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Abstract

Optical beam center position on an array of detectors is an important parameter that
is essential for estimating the angle-of-arrival of the incoming signal beam. In this paper,
we have examined the beam position estimation problem for photon-counting detector
arrays, and to this end, we have derived and analyzed the Cramér-Rao Lower Bounds
on the mean-square error of the unbiased estimators of the beam position. Furthermore,
we have also derived the CRLB of other beam parameters such as peak intensity, and
the intensity of background radiation on the array. In this sense, we have considered a
robust estimation of the beam position in which none of the parameters are assumed
to be known beforehand. Additionally, we have derived the Cramér-Rao Lower Bounds
of beam parameters for observations based on both pilot and data symbols of a pulse
position modulation (PPM) scheme. Finally, we have considered a two-step estimation
problem in which the peak intensity and background radiation are estimated using a
method of moments estimator, and the beam center position is estimated with the help
of a maximum likelihood estimator.

I. Introduction
Free-Space Optical (FSO) Communications has typically been employed in deep-space
communications due to the low divergence of optical beam that can help transmit data
over much longer distances. However, the urgent need to provide connectivity to almost
4 billion people who currently do not have internet access has prompted the integration
of FSO and millimeter wave/Terahertz communications in the backhaul of 6G wireless
communication systems. Thus, FSO/millimeter/Terahertz wave links will be deployed in
an integrated network of satellites, drones, high altitude platform and balloons that will
form the backhaul of the next generation of wireless communications. In this regard, FSO
is an emerging candidate for future communications due to its ability to support high data
rates.

However, the problem of pointing, acquisition and tracking is significant in the FSO (as well
as millimeter/Terahertz systems) domain because of the narrow beam widths associated
with the optical signal. Acquisition is the process in which the two terminals acquire the
initial location of each other before the actual data communication begins. However, after
the acquisition is achieved, the system still needs to maintain the alignment between the
transmitter and receiver assemblies due to physical factors such as random effects associated
with atmospheric turbulence, the mechanical jitter introduced in the transmitter/receiver
assemblies due to outside disturbances, or building sways due to wind vibrations. This
misalignment leads to a loss of received signal energy at the receiver that may increase
the outage probability. Additionally, it goes without saying that the beam needs to be
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tracked/aligned for mobile platforms since the angle-of-arrival changes continuously due to
relative motion.

In this paper, we consider the optical beam position estimation problem for a deep space
optical communication system that employs multiple photon-counting detectors (array of
detectors or a focal plane array) instead of one large (monolithic) detector at the receiver.
Photon-counting detector arrays are typically used in deep space optical communications
because of their ability to detect very low levels of received light (a few signal photons) (1).
Any changes in the angle-of-arrival of the beam on the receive aperture leads to a shift of
the center of the focused beam on the focal plane array. Hence, the problem of estimating
the angle-of-arrival is reduced to estimating the beam center deviation on the array. The
deviation between the beam center and the array center (a measure of misalignment)
is measured with a beam position estimation algorithm, and the misalignment may be
corrected by orienting the receiver telescope in the direction of the incoming beam.

We further want to point out the advantage obtained with an array of detectors: It can be
used for symbol detection as well as for estimating the beam position. Thus, the proposed
system is more efficient in terms of energy since no portion of the received energy has to
be diverted to a separate tracking assembly1, and all the received energy can be used for
detection of the transmitted symbol. However, a disadvantage associated with an array
of detectors is the higher computational/hardware complexity as compared to a single
detector. The complexity scales as O(M) where M is the number of detectors in the
array.

II. Literature Review and Contributions/Organization of This Paper
A. Background Literature Review
There is a significant number of studies carried out on research in pointing, acquisition and
tracking (PAT) systems in FSO that treat the tracking problem purely from a hardware
point-of-view. In this respect, (2) provides a detailed overview of the current state-of-the-art
hardware solutions for tracking the optical beam. Thus, we will cover the literature review
from the theoretical/signal processing perspective since such a perspective is more relevant
to our study in this paper.

The authors in (3) and (4) have discussed the performance of a proposed feedback (beam)
tracking loop that acts on the error signal provided by a quadrant photodetector in the
receiver assembly. The work in (4) actually builds on the study presented in (3) by carrying
out the stability analysis of their proposed cooperative feedback loop. The authors in (5)
present the performance analysis of centroid and maximum likelihood estimators of beam
position for a “continuous”2 array. Regarding the literature that covers communications
with detector arrays in free-space optics, the authors in (6) propose beam position estima-
tion algorithms and examine their mean-square error performance with simulations. The
work in (7) extends the work in (6) by introducing Bayesian filtering algorithms, such as
Kalman and particle filters, for tracking the time-varying beam position. The authors in
(8) inspect the relationship between the probability of error and the estimation of beam
position on the detector array, and using an argument based on Chernoff Bounds, they
show that precise estimation of beam center on the array is necessary in order to minimize
the probability of error. Additionally, the author in (9) presents a mathematical argument
to show that the probability of error decreases monotonically as the number of detectors in

1Typically, a quadrant photodetector is employed in the tracking assembly in order to track the beam
position.

2A continuous array is obtained if the number of detectors in the array goes to infinity while keeping the
array area finite. In other words, we have perfect information about the location of each photodetection
in the array. Thus, the continuous arrays lead to an optimal mean-square error performance.
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the array is increased. Furthermore, the authors in (10) analyze the acquisition performance
of an FSO system that employs an array of detectors at the receiver. Finally, the authors
in (11) consider time synchronization schemes based on an array of detectors.

Furthermore, we also briefly discuss the literature on pointing and tracking in FSO systems
that examine the tracking problem from the perspective of a single detector. In this regard,
(12) develops the pointing error statistics for a circularly shaped detector and a Gaussian
beam, and the outage capacity is optimized as a function of beam radius. The authors in
(13) investigate a slightly different optimization problem concerning pointing: They have
considered the maximization of link availability as a function of beam radius (for fixed signal
power). Additionally, they also explore the minimization of transmitted power by tuning
to the optimal beam radius under the constraint of a fixed link availability. In addition to
these papers, the interested reader may be directed to (14; 15; 16; 17) for a detailed study
on the performance of FSO systems when the optical channel suffers degradation due to
pointing errors for a single detector receiver.

Readers who might be interested in deep space optical communications with photon-counting
detector arrays are referred to (18; 19; 20; 21; 22).

B. Contributions of This Paper
Even though the authors in (6) have proposed beam position estimation algorithms with
an array of detectors, they have not considered the derivation of the Cramér-Rao Lower
Bounds on the variance of unbiased estimators. We believe that an understanding of the
Cramér-Rao Bounds of beam position and other parameters is an important problem as
these bounds will give us important insights into the behavior of estimators under different
channel conditions. Additionally, beam parameters other than the beam position—such as
the peak intensity, the beam radius and the background radiation level3—are assumed by
these authors as known quantities in their derivation of estimators. However, even though
the beam radius on the focal plane array may be considered constant, the peak intensity and
the background radiation intensity may change significantly with time, and they have to
be estimated in real-time in order to improve the performance of beam position estimators.
Additionally, it goes without saying that a knowledge of peak intensity and background
noise is important for allocating power in different channels of a multiple-input-multiple-
output (MIMO), or a multiple-input-single-output (MISO), FSO communication system as
these two quantities specify the signal-to-noise ratio of the channel (23).

