancement 
of the ability to identify any remaining tumor, thereby 
increasing the survival rate [5-9]. Also, clinical testing 
of fluorescence techniques [10-12] has demonstrated 
the limitations of using only white light microscopy for 
achieving total tumor resection, and the requirement 
for using additional technologies for detecting the 
“cancer/non-cancer” dividing line. 
In the case of wide-spreading gliomas, a stereotactic 
biopsy to verify the histopathological diagnosis is 
needed. During this procedure there is a risk of 
acquisition of non-diagnostic samples from outside the 
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viable tumor volume (such as necrotic/gliotic tissue or 
normal white matter), a situation that has been reported 
in up to 24% of stereotactic biopsy series[13-15]. It 
leads to repeated neurosurgical intervention. 
Therefore, intratumoral serial biopsies [16, 17] and 
intraoperative neuropathological assessments [15, 16, 
18] are commonly applied to improve the diagnostic 
yield and accuracy of stereotactic biopsies. These 
techniques, however, have major drawbacks: (1) 
intraoperative neuropathological assessment is time-
consuming, costly, and not always available [15, 19, 
20]; (2) the acquisition of serial biopsies is associated 
with an increased risk of intracranial hemorrhages; 
these have been reported in 0.3–59.8% of cases [14, 
21, 22] contribute considerably to the reported 
morbidity up to 16.1% [15, 16, 23, 24] and mortality 
up to 3.9% [14, 15, 23, 24]. Therefore, the 
development of a method to determine both the 
presence of the blood vessels and the presence of 
tumor tissue in the area of sampling is needed. 
Advanced optical bioimaging techniques seem to be 
the most promising in the furtherance of these goals 
[25, 26]. One of the best-developed methods for 
neurological surgical guidance is optical coherence 
tomography (OCT)[27, 28], which is based on low-
coherence interferometry in the near IR range of 
wavelengths (700–1,300 nm) and allows images of 
tissue microstructure to be obtained in real-time and 
with micron resolution at depths of 1–2 mm[29]. This 
also looks promising for more precise detection of 
blood vessels. It can be considered as a method of 
optical biopsy. This method has been using in clinical 
practice over recent years, particularly in 
ophthalmology, endovascular surgery, dermatology, 
and gastroenterology. 
A number of ex vivo and in vivo studies on 
experimental tumor models, ex vivo biopsy specimens 
and in patients with gliomas have shown good results 
from OCT, enabling cancer and non-cancer tissue to be 
distinguished by qualitative (visual) [30, 31] and 
quantitative[32-34] assessment of the OCT data. 
Promising preclinical results have stimulated the 
development of OCT scanning systems for 
microsurgical guidance, such as OCT handled 
probes[32, 35] or microscope-integrated OCT[36, 37]. 
The OCT systems that have been approved provide 
only a visual assessment of OCT scans, and there is a 
paucity of studies aimed at defining the visual OCT 
criteria. Recently we have attempted this for cross-
polarization OCT (CP OCT). CP OCT[38, 39] is a 
variant of polarization-sensitive OCT (PS-OCT) that is 
based on the birefringence of the medium and provides 
better visualization of elongated structures – those that 
have significant longitudinal dimensions (e.g. 
myelinated nerve fibers). Some advantages of PS-OCT 
have been shown for the visualization of white matter 
tracts when compared to the use of traditional OCT[40, 
41].

2.  Materials and Methods 

2.1 OCT setup

The current study was performed with a high-speed 
OCT device with cross-polarization detection, 
developed at the Institute of Applied Physics of the 
Russian Academy of Sciences (Nizhny Novgorod, 
Russia)[42]. The device operates at a central 
wavelength of 1.3 µm with axial and lateral resolutions 
10 µm and 15 µm in air, respectively. The probing 
beam has circular polarization. The device uses a 
20,000 А-scans/s scanning rate and performs 2D 
lateral scanning across an area of 2.4x2.4 mm to obtain 
the 3D distribution of backscattered light in 
polarizations parallel and orthogonal to the 
polarization of the probing beam (co- and cross-
polarization images, respectively). Scanning was 
performed in contactless mode.

