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Abstract

Optical beam center position on an array of detectors is an important parameter that is essential for estimating
the angle-of-arrival of the incoming signal beam. In this paper, we have examined the beam position estimation
problem for photon-counting detector arrays, and to this end, we have derived and analyzed the Cramér-Rao lower
bounds on the mean-square error of the unbiased estimators of the beam position. Furthermore, we have also derived
the Cramér-Rao lower bounds of other beam parameters such as peak intensity, and the intensity of background
radiation on the array. In this sense, we have considered the problem of robust estimation of beam position in
which none of the parameters are assumed to be known beforehand. Additionally, we have derived the Cramér-
Rao lower bounds of beam parameters for observations based on both pilot and data symbols of a pulse position
modulation (PPM) scheme. Finally, we have considered a two-step estimation problem in which the peak intensity
and background radiation are estimated using a method of moments estimator, and the beam center position is
estimated with the help of a maximum likelihood estimator.

Index Terms

Angle-of-arrival, beam center position, Cramèr-Rao lower bound, maximum likelihood estimator, method of
moments estimator, photon-counting detector arrays, pulse position modulation.

I. Introduction
Free-space optical (FSO) communications has typically been employed in deep-space communications

due to the low divergence of optical beam that can help transmit data over much longer distances. However,
the urgent need to provide connectivity to almost 4 billion people who currently do not have internet access
has prompted the integration of FSO and millimeter wave/Terahertz communications in the backhaul of
6G wireless communication systems. Thus, FSO/millimeter/Terahertz wave links will be deployed in an
integrated network of satellites, drones, high altitude platform and balloons that will form the backhaul of
the next generation of wireless communications. In this regard, FSO is an emerging candidate for future
communications due to its ability to support high data rates.

However, the problem of pointing, acquisition and tracking is significant in the FSO (as well as
millimeter/Terahertz systems) domain because of the narrow beam widths associated with the optical
signal. Acquisition is the process in which the two terminals acquire the initial location of each other
before the actual data communication begins. However, after the acquisition is achieved, the system still
needs to maintain the alignment between the transmitter and receiver assemblies due to physical factors
such as random effects associated with atmospheric turbulence, the mechanical vibrations introduced in the
transmitter/receiver assemblies due to random physical forces, or building sways due to wind vibrations.
This misalignment leads to a loss of received signal energy at the receiver that may increase the outage

This work is supported by Office of Sponsored Research (OSR) at King Abdullah University of Science and Technology (KAUST).
M. S. Bashir, M. -C. Tsai and M. -S. Alouini are with the King Abdullah University of Science and Technology (KAUST),

Thuwal 23955-6900, Kingdom of Saudi Arabia. e-mail: salman.bashir@alumni.purdue.edu,mingcheng.tsai@kaust.edu.sa,slim.
alouini@kaust.edu.sa.

mailto:salman.bashir@alumni.purdue.edu, mingcheng.tsai@kaust.edu.sa, slim.alouini@kaust.edu.sa
mailto:salman.bashir@alumni.purdue.edu, mingcheng.tsai@kaust.edu.sa, slim.alouini@kaust.edu.sa


2

probability. Additionally, it goes without saying that the beam needs to be tracked/aligned for mobile
platforms since the angle-of-arrival changes continuously due to relative motion.

In this paper, we consider the optical beam position estimation problem for a deep space optical
communication system that employs multiple photon-counting detectors (array of detectors or a focal
plane array) instead of one large (monolithic) detector at the receiver. Photon-counting detector arrays are
typically used in deep space optical communications because of their ability to detect very low levels of
received light (a few signal photons) [1]. Any changes in the angle-of-arrival of the beam on the receive
aperture leads to a shift of the center of the focused beam on the focal plane array. Hence, the problem
of estimating the angle-of-arrival is reduced to estimating the beam center deviation on the array. The
deviation between the beam center and the array center (a measure of misalignment) is measured with
a beam position estimation algorithm, and the misalignment may be corrected by orienting the receiver
telescope in the direction of the incoming beam.

We further want to point out the advantage obtained with an array of detectors: It can be used for symbol
detection as well as for estimating the beam position. Thus, a receiver based on an array of detectors is more
efficient in terms of energy since no portion of the received energy has to be diverted to a separate tracking
assembly1, and all the received energy can be used for detection of the transmitted symbol. However, a
disadvantage associated with an array of detectors is the higher computational/hardware complexity as
compared to a single detector. The complexity scales as O(M) where M is the number of detectors in
the array.

II. Literature Review and Contributions/Organization of This Paper
A. Background Literature Review
There is a significant number of studies carried out on research in pointing, acquisition and tracking

(PAT) systems in FSO that treat the tracking problem purely from a hardware point-of-view. In this respect,
[2] provides a detailed overview of the current state-of-the-art hardware solutions for tracking the optical
beam. Thus, we will cover the literature review from the theoretical/signal processing perspective since
such a perspective is more relevant to our study in this paper.