In this study, we have derived and analyzed the Cramér-Rao Lower Bounds of the beam
position estimators for an array of detectors. The estimation problem discussed in this paper
is robust since we also estimate the signal intensity as well as background radiation/noise
power levels. In this regard, Cramér Rao Lower Bounds are derived for the beam position,
peak intensity and noise intensity for various scenarios. Moreover, two types of observations
are considered in this estimation problem: i) observations based on pilot symbols and ii)
observations based on data symbols. Using energy of the signal based on data symbols for
our estimation problem leads to a more bandwidth/energy efficient scheme. However, as
we will see later in this study, the estimation performance (in terms of mean-square error)
corresponding to data symbols suffers more at poorer signal-to-noise ratio as compared to
the pilot symbols.

For observations based on data symbols, we additionally consider two different observation
intervals for estimation: i) a pulse position modulation symbol period, or, ii) the PPM slot
period containing the signal. The estimation based on the slot period assumes that the

3Even though the background radiation is not strictly related to the beam, we loosely term it as another
beam parameter.
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signal pulse is present in the slot. If this assumption is true, the signal-to-noise ratio in
the slot is much higher (as much as K times) than the signal-to-noise ratio in one K-PPM
symbol period. This high signal-to-noise ratio leads to a better estimation performance.
However, if the receiver makes an error, we use the “noise only” slot as our observation
which results in a severe degradation in estimation performance. We discuss these ideas in
more detail in Section V.

C. Model Assumptions
The major assumption regarding beam position estimation with detector arrays is that the
array area is large enough so that the beam footprint is smaller than the footprint of the
array. This assumption is required in order to avoid any outage in the received signal in
case the beam wanders within the bounds of the array. Furthermore, a large array area is
also required in order to track the movement of the beam and align it—perhaps through a
fast steering mirror (FSM) assembly—to the center of the array.

Secondly, all arrays are assumed to be of a square shape and each detector in the array is
also assumed to be of a square shape as well.

Finally, the focus of this study is on non-Bayesian estimation techniques for beam position
estimation. This is due to the fact that unless we are certain about the parameters of
the prior random motion model of the beam on the array, we are likely going to incur a
significant loss in performance if there is mismatch in our assumptions and the real world
parameters4 (24).

D. Organization of This Paper
This paper is organized as follows. Section III defines the beam profile and the Poisson
model that governs the occurrence of photodetections5 in the array of detectors. Section IV
discusses the derivation of the Cramér Rao Lower Bound of the beam parameter estimation
problem when pilot symbols are used as an observation. In Section V, we derive the Cramér
Rao Bounds for observations based on data symbols. Section VI considers the two-step
estimation (method of moments and maximum likelihood estimators) algorithm to estimate
beam parameters. The simulation results are explained in Section VII and Section VIII
briefly discusses the complexity of the two estimators. The conclusions of this study are
summarized in Section IX.

III. System Model
The received optical signal on the receiver aperture gives rise to photoelectrons or pho-
todetections in each detector of the array due to photoelectric effect. The emission of these
photoelectrons during the signal pulse interval helps us detect transmitted symbols. The
photon count Zm in themth detector or cell of the array—during some specified observation
interval—is modeled as a (Poisson) discrete random variable. Its probability mass function
is characterized by the following expression:

P ({Zm = zm}) =
exp

(
−
∫∫
Am

[λs(x, y) + λn] dx dy
)

(
∫∫
Am

[λs(x, y) + λn] dx dy)zm

zm! , m = 1, . . . ,M,

(1)

4This is especially true if the parameters themselves—such as the covariance matrices of the random
motion model—are time-varying.

5We use the term photodetections and photons alternatively in this paper. A photodetection actually
corresponds to an avalanch of electrons triggered by either an incoming (signal or noise) photon or a
thermal noise electron.
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Symbols Definition
I0 peak beam intensity (average number of photons)
λn noise intensity (average number of noise photons)
ρ beam radius (mm)

(x0, y0) location of the beam center on the array
A region of the detector array
|A| area of the detector array (mm2)
M number of detectors in the array
N number of pilot symbols
Am region of the mth detector in the array
A area of a given detector (mm2)

`(R) length of one side of any square region R (mm)

Table I: List of mathematical symbols

0

1

2

3

4

5

Figure 1: Profile of the incident beam on the detector array.

where λs(x, y) is the scaled beam intensity6 profile on the detector array, λn is the scaled
noise intensity profile, Am is the region of themth detector on the detector array, Z1, Z2, . . . , ZM
are independent Poisson random variables and M is the total number of detectors in the
array. As may have been discerned by the reader, the coordinate (x, y) stands for any point
inside the region of the detector array. Moreover, λn is a constant factor that accounts for
the background radiation and the thermal effects of the detector array (25).

We assume that the airy pattern of the beam on the focal plane array is well-approximated
by a Gaussian function. The received (scaled) signal and noise intensity at the detector
array is given by the expression

λs(x, y) , I0

ρ2 exp
(
−(x− x0)2 − (y − y0)2

2ρ2

)
· 1A(x, y), (2)

where I0/ρ
2 is the peak intensity measured in terms of number of signal photons measured

during an observation interval. Furthermore, λn is also measured in terms of number of
noise photons generated during the same observation interval. The quantity ρ is known as

6The actual signal intensity, λsi , and the actual noise intensity, λni , are both measured in terms of
Joules/mm2/s. However, they are multiplied by the constant ηTs

hc/λ
in order to obtain the intensity λs and

λn for the photon generation model in (1). The constant h is known as the Planck’s constant, and its value
is 6.62607004 × 10−34 m2kg/s. The constant c is the speed of light in vacuum which is about 3 × 108 m/s,
λ is the wavelength of light in meters, η stands for the photoconversion efficiency, and Tp represents signal
pulse duration in seconds.
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Contours of a Gaussian beam

Photodetections

Figure 2: The contours of incident light intensity and the resulting photodetections for a
4×4 detector array. The red crosses represent the locations of signal photodetections during
the observation interval, and the black ones correspond to noise.

the beam radius measured in mm, and (x0, y0) is the center of the Gaussian beam on the
detector array. The function 1A(·) represents the indicator function over some (measurable)
set A, and A is the region of the detector array.

Furthermore, it is a general assumption in the following sections that the center of the array
has the coordinates (0, 0). Additionally, the area of Am is denoted by A since all detectors
are assumed to have an equal area. The area of the detector array is denoted by |A|. The
length of one side of the array is denoted by `(A).

IV. Cramèr-Rao Lower Bounds for Beam Parameter Estimation Based on
Pilot Symbols

In this section, we derive and analyze the Cramér Rao Lower Bounds for the beam pa-
rameter estimation problem based on pilot symbols. The pilot symbol is transmitted as
a known pulse position modulation symbol. For instance, we may transmit only the ‘0’
symbol (signal pulse only in the first slot) of a K-PPM scheme. The observation interval
in this case is the first slot of every pilot symbol.