2.2 Sample acquisition

The ex vivo specimens of different tissue types were 
obtained during tumor resection from 10 patients with 
gliomas of different degrees of malignancy.
The surgical approach to tumor resection was 
performed using a frameless navigation system with 
uploaded functional MRI data and intraoperative 
neurophysiological monitoring (as well “awake” 
surgery) for the preservation of the motor and speech 
eloquent brain areas and white matter tracts. Along the 
trajectory of the surgical approach, non-tumorous 
tissue of the peritumoral area, which routinely is 
subject to coagulation, was accurately marked and 
removed. Also, during resection of the tumorous 
tissue, specimens were taken from different parts of 
the tumor. Each sample was at least 5x5x5 mm. All 
taken specimens were placed in cotton wool, 
moistened with saline solution, and sent for OCT 
scanning within 2 hours. One OCT volume scan was 
taken from each sample for the present study. After the 
surgery no deterioration in the condition of the patients 
compared to the preoperative stage was observed. The 
study was approved by the Ethical Committee of the 
Privolzhskiy Federal Research Medical Centre of the 
Ministry of Health of the Russian Federation, and 
informed consent of the patients was obtained.
After imaging the specimen, the scanned area was 
marked with histological ink, then the specimen was 
fixed in 10% formalin for 48 hours and re-sectioned 
through the marked area so that the plane of the 
histological sections coincided en-face with the CP 
OCT images. The histological slides were viewed and 
photographed with a microscope equipped with a 
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digital camera (Leica DM 2500, DFC 245C) in 
transmitted light. Two histopathologists independently 
evaluated the pathological slides stained with H&E. 
The diagnoses coincided in 98% of cases. 
According to the objective of the stereotactic biopsy 
procedure, and the necessity for obtaining 
diagnostically valued samples all the obtained tissue 
samples were classified into two groups: (1) non-
tumorous (diagnostically non-valued) tissue including 
white matter (11 samples), cortex (grey matter) (16 
samples) and necrotic tissue (19 samples); (2) 
tumorous tissue (diagnostically valued)  including 
astrocytoma Grade II-III (28 samples), glioblastoma 
Grade IV with necrosis (28 samples) and glioblastoma 
Grade IV without necrosis (16 samples).

2.3 Algorithm for classification of the B-scans

The main goal of the proposed method was to 
distinguish between samples with tumorous tissue, 
which can provide viable histological information, and 
samples, which are of little value for diagnosis (white 
matter, cortex and areas of necrosis). For that purpose, 
all the collected samples were divided into three 
groups: the first one (to train the algorithm), consisted 
of 5 white matter samples, 7 grey matter samples, 9 
necrotic tissue samples, 13 astrocytoma samples, 13 
glioblastoma Grade IV with necrosis samples and 7 
glioblastoma Grade IV without necrosis samples. The 
second one, consisted of two samples of each type, in 
order to validate the algorithm performance and for 
optimization of the algorithm hyperparameters. The 
remaining samples were used to test the performance 
of the resulting algorithm. For each entry, scattering 
profiles (A-scans) from the surface to a depth of 1 mm 
were analyzed. The cross-sectional OCT images in 
both polarization channels were stacked together to 
form a single vector of 280 values corresponding to the 
scattering intensity at each of the visualized depths in 
the initial polarization (first 140 values) and in the 
orthogonal polarization (last 140 values). Each B-scan 
was characterized by its averaged scattering profile (A-
scan) and the variability of the A-scans across the B-
scan. To characterize an individual averaged B-scan, it 
was decomposed into seven orthogonal sets of 
functions. Each orthogonal basis was obtained using 
principal component analysis (PCA) from seven 
different subsets of the training data: the first from all 
the available B-scans, the other six from the B-scans of 
each identified morphological subtype. For 
dimensionality reduction and to decrease the influence 
of noise, only the first 8 principal components were 
retained from each basis, thus each averaged B-scan 
was characterized using 7x8 = 52 rather than 2x140 = 
280 values.