The authors in [3] and [4] have discussed the performance of a proposed feedback (beam) tracking
loop that acts on the error signal provided by a quadrant photodetector in the receiver assembly. The
work in [4] actually builds on the study presented in [3] by carrying out the stability analysis of their
proposed cooperative feedback loop. The authors in [5] present the performance analysis of centroid and
maximum likelihood estimators of beam position for a “continuous”2 array. Regarding the literature that
covers communications with detector arrays in free-space optics, the authors in [6] propose beam position
estimation algorithms and examine their mean-square error performance with simulations. The work in
[7] extends the work in [6] by introducing Bayesian filtering algorithms, such as Kalman and particle
filters, for tracking the time-varying beam position. The authors in [8] inspect the relationship between
the probability of error and the estimation of beam position on the detector array, and using an argument
based on Chernoff bounds, they show that precise estimation of beam center on the array is necessary in
order to minimize the probability of error. Additionally, the author in [9] presents a mathematical argument
to show that the probability of error decreases monotonically as the number of detectors in the array is
increased. Furthermore, the authors in [10] analyze the acquisition performance of an FSO system that
employs an array of detectors at the receiver. Finally, the authors in [11] consider time synchronization
schemes based on an array of detectors.

Furthermore, we also briefly discuss the literature on pointing and tracking in FSO systems that examine
the tracking problem from the perspective of a single detector. In this regard, [12] develops the pointing

1Typically, a quadrant photodetector is employed in the tracking assembly in order to track beam position.
2A continuous array is obtained if the number of detectors in the array goes to infinity for a fixed array area. In other words, the area per

detector approaches zero for a continuous array. In this case, we have perfect information about the location of each photodetection in the
continuous array. Therefore, continuous arrays lead to an optimal mean-square error performance.
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error statistics for a circularly shaped detector and a Gaussian beam, and the outage capacity is optimized
as a function of beam radius. The authors in [13] investigate a slightly different optimization problem
concerning pointing: They have considered the maximization of link availability as a function of beam
radius (for fixed signal power). Additionally, they also explore the minimization of transmitted power by
tuning to the optimal beam radius under the constraint of a fixed link availability. In addition to these
papers, the interested reader may be directed to [14]–[17] for a detailed study on the performance of FSO
systems when the optical channel suffers degradation due to pointing errors for a single-detector receiver.

Readers who might be interested in deep space optical communications with photon-counting detector
arrays are referred to [18]–[22].

B. Contributions of This Paper
Even though the authors in [6] have proposed beam position estimation algorithms with an array

of detectors, they have not considered the derivation of the Cramér-Rao lower bounds on the variance
of unbiased estimators. We believe that an understanding of the Cramér-Rao bounds of beam position
and other parameters is an important problem as these bounds will give us important insights into the
behavior of estimators under different channel conditions. Additionally, beam parameters other than the
beam position—such as peak intensity, beam radius and background radiation level3—are assumed by these
authors as known quantities in their derivation of estimators. However, even though the beam radius on
the focal plane array may be considered constant, the peak intensity and the background radiation intensity
may change significantly with time, and they have to be estimated in real-time in order to improve the
performance of beam position estimators. Additionally, it goes without saying that a knowledge of peak
intensity and background noise is also important for allocating power in different channels of a multiple-
input-multiple-output (MIMO), or a multiple-input-single-output (MISO), FSO communication system as
these two quantities specify the signal-to-noise ratio of the channel [23].

In this study, we have derived and analyzed the Cramér-Rao lower bounds of beam position estimators
for an array of detectors. The estimation problem discussed in this paper is robust since we also estimate
the signal intensity as well as background radiation/noise power levels. In this regard, Cramér-Rao lower
bounds are derived for beam position, peak intensity and noise intensity for various scenarios. Moreover,
two types of observations are considered in this estimation problem: i) observations based on pilot symbols
and ii) observations based on data symbols. Using energy of the signal based on data symbols for our
estimation problem leads to a more bandwidth/energy efficient scheme. However, as we will see later in
this study, the estimation performance (in terms of mean-square error) corresponding to data symbols
suffers more at poorer signal-to-noise ratio as compared to pilot symbols.

For observations based on data symbols, we additionally consider two different observation intervals for
estimation: i) a PPM symbol period, or, ii) PPM slot period containing the signal pulse. The estimation
based on the slot period assumes that the signal pulse is present in the slot. If this assumption is true,
the signal-to-noise ratio in the slot is much higher (as much as K times) than the signal-to-noise ratio
in one K-PPM symbol period. This high signal-to-noise ratio leads to a better estimation performance.
However, if the receiver makes an error, we use the “noise only” slot as our observation which results in
a severe degradation in estimation performance. We discuss these ideas in more detail in Section V.

C. Model Assumptions
One of the major assumptions in this study is that the array area is chosen to be large enough so that

the beam footprint is much smaller than the footprint of the array. A practical system design requires that
such an assumption should hold so that any outage in the received signal is precluded in case the beam
wanders due to angle-of-arrival fluctuations. Furthermore, a large array area is also needed in order to

3Even though the background radiation is not strictly related to the beam, we loosely term it as another beam parameter.
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Symbols Definition
I0 peak beam intensity (average number of photons)
λn noise intensity (average number of noise photons)
ρ beam radius (mm)

(x0, y0) location of the beam center on the array
A region of the detector array
|A| area of the detector array (mm2)
M number of detectors in the array
N number of pilot symbols
Am region of the mth detector in the array
A area of a given detector (mm2)

`(R) length of one side of any square region R (mm)

TABLE I: List of mathematical symbols

track the movement of the beam and align it—perhaps through a fast steering mirror (FSM) assembly—to
the center of the array.

Secondly, all arrays are assumed to be of a square shape and each detector in the array is also assumed
to be of a square shape as well. This is required in order to make the mathematical analysis more tractable.