Let θ ,
[
x0 y0 I0 λn

]ᵀ7. The likeliood function is given by

p(Z|θ) =
M∏
m=1

e−Λm Λzm
m

zm! , (3)

where

Λm ,
∫∫

Am

(
I0

ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 + λn

)
dx dy, (4)

and the random vector Z ,
[
Z1 Z2 · · · ZM

]T
. Let us define the total incident power

on the array Λs ,
∑M
m=1 Λm. Then,

ln p(Z|θ) =
M∑
m=1

zm ln Λm − Λm − ln zm! =
M∑
m=1

(zm ln Λm − ln zm!)− Λs. (5)

7Here, we want to emphasize that the beam radius on the focal plane array is a known quantity that
depends on the focal properties of the aperture lens, and hence does not need to be estimated as such.

6



A. Estimation Based on Pilot Symbols
In this section, we derive Cramér Rao Lower Bounds based on the observations correspond-
ing to pilot symbols.
1) Cramèr-Rao Lower Bound of I0: As a first step in computing the CRLB for any unbiased
estimator Î0, we compute the first partial derivative of (5):

∂ ln p(Z|θ)
∂I0

=
M∑
m=1

Zm
Λm
×
∫∫

Am

1
ρ2 exp

(
−(x− x0)2 + (y − y0)2

2ρ2

)
dx dy, (6)

and then,

∂2 ln p(Z|θ)
∂I2

0
= −

M∑
m=1

Zm
Λ2
m

×
(∫∫

Am

1
ρ2 exp

(
−(x− x0)2 + (y − y0)2

2ρ2

)
dx dy

)2

. (7)

Now, taking the expectation with respect to Zm and taking the negative of the resulting
quantity, we have that

−E
[
∂2 ln p(Z|θ)

∂I2
0

]
=

M∑
m=1

1
Λm
×
(∫∫

Am

1
ρ2 exp

(
−(x− x0)2 + (y − y0)2

2ρ2

)
dx dy

)2

. (8)

2) Cramèr-Rao Lower Bound of λn: In this case, we assume that the background radiation
is estimated at the receiver while the transmitter is turned off (no signal is present at the
receiver). Therefore, in this case, Λm = λnA. Using the same line of argument as used in
the derivation of (8), it can be easily shown that the CRLB for any unbiased estimator λ̂n
for one noise-only slot is given by

−E
[
∂2 ln p(Z|θ)

∂λ2
n

]
=

M∑
m=1

A2

Λm
. (9)

3) Cramèr-Rao Lower Bounds of (x0, y0): The CRLB for x̂0 and ŷ0 is derived in Section A
of the appenidx. The final expressions are produced here as follows:

Var[x̂0] ≥

∑M
m=1

1
Λm

(∫∫
Am

I0
ρ4 (y − y0)e−

(x−x0)2+(y−y0)2

2ρ2 dx dy

)2

Ψ(x0, y0, I0, ρ) , (10)

and

Var[ŷ0] ≥

∑M
m=1

1
Λm

(∫∫
Am

I0
ρ4 (x− x0)e−

(x−x0)2+(y−y0)2

2ρ2 dx dy

)2

Ψ(x0, y0, I0, ρ) , (11)

where Ψ(x0, y0, I0, ρ) is defined in (65).
4) Cramèr-Rao Lower Bounds for Joint Estimation of I0 and (x0, y0): In this section, we
state the Cramér Rao Lower Bounds for the three parameter estimation problem in which
the three beam parameters are x0, y0 and I0

8. We denote the 3 × 3 Fisher Information
Matrix by I(x0, y0, I0). The Cramér Rao Lower Bounds are given by

Var [x̂0] ≥
[
I−1 (x0, y0, I0)

]
1,1

=

 M∑
m=1

1
Λmρ4

(∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 dx dy

)2
 M∑

m=1

I2
0

Λmρ8

(∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 (y − y0) dx dy
)2


8In order to lower the complexity of the estimation problem, we can estimate λn independently of x0, y0
and I0. In this case, all we need to do is to estimate the average number of noise photons by occasionally
turning the transmitter off.
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−
(

M∑
m=1

I0

Λmρ6

∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 dx dy

∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 (y − y0) dx dy
)]
|I (x0, y0, I0)|−1.

(12)

Var [ŷ0] ≥
[
I−1 (x0, y0, I0)

]
2,2

=

 M∑
m=1

1
Λmρ4

(∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 dx dy

)2
 M∑

m=1

I2
0

Λmρ8

(∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0) dx dy
)2


−
(

M∑
m=1

I0

Λmρ6

∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 dx dy

∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0) dx dy
)]
|I (x0, y0, I0)|−1.

(13)

Var
[
Î0
]
≥
[
I−1 (x0, y0, I0)

]
3,3

=

 M∑
m=1

I2
0

Λmρ8

(∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0) dx dy
)2
 M∑

m=1

I2
0

Λmρ8

(∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 (y − y0) dx dy
)2


−
(

M∑
m=1

I2
0

Λmρ8

∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0) dx dy
∫∫

Am

e
− (x−x0)2+(y−y0)2

2ρ2 (y − y0) dx dy
)]
|I (x0, y0, I0)|−1.

(14)
The determinant of the Fisher Information Matrix is given by

|I(x0, y0, I0)|

= −
M∑
m=1

I0

ρ6Λm
ψ(0)
m ψ(1)

m

(
M∑
m=1

I2
0

ρ8Λm
(ψ(2)

m )2
M∑
m=1

I0

ρ6Λm
ψ(0)
m ψ(1)

m −
M∑
m=1

I0

ρ6Λm
ψ(0)
m ψ(2)

m

M∑
m=1

I2
0

ρ8Λm
ψ(2)
m ψ(1)

m

)

+
M∑
m=1

I0

ρ6Λm
ψ(0)
m ψ(2)

m

(
M∑
m=1

I0

ρ6Λm
ψ(0)
m ψ(1)

m

M∑
m=1

I2
0

ρ8Λm
ψ(2)
m ψ(1)

m −
M∑
m=1

I0

ρ6Λm
ψ(0)
m ψ(2)

m

M∑
m=1

I2
0

ρ8Λm

(
ψ(1)
m

)2
)

+
M∑
m=1

1
ρ4Λm

(
ψ(0)
m

)2
 M∑
m=1

I2
0

ρ8Λm

(
ψ(2)
m

)2 M∑
m=1

I2
0

ρ8Λm

(
ψ(1)
m

)2
−
(

M∑
m=1

I2
0

ρ8Λm
ψ(2)
m ψ(1)

m

)2 .
(15)

where

ψ(0)
m ,

∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 dx dy, (16)

ψ(1)
m ,

∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 (y − y0) dx dy, (17)

ψ(2)
m ,

∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0) dx dy. (18)

B. Cramér-Rao Lower Bound of (x0, y0): Asymptotic Case (M →∞)
We know that each detector in the array counts or reports the photodetections that occur
inside its region in a given observation interval for the purpose of beam position estimation.
However, the detector does not specify the exact location of the photodetection inside its
region. In the ideal case when M → ∞ for fixed array area, the true location of each
photodetection can be reported by the infinitesimally small detector. When M → ∞, we
call this limiting array a “continuous” array. This asymptotic case is of interest since the
probability of error/tracking performance of a practical array can be reasonably approxi-
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mated with the continuous array when the number of detectors is large enough (M ≥ 64)
(6; 9). Therefore, in this section, we look at the Cramér-Rao Lower Bounds of (x0, y0) for
the M → ∞ case for the low and high signal-to-noise-ratio regimes, and the convergence
rates of the Cramér-Rao Lower Bounds are derived in terms of beam radius ρ.