To evaluate the A-scan variability across the B-scan, 
each A-scan of the B-scan was also decomposed into 
the same 7 orthogonal sets of 8 vectors each and the 
variance of every coefficient across the B-scan was 
used to generate 52 additional values for the 
classification vector. Thus, each data entry consisting 
of two B-scans of 256x140 pixels in two polarization 
channels was represented using 104 values, 
characterizing he average scattering profile and the 
scattering profile variability across the B-scans. Based 
on these 104-features vectors, a random forest 
classifier was trained that could distinguish all 6 
investigated tumor morphology types from each other. 
A Python Scikit-learn package realization of the 
Random Forest Classification was used with 100 
individual estimators. For each entry, an outcome of 
the algorithm was six values from 0 to 1, which 
represent the ranking of the probability of the sample 
being of a particular morphological type, i.e. the entry 
is more likely to be of the type with the highest 
algorithm output. The summation of the three values 
for the tumor grade provide an overall value for 
making a decision on whether a biopsy should be taken 
from the imaged location. A schematic representation 
of the proposed data processing is presented in Figure 
1.
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Figure 1  Figure 1  Schematic representation of the data 
processing. Panel a – formation of sets of basis vectors from 
the training dataset. Note that the diagnostically non-valued 
tissues were split into two categories “norm” data (white and 
grey matter) and “necrosis”; the “tumor tissue” data was split 
into three diagnostically valued categories (astrocytomas and 
gliomas of different grades). Panel b – feature vector 
formation from the pair of B-scans in two orthogonal 
polarizations from the validation dataset.

3.  Results and discussion

Examples of OCT images from the dataset as well as 
the corresponding histology images are presented in 
figure 2.
Visual assessment of the CP OCT images shows that 
only the white matter images can be easily 
distinguished from the images of other types of brain 
tissue because of their high scattering that results in 
high-intensity images. This difference is especially 
profound in the cross-polarization channel. The 
features of scattering from the other types of tissue are 
much closer to each other and for the pathological 
tissues (tumorous and necrotic) can fluctuate across a 
wide range, making it more difficult for the user to 
distinguish between them. The characteristic feature of 
the tumorous tissue as described previously [31] is the 
scattering variability across the B-scan, which can be 
seen as the variability in the penetration depths, or as 
inclusions in the bulk of the tissue, however, this 
feature is not always clearly visible in the images of 
tumorous tissue. Another characteristic of tumorous 
tissue is its generally lower scattering in cross-
polarization, which could be explained by the lack of 
structure in such tumorous tissue, however, this 
characteristic is also subtle in some cases and requires 
a significant level of experience of the user.

Figure 2 a - Examples of the images of 6 different types of 
brain tissue used in the study in co- (image 1 in each panel) 
and cross- (image 2 in each panel) polarizations, as well as 
the corresponding histology (image 3 in each panel). Panel a 
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– white matter, panel b – cortex, panel c – necrosis (all non-
tumorous, diagnostically non-valued tissues); panel d – 
tumor Grade II, panel e – tumor grade IV with necrosis, 
panel f – tumor grade IV without necrosis (all tumorous, 
diagnostically valued tissues). Each scale bar represents 0.5 
mm.

Therefore, in some cases the CP OCT signals of 
diagnostically valued and of non-valued tissue samples 
are similar: grey matter vs. tumor tissue without 
necrosis; white matter and necrosis vs. tumor tissue 
with necrotic areas. In these cases, visual assessment 
could be difficult and lead to misclassification which 
would reduce its value for biopsy guidance.
 The limitation of visual assessment is its subjectivity, 
so the accuracy of such an assessment depends on the 
skills of the neurosurgeon in the practical application 
of these criteria. It is therefore necessary to make the 
qualitative evaluation of CP OCT signal more 
objective. The aim of this study was to improve the 
visual assessment of cross-section CP OCT images (B-
scans) by applying machine learning algorithms.
In the case of the algorithm for stereotactic biopsy a 
“positive” outcome of the algorithm corresponds to the 
detection of tumorous tissue. In this case, the algorithm 
parameters should be adjusted to minimize the number 
of false-positive evaluations even at the cost of an 
increasing number of false-negative evaluations, since 
false positives will lead to the acquisition of 
diagnostically non-valued samples, while false 
negative will lead to a further search for a better site 
for the biopsy.
The performance of the proposed algorithm was 
accessed using the area under the receiver-operation 
characteristic curve (ROC-curve) value and was equal 
to 0.93. As seen from figure 3, the value of the 
threshold that provides the highest diagnostic accuracy 
(DA = 0.85) corresponds to a false positive range 
(FPR) equal to 0.26, which is almost equal to the FPR 
of current stereotactic biopsy guidance methods. 
However by appropriate threshold choice the FPR can 
be reduced with the sacrifice of true positive rate 
(TPR) and DA. E.g. FPR < 0.05 can be achieved with 
a TPR ~ 0.72 and DA ~ 0.8, while FPR < 0.01 can be 
achieved with a TPR ~ 0.45 and DA ~ 0.66. These 
values are more suitable for biopsy guidance since, in 
this scenario, the cost of the false-positive evaluation is 
much higher than that of a false-negative as it leads to 
a second surgical intervention.
Several limitations of the study, which should be 
overcome in future work must be outlined. Firstly, the 
study was performed on ex vivo samples, thus the 
effect of vessels and shadow artifacts from such 
vessels on the performance of the algorithm is 
unknown. It is obvious, that the presence of vessels 
will affect both the average A-scans and the variability 
of the A-scans. The most straightforward way to 