Finally, the focus of this study is on non-Bayesian estimation techniques for beam position estimation.
This is due to the fact that unless we are certain about the parameters of the prior random motion model
of the beam on the array, we are likely going to incur a significant loss in performance if there is mismatch
in our assumptions and the real world parameters4 [24].

D. Organization of This Paper
This paper is organized as follows. Section III defines the beam profile and the Poisson model that

governs the occurrence of photodetections5 in the array of detectors. Section IV discusses the derivation
of the Cramér-Rao lower bound of the beam parameter estimation problem when pilot symbols are used
as an observation. In Section V, we derive the Cramér-Rao bounds for observations based on data
symbols. Section VI considers the two-step estimation (method of moments and maximum likelihood
estimators) algorithm to estimate beam parameters. The simulation results are explained in Section VII
and Section VIII briefly discusses the complexity of the two estimators. The conclusions of this study are
summarized in Section IX.

III. System Model
The received optical signal on the receiver aperture gives rise to photoelectrons or photodetections in

each detector of the array due to photoelectric effect. The emission of these photoelectrons during the
signal pulse interval helps us detect transmitted symbols. The photon count Zm in the mth detector or
cell of the array—during some specified observation interval—is modeled as a (Poisson) discrete random
variable. Its probability mass function is characterized by the following expression:

P ({Zm = zm}) =
exp

(
− ∫∫Am [λs(x, y) + λn] dx dy

)
(
∫∫
Am

[λs(x, y) + λn] dx dy)zm

zm! , m = 1, . . . ,M ,
(1)

4This is especially true if the parameters themselves—such as the covariance matrices of the random motion model—are time-varying.
5We use the term photodetections and photons alternatively in this paper. A photodetection actually corresponds to an avalanche of electrons

triggered by either an incoming (signal or noise) photon or a thermal noise electron.
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Fig. 1: The figure on left shows the profile of incident beam on an array of detectors. The figure on right
depicts contours of incident light intensity and the resulting photodetections for a 4 × 4 detector array.
The red crosses represent the locations of signal photodetections, and the black ones correspond to noise.

where λs(x, y) is the scaled beam intensity6 profile on the detector array, λn is the scaled noise intensity
profile, Am is the region of the mth detector on the detector array, Z1,Z2, . . . ,ZM are independent Poisson
random variables and M is the total number of detectors in the array. As may have been discerned by the
reader, the coordinate (x, y) stands for any point inside the region of the detector array. Moreover, λn is
constant factor with respect to (x, y) that accounts for the background radiation and the thermal effects
of the detector array [25].

We assume that the airy pattern of the beam on the focal plane array is well-approximated by a Gaussian
function (see Fig. 1). The received (scaled) signal intensity at the detector array is given by the expression

λs(x, y) , I0

ρ2 exp
(
−(x− x0)2 − (y − y0)2

2ρ2

)
· 1A(x, y), (2)

where I0/ρ
2 is the peak intensity measured in terms of number of signal photons measured during an

observation interval. Furthermore, λn is also measured in terms of number of noise photons generated
during the same observation interval. The quantity ρ is known as the beam radius measured in millimeters,
and (x0, y0) is the center of the Gaussian beam on the detector array. The function 1A(·) represents the
indicator function over some (measurable) set A, and A is the region of the detector array.

Furthermore, it is a general assumption in the following sections that the center of the array has the
coordinates (0, 0). Additionally, the area of Am is denoted by A since all detectors are assumed to have
an equal area. The area of the detector array is denoted by |A|. The length of one side of the array is
denoted by `(A). Please see Table I for a complete list of all mathematical symbols.

IV. Cramèr-Rao Lower Bounds for Beam Parameter Estimation Based on Pilot Symbols
In this section, we derive and analyze the Cramér-Rao lower bounds for the beam parameter estimation

problem based on pilot symbols. The pilot symbol is transmitted as a known pulse position modulation
symbol. For instance, we may transmit only the ‘0’ symbol (signal pulse only in the first slot) of a K-PPM
scheme. The observation interval in this case is the first slot of every pilot symbol.

6The actual signal intensity, λsi , and the actual noise intensity, λni , are both measured in terms of Joules/mm2/s. However, they are
multiplied by the constant ηTs

hc/λ
in order to obtain the intensity λs and λn for the photon generation model in (1). The constant h is known

as the Planck’s constant, and its value is 6.62607004 × 10−34 m2kg/s. The constant c is the speed of light in vacuum which is about
3 × 108 m/s, λ is the wavelength of light in meters, η stands for the photoconversion efficiency, and Tp represents signal pulse duration in
seconds.
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Let θ ,
[
x0 y0 I0 λn

]ᵀ
7. The likelihood function is given by

p(Z|θ) =
M∏
m=1

e−Λm Λzm
m

zm! , (3)

where

Λm ,
∫∫

Am

(
I0

ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 + λn

)
dx dy, (4)

and the random vector Z ,
[
Z1 Z2 · · · ZM

]T
. Let us define the total incident power on the array

Λs ,
∑M
m=1 Λm. Then,

ln p(Z|θ) =
M∑
m=1

zm ln Λm − Λm − ln zm! =
M∑
m=1

(zm ln Λm − ln zm!)− Λs. (5)