In the following analysis, let us analyze the Cramér Rao Lower Bounds of x̂0 only since the
same analysis will hold ŷ0 due to the symmetric nature of the Gaussian beam.
1) Estimation of x0: High Signal-to-Noise Ratio: For high signal-to-noise ratio, λnA <<∫∫
Am

I0
ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 dx dy. Then, Λm ≈
∫∫
Am

I0
ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 dx dy. When M is large,

Λm ≈ I0
ρ2 e
− (xm−x0)2+(ym−y0)2

2ρ2 ∆M , where (xm, ym) is the center of the mth small detector, and
∆M is its infinitesimal area. Then, the numerator of (10) simplifies as

M∑
m=1

1
Λm

(∫∫
Am

I0

ρ4 (y − y0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy

)2

≈
M∑
m=1

(
I0
ρ4 (ym − y0)e−

(xm−x0)2+(ym−y0)2

2ρ2 ∆M

)2

I0
ρ2 e
− (xm−x0)2+(ym−y0)2

2ρ2 ∆M

=
M∑
m=1

I0

ρ6 (ym − y0)2e
− (xm−x0)2+(ym−y0)2

2ρ2 ∆M ≈
I02π
ρ4

M∑
m=1

∫∫
Am

1
2πρ2 (y − y0)2e

− (x−x0)2+(y−y0)2

2ρ2 dx dy

= I02π
ρ4

∫∫
A

1
2πρ2 (y − y0)2e

− (x−x0)2+(y−y0)2

2ρ2 dx dy ≈ I02π
ρ4 ρ2 = I02π

ρ2 , (19)

where, in the last approximation of (19) we have used the fact that∫∫
A

1
2πρ2 (y− y0)2e

− (x−x0)2+(y−y0)2

2ρ2 dx dy ≈
∫∫∞
−∞

1
2πρ2 (y− y0)2e

− (x−x0)2+(y−y0)2

2ρ2 dx dy = ρ2 since
ρ << `(|A|). The positive term in the denominator (see (65)) can be simplified in a similar
fashion. The square root of the term with minus sign can be simplified as

M∑
m=1

1
Λm

∫∫
Am

I0

ρ4 (y − y0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy

∫∫
Am

I0

ρ4 (x− x0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy

≈
M∑
m=1

I0
ρ4 (ym − y0)e−

(xm−x0)2+(ym−y0)2

2ρ2 ∆M

I0
ρ2 e
− (xm−x0)2+(ym−y0)2

2ρ2 ∆M

× I0

ρ4 (xm − x0)e−
(xm−x0)2+(ym−y0)2

2ρ2 ∆M

≈ I02π
ρ4

M∑
m=1

∫∫
Am

1
2πρ2 (y − y0)(x− x0)e−

(x−x0)2+(y−y0)2

2ρ2 dx dy

= I02π
ρ4

∫∫
A

1
2πρ2 (y − y0)(x− x0)e−

(x−x0)2+(y−y0)2

2ρ2 dx dy ≈ 0, (20)

where in the last approximation of (20), we have used the fact that we have used the fact
that

∫∫
A

1
2πρ2 (y−y0)(x−x0)e−

(x−x0)2+(y−y0)2

2ρ2 dx dy ≈
∫∫∞
−∞

1
2πρ2 (y−y0)(x−x0)e−

(x−x0)2+(y−y0)2

2ρ2 dx dy =
E[X − E[X]]E[Y − E[Y ]] = 0 where X and Y are independent Gaussian random variables
with the same variance ρ2, but with different means: E[X] = x0,E[Y ] = y0. Therefore,

Var[x̂0] ≥
I02π
ρ2

I02π
ρ2 × I02π

ρ2

= ρ2

I02π . (21)

We note that the Cramér Rao Lower Bound is minimized by minimizing ρ (a more focused
beam) for fixed signal power. The Cramér-Rao Lower Bound goes to zero at the rate O(ρ2)
as ρ→ 0, where O represent the “big O” notation. Moreover, the Cramér-Rao Lower Bound
goes to zero in terms of I0 at the rate O(I−1

0 ).
2) Estimation of x0: Low Signal-to-Noise Ratio: In this case, let us assume that λnA >>∫∫
Am

I0
ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 dx dy. Then, Λm ≈ λnA. In this case, the square root of the term

9
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Figure 3: This figure shows an 8-PPM scheme. The blue circles indicate signal photons and
the red circles indicate noise photons. The observation based on the (signal) slot period
contains a higher SNR (eight times higher) as compared to the observation based on one
symbol period.

with the minus sign in the denominator is

1
λnA

M∑
m=1

∫∫
Am

I0

ρ4 (y − y0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy ×
∫∫

Am

I0

ρ4 (x− x0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy,

(22)
which is zero due to the symmetric nature of the Gaussian beam. Therefore, by further
simplification,

Var[x̂0] ≥ λnρ
8

I2
0
× A∑M

m=1

(∫∫
Am

(x− x0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy

)2 (23)

which goes to

Var[x̂0] ≥
λnρ8

I2
0∫∫

A(x− x0)2e
− (x−x0)2+(y−y0)2

ρ2 dx dy

= 2ρ4

π
(
I2

0
λn

) (24)

as M → ∞. In this case, the Cramér-Rao Lower Bound goes to zero at a rate O(ρ4) as
ρ → 0. This is a faster rate of convergence than O(ρ2) for the high signal-to-noise ratio
case. Additionally, Cramér-Rao Lower Bound converges to zero at the rate O(I−2

0 ) in the
low signal-to-noise ratio regime.

V. Cramèr-Rao Lower Bounds for Beam Parameter Estimation Based on
Data Symbols

Since pilot symbols incur a loss in energy and bandwidth, there is a motivation to use data
symbols for the estimation of beam parameters even though that may result in some loss in
estimation performance. In this section, we derive the Cramér-Rao Lower Bounds of beam
parameters based on PPM data symbols. As discussed in Section II-B, we can either use
either one PPM symbol period or a signal slot period as our observation interval. We first
look at the Cramér-Rao Lower Bound related to the symbol period based observation in
the next section.

A. Observations Based on Symbol Period
In this case, the noise power goes up K times where K is the number of slots in PPM.
Thus, the new λ′n , Kλn, and Zm ∼ Poisson(Λ′m), where

Λ′m ,
∫∫

Am

(
I0

ρ2 exp
(
−(x− x0)2 + (y − y0)2

2ρ2

)
+ λ′n

)
dx dy. (25)

10



Thus, in this case,

p(Z|θ) ,
M∏
m=1

e−Λ′m (Λ′m)Zm

Zm! . (26)

B. Observations Based on Slot Period: A Decision-Aided Scheme
The motivation behind choosing the slot period is to maximize the signal-to-noise ratio in
the sufficient statistic. If the slot containing the signal is chosen, the resulting signal-to-noise
ratio is K times bigger than the signal-to-noise ratio available in a symbol period. However,
for the slot period case, we depend on the correct decision of the receiver to choose the
“right” slot that contains the signal. If the receiver makes a mistake, we end up choosing
a “noise-only” slot and the resulting noise photons do not give us any information about
the beam parameters. Thus, if the receiver starts making too many errors, the estimation
performance will take a significant hit. Thus, in the slot period case, the correct symbol
decision is the key to a good estimation performance, and we term the estimation based
on slot period alternatively as decision-aided estimation of beam parameters.