overcome this influence is to exclude A-scans with 
vessels from the analysis, but the effectiveness of such 
processing would need to be investigated. In addition, 
it should be noted that the detection of vessels is a 
separate, important task, which can be accomplished 
with OCT assistance, since damaging the vessels and 
causing hemorrhage is one of the main risks of 
stereotactic biopsy.
Secondly, the study was performed on a limited 
number of patients, thus the current algorithm may not 
account for all the individual features of brain tissue 
from patient to patient, does not span all the potential 
variability of tumorous tissues, does not include 
tumorous tissue of some etiologies (e.g. metastasis 
from other tumors), and does not include the grey 
matter of the basal ganglia, which may differ in its 
optical properties and appearance in OCT images from 
the grey matter of the cortex. The addition of all the 
aforementioned tissue types will affect the overall 
algorithm performance results. However, the current 
small sample study shows the potential of the 
approach, while the aforementioned drawback should 
be overcome with the collection of more samples from 
a greater number of patients, thus making the 
algorithm more reliable.
Thirdly, an OCT device used for stereotactic biopsy 
guidance should have a scanner compatible with 
standard biopsy equipment such as a biopsy needle, so 
that it is possible to operate in the canal used for the 
biopsy. Such a device is under development in our 
laboratory. The performance of the classification 
algorithm will be tested for images from the new 
device since it could be sensitive to some individual 
parameters such as the device point spread function. 
However, we believe that even if the algorithm 
performance may decrease, the developed approach 
allows it to be adapted to the parameters of particular 
devices.

Figure 3 ROC-curve for classification to distinguish 
between tumorous and non-tumorous tissues for biopsy 
guidance, with tumorous tissue being represented by 
positive results. The dots on the curve represent 
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possible choices of the threshold value of the algorithm 
output (pth) and the corresponding diagnostic accuracy 
(DA) and false positive rate (FPR) values.

4.  Conclusion

A method for classification to distinguish between 
tumorous and non-tumorous brain tissues, based on 
quantitative analysis of CP OCT images has been 
proposed. This approach is a promising way for brain 
tumor stereotactic biopsy guiding using OCT. Due to 
the possibility of generating low false-positive rates in 
determining tumorous from non-tumorous tissue, the 
use of the proposed method can decrease the number 
of diagnostically non-valued samples and minimize the 
risk of causing unnecessary bleeding. This approach 
also could be extended to different clinical tasks, such 
as surgical guidance during malignant brain tumor 
resection.
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Text: The study aimed to create a machine learning method 
for differentiating diagnostically valued tumorous tissue 
from diagnostically “non-valued” non-tumorous tissues in 
the human brain, using cross-polarization optical coherence 
tomography (CP OCT) in order to provide guidance for 
stereotactic biopsies. A method of feature extraction from 
OCT data in two orthogonal polarization channels has been 
proposed and a classification algorithm for the resulting 
feature vectors has been created. If used for stereotactic 
biopsy guidance, the proposed approach could decrease the 
number of excised diagnostically non-valued samples and 
minimize the invasiveness of the procedure and the risk of 
excessive bleeding

Image:.
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