A. Estimation Based on Pilot Symbols
In this section, we derive Cramér-Rao lower bounds based on the observations corresponding to pilot

symbols.
1) Cramèr-Rao Lower Bound of I0
As a first step in computing the Cramér-Rao lower bound for any unbiased estimator Î0, we compute

the first partial derivative of (5):

∂ ln p(Z|θ)
∂I0

=
M∑
m=1

Zm
Λm

×
∫∫

Am

1
ρ2 exp

(
−(x− x0)2 + (y − y0)2

2ρ2

)
dx dy, (6)

and then,

∂2 ln p(Z|θ)
∂I2

0
= −

M∑
m=1

Zm
Λ2
m

×
(∫∫

Am

1
ρ2 exp

(
−(x− x0)2 + (y − y0)2

2ρ2

)
dx dy

)2

. (7)

Now, taking the expectation with respect to Zm and taking the negative of the resulting quantity, we have
that

−E
[
∂2 ln p(Z|θ)

∂I2
0

]
=

M∑
m=1

1
Λm

×
(∫∫

Am

1
ρ2 exp

(
−(x− x0)2 + (y − y0)2

2ρ2

)
dx dy

)2

. (8)

2) Cramèr-Rao Lower Bound of λn
In this case, we assume that the background radiation is estimated at the receiver while the transmitter

is turned off (no signal is present at the receiver). Therefore, in this case, Λm = λnA. Using the same line
of argument as used in the derivation of (8), it can be easily shown that the Cramèr-Rao lower bound on
the variance of any unbiased estimator λ̂n for one noise-only slot is given by

−E
[
∂2 ln p(Z|θ)

∂λ2
n

]
=

M∑
m=1

A2

Λm

. (9)

7Here, we want to emphasize that the beam radius on the focal plane array is a known quantity that depends on the focal properties of
the aperture lens, and hence does not need to be estimated as such.



7

3) Cramèr-Rao Lower Bounds of (x0, y0)
The Cramèr-Rao lower bound for x̂0 and ŷ0 is derived in Section A of the appendix. The final expressions

are produced here as follows:

Var[x̂0] ≥

∑M
m=1

1
Λm

(∫∫
Am

I0
ρ4 (y − y0)e−

(x−x0)2+(y−y0)2

2ρ2 dx dy

)2

Ψ(x0, y0, I0, ρ) , (10)

and

Var[ŷ0] ≥

∑M
m=1

1
Λm

(∫∫
Am

I0
ρ4 (x− x0)e−

(x−x0)2+(y−y0)2

2ρ2 dx dy

)2

Ψ(x0, y0, I0, ρ) , (11)

where Ψ(x0, y0, I0, ρ) is defined in (65).
4) Cramèr-Rao Lower Bounds for Joint Estimation of I0 and (x0, y0)
In this section, we state the Cramér-Rao lower bounds for the three-parameter estimation problem in

which the three beam parameters are x0, y0 and I08. We denote the 3 × 3 Fisher Information Matrix by
I(x0, y0, I0). The Cramér-Rao lower bounds are given by

Var [x̂0] ≥
[
I−1 (x0, y0, I0)

]
1,1

=
 M∑

m=1

1
Λmρ4

(∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 dx dy

)2
 M∑

m=1

I2
0

Λmρ8

(∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 (y − y0) dx dy
)2


−
(

M∑
m=1

I0

Λmρ6

∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 dx dy
∫∫

Am
e
− (x−x0)2+(y−y0)2

2ρ2 (y − y0) dx dy
)]
|I (x0, y0, I0)|−1. (12)

Var [ŷ0] ≥
[
I−1 (x0, y0, I0)

]
2,2

=
 M∑

m=1

1
Λmρ4

(∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 dx dy

)2
 M∑

m=1

I2
0

Λmρ8

(∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0) dx dy
)2


−
(

M∑
m=1

I0

Λmρ6

∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 dx dy
∫∫

Am
e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0) dx dy
)]
|I (x0, y0, I0)|−1. (13)

Var
[
Î0
]
≥
[
I−1 (x0, y0, I0)

]
3,3

=
 M∑

m=1

I2
0

Λmρ8

(∫∫
Am
e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0) dx dy
)2
 M∑

m=1

I2
0

Λmρ8

(∫∫
Am
e
− (x−x0)2+(y−y0)2

2ρ2 (y − y0) dx dy
)2


−
(

M∑
m=1

I2
0

Λmρ8

∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0) dx dy
∫∫

Am
e
− (x−x0)2+(y−y0)2

2ρ2 (y − y0) dx dy
)]
|I (x0, y0, I0)|−1.

(14)

The determinant of the Fisher information matrix is given by

|I(x0, y0, I0)|

= −
M∑
m=1

I0

ρ6Λm

ψ(0)
m ψ(1)

m

(
M∑
m=1

I2
0

ρ8Λm

(ψ(2)
m )2

M∑
m=1

I0

ρ6Λm

ψ(0)
m ψ(1)

m −
M∑
m=1

I0

ρ6Λm

ψ(0)
m ψ(2)

m

M∑
m=1

I2
0

ρ8Λm

ψ(2)
m ψ(1)

m

)

8In order to lower the complexity of the estimation problem, we can estimate λn independently of x0, y0 and I0. In this case, all we need
to do is to estimate the average number of noise photons by occasionally turning the transmitter off.
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+
M∑
m=1