Fig. 5 shows the block diagram of the decision-aided beam position estimation scheme in
which the output of the equal gain combiner (EGC) is fed into the beam position estimation
block. If the EGC declares some symbol j as the transmitted (K-PPM) symbol for 0 ≤ j <
K, the beam position estimation block chooses the jth slot as its observation interval.

For observation based on one slot, Zm ∼ Poisson (Λm) , with probability Pc and Zm ∼
Poisson(λnA) with probability (1− Pc). Thus, Zm is a Doubly Stochastic Poisson Process
or a Cox Process whose intensity varies randomly according to the Bernoulli distribution
as follows:

p(ξ) = Pcδ(ξ − Λm) + (1− Pc)δ(ξ − λnA), (27)

where δ(·) is the Dirac delta function. Therefore, the likelihood function becomes

p(Z|θ) , Pc

M∏
m=1

e−Λm (Λm)Zm

Zm! + (1− Pc)
M∏
m=1

e−λnA (λnA)Zm

Zm! . (28)

The quantity Pc is the probability of a correct decision of the equal gain combiner (EGC).
It can be shown that for a MAP detector that operates on a K-PPM symbol, we have
that

Pc = (P ({Zs > Zn}))K−1 = (P ({(Zs − Zn) > 0}))K−1 . (29)

In (29), Zs ∼ Poisson(Λs) and Zn ∼ Poisson(λn|A|). The random variable Z , Zs − Zn
is a (discrete) Skellam random variable whose distribution is

P ({Z = z}) = e−(Λs+λn|A|)
( Λs

λn|A|

)z/2
Iz

(
2
√

Λsλn|A|
)
, (30)

where Iz(·) is the modified Bessel function of the first kind (not to be confused with peak
intensity I0). Thus,

P ({Z > 0}) =
∞∑
z=1

P ({Z = z}) =
∞∑
z=1

e−(Λs+λn|A|)
( Λs

λn|A|

)z/2
Iz

(
2
√

Λsλn|A|
)
.

Fig. 4 shows the probability of correct decision Pc for different values of beam radius ρ.
A large beam radius results in some loss of energy since some of the beam energy falls off
the edge of the array. This leads to a lower probability of correct decision for larger beam
radii. Finally, since Pe = 1− Pc, we have that

11
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Figure 4: This figure shows the probability of correct decision of the EGC receiver as
a function of noise parameter λn for different values of beam radius ρ for the 4 × 4
detector array. The modulation scheme considered in this case is 8-PPM. The received
signal intensity is meansured in terms of 10 signal photons received on average, and the
area of the array |A| = 4 mm2 The value of (x0, y0) = (0.4, 0.4).

Pe = 1−
( ∞∑
z=1

e−(Λs+λn|A|)
( Λs

λn|A|

)z/2
Iz

(
2
√

Λsλn|A|
))K−1

. (31)

1) Monte Carlo Expectation: It is not straightforward to compute the probabilistic ex-
pectations E

[
∂2 ln p(Z|θ)

∂I2
0

]
, E

[
∂2 ln p(Z|θ)
∂I0∂x0

]
, E

[
∂2 ln p(Z|θ)
∂I0∂y0

]
, E

[
∂2 ln p(Z|θ)

∂x2
0

]
, E

[
∂2 ln p(Z|θ)

∂y2
0

]
and

E
[
∂2 ln p(Z|θ)
∂x0∂y0

]
for the likelihood function in (28). Thus, we resort to the Monte Carlo

simulations to compute these expectation. The simulations are carried out as follows:

1) Sample 1 with probability Pc and 0 with probability 1− Pc.
2) If 1, then sample Z1 from Poisson(Λ1), Z2 from Poisson(Λ2), . . . , ZM from Poisson(ΛM ).

Else, sample sample Z1 from Poisson(λnA), Z2 from Poisson(λnA), . . . , ZM from
Poisson(λnA).

3) Substitute the Zm’s obtained from Step 2 into each of the second order partial
derivatives: ∂

2 ln p(Z|θ)
∂I2

0
, ∂

2 ln p(Z|θ)
∂I0∂x0

, ∂
2 ln p(Z|θ)
∂I0∂y0

, ∂
2 ln p(Z|θ)
∂x2

0
, ∂

2 ln p(Z|θ)
∂y2

0
and ∂2 ln p(Z|θ)

∂x0∂y0
, and

store the resulting value.
4) Repeat Step 1, Step 2 and Step 3 until the required number of simulations is reached.
5) Compute the sample mean of the values obtained in Step 3.

VI. Two-Step Estimation of Beam Parameters
In this section, we will look at a two-step estimation algorithm that is used for estimating
the beam parameters. The two-step estimation algorithm is as follows:

1) In the first step, the peak intensity I0 and background radiation λn are estimated
using a method of moments estimator.

2) The estimates Î0 and λ̂n obtained from Step 1 are substituted into the loglikelihood
function ln p(Z|θ) and the estimate of (x0, y0) is obtained by maximizing the loglike-
lihood function (maximum likelihood estimation).

Alternatively, all the four parameters (x0, y0, I0, λn) can be estimated via the maximum
likelihood estimator (MLE). However, since no closed-form expressions for the MLE are
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Figure 5: This figure shows the block diagram of the decision-aided beam position estimation
system. The output of the EGC is fed into the Beam Position Estimation Block for correct
choice of the signal slot.

available, we have to resort to numerical optimization techniques (such as a genetic algo-
rithm) in order to find the peak of the loglikelihood function. This incurs a much higher
computational complexity if all the four parameters are estimated with the MLE. The two-
step estimation algorithm reduces the complexity since two of the four parameters (I0 and
λn) can be estimated via the computationally efficient method of moments estimator with-
out any knowledge of (x0, y0), and the numerical search for the maximum of loglikelihood
function is limited to just two dimensions in order to find (x̂0, ŷ0).

A. Method of Moments Estimator of I0 and λn
1) Pilot Symbol Case: The method of moments estimator of I0 for the pilot symbol case
is

Î0 = 1
2πN

(
N∑
i=1

M∑
m=1

Z
(s)
i,m

)
− λ̂n|A|

2π , (32)

where Z(s)
i,m is a Poisson random variable with mean Λm. The method of moments estimator

of λn is

λ̂n = 1
|A|N

N∑
i=1

M∑
m=1

Z
(n)
i,m (33)
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where Z(n)
i,m is a Poisson random variable with mean λnA. It can be easily shown that

E[λ̂n] = λn, and

E[Î0] = 1
2πN

(
N∑
i=1

M∑
m=1

E
[
Z

(s)
i,m

])
− E

[
λ̂n
] |A|

2π (34)

= 1
2π

M∑
m=1

∫∫
Am

I0

ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 dx dy + λnA− λn
|A|
2π (35)

= 1
2π (I02π + λn|A|)−

λn|A|
2π = I0. (36)

Thus, both Î0 and λ̂n are unbiased estimators of I0 and λn, respectively.