I0

ρ6Λm

ψ(0)
m ψ(2)

m

(
M∑
m=1

I0

ρ6Λm

ψ(0)
m ψ(1)

m

M∑
m=1

I2
0

ρ8Λm

ψ(2)
m ψ(1)

m −
M∑
m=1

I0

ρ6Λm

ψ(0)
m ψ(2)

m

M∑
m=1

I2
0

ρ8Λm

(
ψ(1)
m

)2
)

+
M∑
m=1

1
ρ4Λm

(
ψ(0)
m

)2
 M∑
m=1

I2
0

ρ8Λm

(
ψ(2)
m

)2 M∑
m=1

I2
0

ρ8Λm

(
ψ(1)
m

)2 −
(

M∑
m=1

I2
0

ρ8Λm

ψ(2)
m ψ(1)

m

)2 . (15)

where

ψ(0)
m ,

∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 dx dy, (16)

ψ(1)
m ,

∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 (y − y0) dx dy, (17)

ψ(2)
m ,

∫∫
Am

e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0) dx dy. (18)

B. Cramér-Rao Lower Bounds of (x0, y0): Asymptotic Case (M →∞)
We know that each detector in the array counts or reports the photodetections that occur inside its region

in a given observation interval for the purpose of beam position estimation. However, the detector does not
specify the exact location of the photodetection inside its region. In the ideal case when M →∞ for fixed
array area, the true location of each photodetection can be reported by the infinitesimally small detector.
When M →∞, we call this limiting array a “continuous” array. This asymptotic case is of interest since
the probability of error/tracking performance of a practical array can be reasonably approximated with
the continuous array when the number of detectors is large enough (M ≥ 64) [6], [9]. Therefore, in this
section, we look at the Cramér-Rao lower bound of (x0, y0) for the M → ∞ case for the low and high
signal-to-noise-ratio regimes, and the convergence rates of the Cramér-Rao lower bounds are derived in
terms of beam radius ρ.

In the following analysis, let us analyze the Cramér-Rao lower bound of x̂0 only since the same analysis
will hold for ŷ0 due to the symmetric nature of the Gaussian beam.

1) Estimation of x0: High Signal-to-Noise Ratio

For high signal-to-noise ratio, λnA <<
∫∫
Am

I0
ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 dx dy. Then, Λm ≈
∫∫
Am

I0
ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 dx dy.

When M is large, Λm ≈ I0
ρ2 e
− (xm−x0)2+(ym−y0)2

2ρ2 ∆M , where (xm, ym) is the center of the mth small detector,
and ∆M is its infinitesimal area. Then, the numerator of (10) simplifies as

M∑
m=1

1
Λm

(∫∫
Am

I0

ρ4 (y − y0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy

)2

≈
M∑
m=1

(
I0
ρ4 (ym − y0)e−

(xm−x0)2+(ym−y0)2

2ρ2 ∆M

)2

I0
ρ2 e
− (xm−x0)2+(ym−y0)2

2ρ2 ∆M

=
M∑
m=1

I0

ρ6 (ym − y0)2e
− (xm−x0)2+(ym−y0)2

2ρ2 ∆M ≈
I02π
ρ4

M∑
m=1

∫∫
Am

1
2πρ2 (y − y0)2e

− (x−x0)2+(y−y0)2

2ρ2 dx dy

= I02π
ρ4

∫∫
A

1
2πρ2 (y − y0)2e

− (x−x0)2+(y−y0)2

2ρ2 dx dy ≈ I02π
ρ4 ρ2 = I02π

ρ2 , (19)

where, in the last approximation of (19) we have used the fact that∫∫
A

1
2πρ2 (y−y0)2e

− (x−x0)2+(y−y0)2

2ρ2 dx dy ≈ ∫∫∞−∞ 1
2πρ2 (y−y0)2e

− (x−x0)2+(y−y0)2

2ρ2 dx dy = ρ2 since ρ << `(|A|).
The positive term in the denominator (see (65)) can be simplified in a similar fashion. The square root
of the term with minus sign can be simplified as

M∑
m=1

1
Λm

∫∫
Am

I0

ρ4 (y − y0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy
∫∫

Am

I0

ρ4 (x− x0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy
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≈
M∑
m=1

I0
ρ4 (ym − y0)e−

(xm−x0)2+(ym−y0)2

2ρ2 ∆M

I0
ρ2 e
− (xm−x0)2+(ym−y0)2

2ρ2 ∆M

× I0

ρ4 (xm − x0)e−
(xm−x0)2+(ym−y0)2

2ρ2 ∆M

≈ I02π
ρ4

M∑
m=1

∫∫
Am

1
2πρ2 (y − y0)(x− x0)e−

(x−x0)2+(y−y0)2

2ρ2 dx dy

= I02π
ρ4

∫∫
A

1
2πρ2 (y − y0)(x− x0)e−

(x−x0)2+(y−y0)2

2ρ2 dx dy ≈ 0, (20)

where in the last approximation of (20), we have used the fact that
∫∫
A

1
2πρ2 (y−y0)(x−x0)e−

(x−x0)2+(y−y0)2

2ρ2 dx dy ≈∫∫∞
−∞

1
2πρ2 (y − y0)(x − x0)e−

(x−x0)2+(y−y0)2

2ρ2 dx dy = E[X − E[X]]E[Y − E[Y ]] = 0 where X and Y are
independent Gaussian random variables with the same variance ρ2, but with different means: E[X] =
x0,E[Y ] = y0. Therefore,