It is straightforward to verify that

E
[(
λ̂n − λn

)2
]

= E
[
λ̂2
n

]
− λ2

n = λn
NMA

= λn
N |A|

. (37)

The mean-square error between Î0 and I0 is

E
[(
Î0 − I0

)2
]

= Var
(
Î0 − I0

)
= Var

(
Î0
)

(38)

= 1
(2πN)2

N∑
i=1

M∑
m=1

Var
(
Z

(s)
i,m

)
+
(
AM

2π

)2
Var

(
λ̂n
)

(39)

= 1
(2πN)2

N∑
i=1

M∑
m=1

(
λ(s)
m + λnA

)
+
(
AM

2π

)2 λn
NMA

(40)

= I0

2πN + λnAM

2π2N
= 1

2πN

(
I0 + λnAM

π

)
. (41)

2) Decision-Aided Estimation (Observations Based on Slot Period): In this case, the gen-
eration of photon counts are governed by a doubly stochastic Poisson process. Thus,

E[Î0] = 1
2πN

N∑
i=1

M∑
m=1

E[Zm]− E[λ̂n]AM2π , (42)

where E[Zm|c] = Λm = Λ(s)
m + λnA and E[Zm|e] = λnA. Therefore,

E[Zm] = Λ(s)
m Pc + λnA. (43)

Therefore,

E[Î0] = 1
2πN

N∑
i=1

M∑
m=1

(
Λ(s)
m Pc + λnA

)
− λnAM

2π (44)

= PcI0. (45)

Moreover,

Var
[
Î0
]

= 1
(2πN)2

N∑
i=1

M∑
m=1

Var[Zm] + Var[λ̂n]
(
AM

2π

)2
(46)

= 1
(2πN)2

N∑
i=1

M∑
m=1

Λ(s)
m (Pc + λnA) + λnAM

N(2π)2 (47)

= 1
(2πN)2 [PcI02πN + λnAMN ] + λnAM

N(2π)2 = PcI0

2πN + λnAM

2π2N
(48)
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= 1
2πN

(
PcI0 + λnAM

π

)
. (49)

Finally, since Var
(
Î0 − I0

)
= Var

(
Î0
)
, we have that

E
[(
I0 − Î0

)2
]

= Var
[
I0 − Î0

]
+
(
E
[
I0 − Î0

])2
= Var

(
Î0
)

+ (I0 − I0Pc)2 (50)

= 1
2πN

(
PcI0 + λnAM

π

)
+ I2

0 (1− Pc)2. (51)

B. Maximum Likelihood Estimation of (x0, y0)
For the pilot symbol scheme, the maximum likelihood estimator of beam position (x0, y0)
on the array is given by (6):

(x̂0, ŷ0) , arg max
x0,y0

ln p (Z1, Z2, . . . , ZM |x0, y0)

= arg max
x0,y0

M∑
m=1

Zm ln
(
Î02π

[
Φ
(
ym2 − y0

ρ

)
− Φ

(
ym1 − y0

ρ

)] [
Φ
(
xm2 − x0

ρ

)
− Φ

(
xm1 − x0

ρ

)]
+ λ̂nA

)

−
(
Î02π

[
Φ
(
`(A)

2 − y0

ρ

)
− Φ

(
− `(A)

2 − y0

ρ

)][
Φ
(
`(A)

2 − x0

ρ

)
− Φ

(
− `(A)

2 − x0

ρ

)]
+ λ̂n|A|

)
,

(52)

where Φ(·) is the cumulative distribution function of a standard normal random variable,
and Î0 and λ̂n are the method of moments estimates of I0 and λn, respectively. The quantity
(xm2 , ym2) is the location of the north east corner of the mth detector, and (xm1 , ym1) is
the position of south west corner.

For estimation based on data symbols, the maximum likeliood estimate is obtained by
maximizing (26) (symbol period) or by maximizing (28) (slot period).

Regarding the maximization of the loglikelihood functions (3), (26) and (28), we have to
resort to a genetic algorithm to look for the global maximum.

The mean-square error of the maximum likelihood estimator is computed via Monte Carlo
simulations. The average of the squared errors is computed by repeating the experiment
many times and then computing the sample average of the squared errors.

VII. Simulation Results and Discussion
In this section, we interpret the simulations results that we have obtained in this study.
In these simulations, we have considered the low photon rate regime. In this regard, we
have considered—on average—10 signal photons for the entire array during the observation
interval. These low photon rate channels are of interest in deep space communications where
the received signal energy is so low that we are only able to detect a few signal photons
per slot of a PPM symbol (1; 6). Additionally, the low rate of photons has also to do with
the “blocking” phenomenon of avalanche photodetectors that are operated in Geiger mode
as photon counters. The blocking occurs because the detection of the first signal photon
causes an avalanche of electrons, and this avalanche has to be quenched by an avalanche
recovery circuit and the bias has to be restored before the next photon can be detected.
Thus, the detector “sleeps” or gets “blocked” for a few microseconds before it is ready to
detect the next incoming photon.

Moreover, in the ensuing discussion, λn is measured in terms of average number of noise
photons that occur during an observation interval.

For all the experiments, the area of the detector array |A| = 4 mm2. This detector array
extends from -1 mm to 1 mm in each of the two dimensions, and the center of the array
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Figure 6: This figure shows the Cramèr-Rao Lower Bound on the variance of estimators
of beam center position (x0, y0) (top) and the peak intensity I0 (bottom) as a function of
noise parameter λn for one pilot symbol. These curves are plotted for different values of
number of detectors M in the array. The value of I0 = 1.6 which gives an average signal
photon rate of 10 photons/slot period. The value of (x0, y0) = (0.4, 0.4).

coincides with the origin. Additionally, we want to emphasize that the area of the array |A|
is fixed irrespective of the number of detector M in the array. Thus, a larger M implies a
smaller area per detector.

In terms of notation, we want to point out that the expression CRLB(x̂0, ŷ0) denotes the
sum of individual Cramér-Rao Lower Bounds—CRLB(x̂0) and CRLB(ŷ0)—where x̂0 and
ŷ0 are any unbiased estimators of x0 and y0, respectively. This is true since these two
parameters can be treated independently of each other due to circularly symmetric nature
of Gaussian beam.

Fig. 6 indicates the CRLB curves for (x̂0, ŷ0, Î0) as a three parameter estimation problem as
defined in (12), (13) and (14). These curves are plotted as a function of noise parameter λn.
Fig. 7 depicts the CRLB plots as a function of number of pilot symbols used as observations
in the estimation of parameters.

Fig. 8 shows the CRLB plots as a function of beam radius ρ at the point (x0, y0) = (0.4, 0.4).
We note that the CRLB of Î0 increases monotonically with ρ. However, for the CRLB of
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Figure 7: This figure shows the Cramèr-Rao Lower Bound on the variance of estimators of
beam center position (x0, y0) (top) and the peak intensity I0 (bottom) as a function of the
number of pilot symbols N needed in order to estimate (x0, y0). The average signal photon
rate is 10 photons/slot period.