Var[x̂0] ≥
I02π
ρ2

I02π
ρ2 × I02π

ρ2

= ρ2

I02π . (21)

We note that the Cramér-Rao lower bound is minimized by minimizing ρ (a more focused beam) for fixed
signal power. The Cramér-Rao lower bounds goes to zero at the rate O(ρ2) as ρ→ 0, where O represent
the “big O” notation. Moreover, the Cramér-Rao lower bounds goes to zero in terms of I0 at the rate
O(I−1

0 ).
2) Estimation of x0: Low Signal-to-Noise Ratio

In this case, let us assume that λnA >>
∫∫
Am

I0
ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 dx dy. Then, Λm ≈ λnA. In this case,
the square root of the term with the minus sign in the denominator (the denominator is given by (65)) is

1
λnA

M∑
m=1

∫∫
Am

I0

ρ4 (y − y0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy ×
∫∫

Am

I0

ρ4 (x− x0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy, (22)

which is zero due to the symmetric nature of the Gaussian beam. Therefore, by further simplification,

Var[x̂0] ≥ λnρ
8

I2
0
× A∑M

m=1

(∫∫
Am

(x− x0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy

)2 (23)

which goes to

Var[x̂0] ≥
λnρ8

I2
0∫∫

A(x− x0)2e
− (x−x0)2+(y−y0)2

ρ2 dx dy

= 2ρ4

π
(
I2

0
λn

) (24)

as M → ∞. In this case, the Cramér-Rao lower bound goes to zero at a rate O(ρ4) as ρ → 0. This is
a faster rate of convergence than O(ρ2) for the high signal-to-noise ratio case. Additionally, Cramér-Rao
lower bound converges to zero at the rate O(I−2

0 ) in the low signal-to-noise ratio regime.

V. Cramèr-Rao Lower Bounds for Beam Parameter Estimation Based on Data Symbols
Since pilot symbols incur a loss in energy and bandwidth, there is a motivation to use data symbols

for the estimation of beam parameters even though the use of data symbols may result in some loss
in estimation performance. In this section, we derive the Cramér-Rao lower bounds of beam parameters
based on PPM data symbols. As discussed in Section II-B, we can either use either one PPM symbol
period or a PPM slot (slot containing the pulse) period as our observation interval. We first look at the
Cramér-Rao lower bounds related to the symbol period based observation in the next section.
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Fig. 2: This figure shows an 8-PPM scheme. The blue circles indicate signal photons and the red circles
indicate noise photons. The observation based on the (signal) slot period contains a higher signal-to-noise
ratio (eight times higher) as compared to the observation based on one symbol period.

A. Observations Based on Symbol Period
In this case, the noise power goes up K times where K is the number of slots in PPM. Thus, the new

λ′n , Kλn, and Zm ∼ Poisson(Λ′m), where

Λ′m ,
∫∫

Am

(
I0

ρ2 exp
(
−(x− x0)2 + (y − y0)2

2ρ2

)
+ λ′n

)
dx dy. (25)

Thus, in this case,

p(Z|θ) ,
M∏
m=1

e−Λ′m (Λ′m)Zm

Zm! . (26)

B. Observations Based on Slot Period: A Decision-Aided Scheme
The motivation behind choosing the slot period is to maximize the signal-to-noise ratio in the sufficient

statistic. If the slot containing the signal is chosen, the resulting signal-to-noise ratio is K times bigger
than the signal-to-noise ratio available in a symbol period. However, for the slot period case, we depend
on the correct decision of the receiver to choose the “right” slot that contains the signal. If the receiver
makes a mistake, we end up choosing a “noise-only” slot and the resulting noise photons do not give
us any information about the beam parameters. Therefore, if the receiver starts making too many errors,
the estimation performance will take a significant hit. Thus, in the slot period case, the correct symbol
decision is the key to a good estimation performance, and we term the estimation based on slot period
alternatively as decision-aided estimation of beam parameters.
Fig. 4 shows the block diagram of the decision-aided beam position estimation scheme in which the

output of the equal gain combiner is fed into the beam position estimation block. If the equal gain combiner
declares some symbol j as the transmitted (K-PPM) symbol for 0 ≤ j < K, the beam position estimation
block chooses the jth slot as its observation interval.
For observation based on one slot, Zm ∼ Poisson (Λm) , with probability Pc and Zm ∼ Poisson(λnA)

with probability (1−Pc). Thus, Zm is a doubly stochastic Poisson process or a Cox process whose intensity
varies randomly according to the Bernoulli distribution as follows:

p(ξ) = Pcδ(ξ − Λm) + (1− Pc)δ(ξ − λnA), (27)

where δ(·) is the Dirac delta function. Therefore, the likelihood function becomes

p(Z|θ) , Pc
M∏
m=1

e−Λm (Λm)Zm

Zm! + (1− Pc)
M∏
m=1

e−λnA (λnA)Zm

Zm! . (28)
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Fig. 3: This figure shows the probability of correct decision of the equal gain combiner receiver as
a function of noise parameter λn for different values of beam radius ρ for the 4 × 4 detector array.
The modulation scheme considered in this case is 8-PPM. The received signal intensity is measured in
terms of 10 signal photons received on average, and the area of the array |A| = 4 mm2 The value of
(x0, y0) = (0.4, 0.4).

The quantity Pc is the probability of a correct decision of the equal gain combiner. It can be shown that
for a maximum a posteriori probability detector that operates on a K-PPM symbol, we have that

Pc = (P ({Zs > Zn}))K−1 = (P ({(Zs − Zn) > 0}))K−1 . (29)

In (29), Zs ∼ Poisson(Λs) and Zn ∼ Poisson(λn|A|). The random variable Z , Zs−Zn is a (discrete)
Skellam random variable whose distribution is

P ({Z = z}) = e−(Λs+λn|A|)
(

Λs

λn|A|

)z/2
Iz

(
2
√

Λsλn|A|
)

, (30)

where Iz(·) is the modified Bessel function of the first kind (not to be confused with peak intensity I0).
Thus,

P ({Z > 0}) =
∞∑
z=1

P ({Z = z}) =
∞∑
z=1

e−(Λs+λn|A|)
(

Λs

λn|A|

)z/2
Iz

(
2
√

Λsλn|A|
)

.

Fig. 3 shows the probability of correct decision Pc for different values of beam radius ρ. A large beam
radius results in some loss of energy since some of the beam energy falls off the edge of the array. This
leads to a lower probability of correct decision for larger beam radii. Finally, since Pe = 1−Pc, we have
that

Pe = 1−
 ∞∑
z=1

e−(Λs+λn|A|)
(

Λs

λn|A|

)z/2
Iz

(
2
√

Λsλn|A|
)K−1

. (31)

1) Monte Carlo Expectation
It is not straightforward to compute the probabilistic expectations E

[
∂2 ln p(Z|θ)

∂I2
0

]
, E

[
∂2 ln p(Z|θ)
∂I0∂x0

]
, E

[
∂2 ln p(Z|θ)
∂I0∂y0

]
,

E
[
∂2 ln p(Z|θ)

∂x2
0

]
, E

[
∂2 ln p(Z|θ)

∂y2
0

]
and E

[
∂2 ln p(Z|θ)
∂x0∂y0

]
for the likelihood function in (28). Thus, we resort to the
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Fig. 4: This figure shows the block diagram of the decision-aided beam position estimation system. The
output of the equal gain combiner is fed into the beam position estimation block so that the “right” slot
is chosen for estimation purpose.

Monte Carlo simulations to compute these expectations. The simulations are carried out as follows:
1) Sample 1 with probability Pc and 0 with probability 1− Pc.
2) If 1, then sample Z1 from Poisson(Λ1), Z2 from Poisson(Λ2), . . . ,ZM from Poisson(ΛM). Else,

sample sample Z1 from Poisson(λnA), Z2 from Poisson(λnA), . . . ,ZM from Poisson(λnA).
3) Substitute the Zm’s obtained from Step 2 into each of the second order partial derivatives: ∂

2 ln p(Z|θ)
∂I2

0
,

∂2 ln p(Z|θ)
∂I0∂x0

, ∂
2 ln p(Z|θ)
∂I0∂y0

, ∂
2 ln p(Z|θ)
∂x2

0
, ∂

2 ln p(Z|θ)
∂y2

0
and ∂2 ln p(Z|θ)

∂x0∂y0
, and store the resulting values.

4) Repeat Step 1, Step 2 and Step 3 until the required number of simulations is reached.
5) Compute the sample mean of the values obtained in Step 3.

VI. Two-Step Estimation of Beam Parameters
In this section, we will look at a two-step estimation algorithm that is used for estimating the beam

parameters. The two-step estimation algorithm is defined as follows:
1) In the first step, the peak intensity I0 and background radiation λn are estimated using a method of

moments estimator.
2) The estimates Î0 and λ̂n obtained from Step 1 are substituted into the loglikelihood function

ln p(Z|θ) and the estimate of (x0, y0) is obtained by maximizing the loglikelihood function (maxi-
mum likelihood estimation).

Alternatively, all the four parameters (x0, y0, I0,λn) can be estimated via the maximum likelihood estima-
tor. However, since no closed-form expressions for the maximum likelihood estimator are available, we
have to resort to numerical optimization techniques (such as a genetic algorithm) in order to find the peak of
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the loglikelihood function. This incurs a much higher computational complexity if all the four parameters
are estimated with the maximum likelihood estimator. The two-step estimation algorithm reduces the
complexity since two of the four parameters (I0 and λn) can be estimated via the computationally
efficient method of moments estimator without any knowledge of (x0, y0), and the numerical search for
the maximum of loglikelihood function is limited to just two dimensions in order to find (x̂0, ŷ0).

A. Method of Moments Estimator of I0 and λn
1) Pilot Symbol Case
The method of moments estimator of I0 for the pilot symbol case is

Î0 = 1
2πN

(
N∑
i=1

M∑
m=1

Z
(s)
i,m

)
− λ̂n|A|

2π , (32)

where Z(s)
i,m is a Poisson random variable with mean Λm. The method of moments estimator of λn is

λ̂n = 1
|A|N

N∑
i=1

M∑
m=1

Z
(n)
i,m (33)

where Z(n)
i,m is a Poisson random variable with mean λnA. It can be easily shown that E[λ̂n] = λn, and

E[Î0] = 1
2πN

(
N∑
i=1

M∑
m=1

E
[
Z

(s)
i,m

])
− E

[
λ̂n
] |A|

2π (34)

= 1
2π

M∑
m=1

∫∫
Am

I0

ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 dx dy + λnA− λn
|A|
2π (35)

= 1
2π (I02π + λn|A|)−

λn|A|
2π = I0. (36)