(x̂0, ŷ0), we see that there is an optimum value of ρ (lets call it ρ∗M for the M -cell array)
at which the CRLB is minimized. Additionally, ρ∗N < ρ∗M for N > M . Intuitively, these
observations are straightforward to explain. For a fixed signal-to-noise ratio, if the beam
footprint is small, but at least covers one detector completely, then such a small beam
footprint will minimize the mean-square error. This is true since all the power is focused
into a small region on the array where the number of noise photons (on average) is relatively
small, and this fact will help the estimator in order to estimate the beam position more
accurately as opposed to a more “spread out” beam.

However, if the beam radius is much smaller than the dimensions of a single detector, then
the beam will only give rise to photons in the detector in which it is located, and the
neighboring detectors will not register any signal photons. Since we round off the locations
of the photons—that occur inside a given detector—to the center of that detector, any
movement of the “super thin” beam inside the given detector cannot be tracked. Therefore,
the CRLB rises if ρ diminishes beyond a certain (optimum) value.

Fig. 9 and Fig. 10 show the effect of beam radius on the Cramér-Rao Lower Bound of
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Figure 8: This figure shows the Cramèr-Rao Lower Bound on the variance of estimators of
beam center position (x0, y0) (top) and the peak intensity I0 (bottom) as a function of the
beam radius ρ. The value of x0 and y0 are both set to 0.4 mm on the array. The average
signal photon rate is 10 photons/slot period.

(x̂0, ŷ0) and Î0 as a function of (x0, y0) for a 4 × 4 detector array when pilot symbols are
used for parameter estimation. In these figures, the beam center (x0, y0) varies along a
diagonal on the array, i.e. from point (−0.8,−0.8) to point (0.8, 0.8). For (x̂0, ŷ0), we note
that for small ρ, the CRLB is highly sensitive to the location of the beam center (x0, y0). For
example, if we consider the case for ρ = 0.12 mm, we note that the diameter of the beam
2ρ is much smaller than the breadth of a single detector in this case (the breadth of a single
detector for a 4× 4 array is `(Am) = 0.5 mm). Thus. 2ρ << `(Am). First, we note that the
points (−0.75,−0.75), (−0.25,−0.25), (0.25, 0.25), (0.75, 0.75) correspond to the centers of
the detectors on the diagonal, and the points (−0.5,−0.5), (0, 0), (0.5, 0.5) corresponds to
the edges of detectors. We additionally note that the Cramér-Rao Lower Bound attains its
peak value at the centers of detectors and its minimum values on the edges. This pattern is
explained by our earlier understanding (as argued during elaboration of Fig. 8) that when
the beam is very thin and its center resides on the center of a particular detector, then all
the energy of the beam resides in that particular detector, and a small movement of the
beam cannot be detected by the array. However, if the beam center of such a thin beam lies
on the edge of a detector, its slightest movement can be tracked by detecting the change
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in the energy difference of the two detectors that share the edge. For the case of M = 64,
`(Am) = 0.25 mm, and since 2ρ ≈ `(Am), we observe that the fluctuation of the CRLB as
a function of (x0, y0) is almost negligible.

When the beam radius is larger such that 2ρ > `(Am), then the energy of the beam is not
confined to a single detector regardless of where the beam center resides on the array. In
this case, any movement of the beam will be registered because of change in the detected
energy reported by the detectors. However, whether the beam diameter is large or small,
once the beam center gets too close to the edge of the array, part of the beam energy
will fall off the edge of the array and the detector array will experience a net loss in
received signal energy. This leads to a higher Cramér-Rao Lower Bound at the edges of the
detector array. Additionally, even though the fluctuation in CRLB is minimized for a higher
beam radius, the minimum value of the Cramér-Rao Lower Bound suffers significantly (the
minimum value of Cramér-Rao Lower Bound goes up) as compared to the smaller beam
radius scenario. This is because with a larger beam radius, the signal energy is spread
out to a larger number of detectors, which results in a smaller signal-to-noise ratio per
detector. With a smaller beam radius, the beam energy is confined to a smaller number
of detectors, and the average signal-to-noise ratio in these detectors remains significantly
higher compared to the large beam radius case. This observation corroborates our previous
assertion that the Cramér-Rao Lower Bound decays as O(ρ2) and O(ρ4) for the high and
low signal-to-noise ratio, respectively, as ρ→ 0 (see (21), and (24)).

Regarding the Cramér-Rao Lower Bound of Î0, we observe that the Cramér-Rao Lower
Bound is not very sensitive to the beam radius and the performance does not change
significantly over the chosen range of beam radii. Additionally, the CRLB performance
between the 4× 4 detector and the 8× 8 case is not significant.

Fig. 11 illustrates the Cramér-Rao Lower Bound comparisons for the observations based
on pilot symbols versus data symbols. We note that, as expected, the Cramér-Rao Lower
Bound computed based on pilot symbols outperforms the Cramér-Rao Lower Bounds based
on data symbols (both for slot period and symbol period). We also note that the Cramér-
Rao Lower Bound based on slot period outperforms the Cramér-Rao Lower Bound related
to symbol period for high signal-to-noise ratio. However, the situation reverses for low
signal-to-noise ratio in which case the symbol period observation does a better job than
the slot period in terms of minimizing the Cramér-Rao Lower Bound. Fig. 12 show the
performance comparison of the maximum likelihood estimator for the pilot and data symbol
based observations, and we see a similar trend as the Cramér-Rao Lower Bound curves in
Fig. 11.

Fig. 13 and Fig. 14 depict the performance of the method of moment estimator of λn
and I0, respectively. The performance of the method of moments estimator is compared
with the Cramér-Rao Lower Bound as well. We note in Fig. 14 (as was the case with the
Cramér-Rao Lower Bound of (x̂0, ŷ0)) that the Cramér-Rao Lower Bound based on slot
period is smaller than the Cramér-Rao Lower Bound based on symbol period when λn is
less than a particular value, and that the observations based on symbol period outperform
the observations related to slot period when λn exceed that particular (critical) point. Thus,
for a system that employs data symbols for estimation of beam parameters, we propose
a switching scheme in which the estimation algorithm chooses either the symbol period
or the slot period based on whether the value of λn is higher or lower than the critical
value.

VIII. A Brief Complexity Analysis of Estimators
It is easy to see from (32) and (33), that the computational complexity of the method of
moments estimator is O(M) real additions if just one symbol is used for the purpose of
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Figure 9: This figure shows the effect of beam radius on the CRLB of the estimators of
(x0, y0) and I0 for the 4× 4 and 8× 8 detector arrays. The value of noise parameter λn is
0.1. The average signal photon rate is 10 photons/slot period.
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Figure 10: This figure shows the effect of beam radius on the CRLB of the estimators of
(x0, y0) and I0 for the 4 × 4 and 8 × 8 detector arrays. The number of average received
signal photons/symbol is 11. The value of noise parameter λn is 0.1. The average signal
photon rate is 10 photons/slot period.
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Figure 11: This figure shows the Cramèr-Rao Lower Bound on the variance of estimators of
beam center position (x0, y0) (top) and the peak intensity I0 (bottom) as a function of noise
parameter λn for three types of observations: pilot symbol slot (Pilot), data symbol (Sym),
and signal slot period (Sig). The average signal photon rate is 10 photons/slot period and
the beam radius is 0.2 mm.

estimation.

Regarding the maximum likelihood estimator, first we need O(M) real additions and O(M)
real multiplies (see (52)) in order to compute the loglikelihood function. Thereafter, a
genetic algorithm is employed in order to find the global maximum of the loglikelihood
function. The complexity of the real number genetic algorithm is discussed in detail (6).
We note from (6) that the complexity of the genetic algorithm is a function of number of
chromosomes, Nc, and the number of generations9, Ng. The values of Nc and Ng have to
be chosen according to the nature of the objective function—a “spikier” function requires
relatively large Ng and Nc for convergence to the true maximum. Additionally, the larger the
number of dimensions of the objective function, the larger the values of Nc and Ng become
in order to speed up convergence. In our simulations, we set Nc = 50, and Ng = 400.

9The number of generations can be regarded as the number of iterations required in order to converge
to the true maximum/minimum of the objective function.
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Figure 12: This figure shows the performance of the the maximum likelihood estimator
of (x0, y0) which is carried out for three different observations: pilot symbol slot (Pilot),
data symbol (Sym), and signal slot period (Sig). The average signal photon rate is 10
photons/slot period, and the beam radius is 0.2 mm. The performance of the maximum
likelihood estimator is compared to the CRLB for the pilot symbol observations.
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Figure 13: This figure shows the performance of the method of moments estimator of the
noise parameter λn for a 4× 4 array. The noise parameter is estimated by simply turning
the transmitter off during regular intervals of time.

20(1).pdf

Figure 14: This figure shows the performance of the method of moments estimator of I0
for the three differnt observations: pilot symbol slot (Pilot), data symbol (Sym), and signal
slot (Sig). The average signal photon rate is 10 photons/slot period, and the beam radius
is 0.2 mm. The performance of the method of moments estimator is compared with the
Cramér-Rao Lower Bound as well. The number of detectors in the array is M = 16 (a 4×4
array).
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Since the value of the loglikelihood function is computed for each chromosome, the total
complexity of the MLE is approximately Nc × Ng × O(M) real multiplications and real
additions 10.

The interested reader is referred to (26) for more details on genetic algorithms.

IX. Conclusion
In this paper, we have analyzed the Cramér Rao Lower Bounds for the robust beam position
estimation problem for a deep space optical communication system that uses an array of
photon counting detectors at the receiver. In this regard, we have derived the Cramér Rao
Lower Bounds for observations based on pilot symbols as well as data symbols (symbol
period and slot period) of the pulse position modulation scheme. Even though the pilot
symbols provide a superior performance in terms of estimation of beam parameters, we
pay an extra price in terms of a larger bandwidth and a higher energy expenditure for
transmission of dedicated pilot symbols. With data symbols, no extra bandwidth and energy
expenditure is required. Additionally, for estimation of beam parameters with data symbols,
we propose a switching scheme that switches between the symbol period and slot period
based observations depending on the noise level at the receiver.

Appendix
Taking the first partial derivative of the loglikelihood function, we have that

∂ ln p(Z|x0, y0)
∂x0

=
M∑
m=1

Zm
Λm

∫∫
Am

I0

ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0)
ρ2 dx dy −

∫∫
A

I0

ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0)
ρ2 dx dy

≈
M∑
m=1

Zm
Λm

∫∫
Am

I0

ρ4 (x− x0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy (53)

since
∫∫
A
I0
ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 (x−x0)
ρ2 dx dy is approximately zero because it can be approxi-

mated as ∫∫
A

I0

ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0)
ρ2 dx dy ≈ κ0 (E[X]− x0) (54)

where κ0 is a constant, and E[X] = x0. Tis approximation is valid when `(A) >> ρ and
the beam resides well within the boundaries of the array. Additionally,

∂2 ln p(Z|x0, y0)
∂x2

0
≈

M∑
m=1
−ZmΛ2

m

(∫∫
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I0

ρ4 (x− x0)e−
(x−x0)2+(y−y0)2
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)2

−
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Zm
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I0

ρ4 e
− (x−x0)2+(y−y0)2

2ρ2 dx dy +
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Zm
Λm
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I0

ρ6 (x− x0)2e
− (x−x0)2+(y−y0)2

2ρ2 dx dy.

(55)
Now, the expectation is taken with respect to Zm:

− E
[
∂2 ln p(Z|x0, y0)

∂x2
0

]
=
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1
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+
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2ρ2 dx dy

=
M∑
m=1

1
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(∫∫
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ρ4 (x− x0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy

)2

10This does not include the complexity involved in comparing the fitness of the chromosomes during
each iteration of the algorithm.
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+
∫∫
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I0

ρ4 e
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2ρ2 dx dy −
∫∫
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Similarly, it can be shown that

−E
[
∂2 ln p(Z|x0, y0)

∂y2
0

]
=
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1
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(∫∫
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Furthermore,

∂2 ln p(Z|x0, y0)
∂x0∂y0

=
M∑
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where,
∫∫
A
I0
ρ6 (x−x0)(y−y0)e−

(x−x0)2+(y−y0)2

2ρ2 dx dy ≈ 0 since it can be approximated as∫∫
A

I0

ρ6 (x− x0)(y − y0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy ≈ κ1 [(E[X]− x0)(E[Y ]− y0)] (60)

where E[X] = x0 and E[Y ] = y0 for some constant κ1. This approximation is valid if
`(A) >> ρ and the beam resides well within the boundaries of the array. Therefore,

−E
[
∂2 ln p(Z|x0, y0)
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]
=

M∑
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1
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∫∫
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Moreover, the Fisher Information Matrix is

I(x0, y0) =

−E
[
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∂x2
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0

]
 , (62)

and Var [x̂0] ≥
[
I−1(x0, y0)

]
1,1, and Var [ŷ0] ≥

[
I−1(x0, y0)

]
2,2. Finally,

Var[x̂0] ≥

∑M
m=1

1
Λm

(∫∫
Am

I0
ρ4 (y − y0)e−

(x−x0)2+(y−y0)2

2ρ2 dx dy

)2

Ψ(x0, y0, I0, ρ) , (63)
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and

Var[ŷ0] ≥

∑M
m=1

1
Λm

(∫∫
Am

I0
ρ4 (x− x0)e−

(x−x0)2+(y−y0)2

2ρ2 dx dy

)2

Ψ(x0, y0, I0, ρ) , (64)

where

Ψ(x0, y0, I0, ρ)

,

 M∑
m=1

1
Λm

(∫∫
Am

I0

ρ4 (x− x0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy

)2

×
M∑
m=1

1
Λm

(∫∫
Am

I0

ρ4 (y − y0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy

)2

−
(

M∑
m=1

1
Λm

∫∫
Am

I0

ρ4 (y − y0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy

∫∫
Am

I0

ρ4 (x− x0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy

)2 .
(65)
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