Thus, both Î0 and λ̂n are unbiased estimators of I0 and λn, respectively.
It is straightforward to verify that

E
[(
λ̂n − λn

)2
]

= E
[
λ̂2
n

]
− λ2

n = λn
NMA

= λn
N |A| . (37)

The mean-square error between Î0 and I0 is

E
[(
Î0 − I0

)2
]

= Var
(
Î0 − I0

)
= Var

(
Î0
)

(38)

= 1
(2πN)2

N∑
i=1

M∑
m=1

Var
(
Z

(s)
i,m

)
+
(
AM

2π

)2
Var

(
λ̂n
)

(39)

= 1
(2πN)2

N∑
i=1

M∑
m=1

(
λ(s)
m + λnA

)
+
(
AM

2π

)2 λn
NMA

(40)

= I0

2πN + λnAM

2π2N
= 1

2πN

(
I0 + λnAM

π

)
. (41)

2) Decision-Aided Estimation (Observations Based on Slot Period)
In this case, the generation of photon counts are governed by a doubly stochastic Poisson process. Thus,

E[Î0] = 1
2πN

N∑
i=1

M∑
m=1

E[Zm]− E[λ̂n]AM2π , (42)
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where E[Zm|c] = Λm = Λ(s)
m + λnA and E[Zm|e] = λnA. Therefore,

E[Zm] = Λ(s)
m Pc + λnA. (43)

Therefore,

E[Î0] = 1
2πN

N∑
i=1

M∑
m=1

(
Λ(s)
m Pc + λnA

)
− λnAM

2π (44)

= PcI0. (45)

Moreover,

Var
[
Î0
]

= 1
(2πN)2

N∑
i=1

M∑
m=1

Var[Zm] + Var[λ̂n]
(
AM

2π

)2
(46)

= 1
(2πN)2

N∑
i=1

M∑
m=1

Λ(s)
m (Pc + λnA) + λnAM

N(2π)2 (47)

= 1
(2πN)2 [PcI02πN + λnAMN ] + λnAM

N(2π)2 = PcI0

2πN + λnAM

2π2N
(48)

= 1
2πN

(
PcI0 + λnAM

π

)
. (49)

Finally, since Var
(
Î0 − I0

)
= Var

(
Î0
)
, we have that

E
[(
I0 − Î0

)2
]

= Var
[
I0 − Î0

]
+
(
E
[
I0 − Î0

])2
= Var

(
Î0
)

+ (I0 − I0Pc)2 (50)

= 1
2πN

(
PcI0 + λnAM

π

)
+ I2

0 (1− Pc)2. (51)

B. Maximum Likelihood Estimation of (x0, y0)
For the pilot symbol scheme, the maximum likelihood estimator of beam position (x0, y0) on the array

is given by [6]:

(x̂0, ŷ0) , arg max
x0,y0

ln p (Z1,Z2, . . . ,ZM |x0, y0)

= arg max
x0,y0

M∑
m=1

Zm ln
(
Î02π

[
Φ
(
ym2 − y0

ρ

)
− Φ

(
ym1 − y0

ρ

)] [
Φ
(
xm2 − x0

ρ

)
− Φ

(
xm1 − x0

ρ

)]
+ λ̂nA

)

−
Î02π

Φ
 `(A)

2 − y0

ρ

− Φ
− `(A)

2 − y0

ρ

Φ
 `(A)

2 − x0

ρ

− Φ
− `(A)

2 − x0

ρ

+ λ̂n|A|
 , (52)

where Φ(·) is the cumulative distribution function of a standard normal random variable, and Î0 and λ̂n
are the method of moments estimates of I0 and λn, respectively. The quantity (xm2 , ym2) is the location
of the north east corner of the mth detector, and (xm1 , ym1) is the position of south west corner.
For estimation based on data symbols, the maximum likelihood estimate is obtained by maximizing

(26) (symbol period) or by maximizing (28) (slot period).
Regarding the maximization of the loglikelihood functions (3), (26) and (28), we have to resort to a

genetic algorithm to look for the global maximum.
The mean-square error of the maximum likelihood estimator is computed via Monte Carlo simulations.

The average of the squared errors is computed by repeating the experiment many times and then computing
the sample average of the squared errors.
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Fig. 5: This figure shows the Cramèr-Rao lower bound on the variance of unbiased estimators of beam
center position (x0, y0) (left) and the peak intensity I0 (right) as a function of noise parameter λn for
one pilot symbol. These curves are plotted for different values of number of detectors M in the array.
The value of I0 = 1.6 which gives an average signal photon rate of 10 photons/slot period. The value of
(x0, y0) = (0.4, 0.4).

VII. Simulation Results and Discussion
In this section, we interpret the simulations results that we have obtained in this study. In these

simulations, we have considered the low photon rate regime. In this regard, we have considered—on
average—10 signal photons for the entire array during the observation interval. These low photon rate
channels are of interest in deep space communications where the received signal energy is so low that we
are only able to detect a few signal photons per slot of a PPM symbol [1], [6]. Additionally, the low rate
of photons has also to do with the “blocking” phenomenon of avalanche photodetectors that are operated
in Geiger mode as photon counters. The blocking occurs because the detection of the first signal photon
causes an avalanche of electrons, and this avalanche has to be quenched by an avalanche recovery circuit,
and the bias has to be restored, before the next photon can be detected. Thus, the detector “sleeps” or
gets “blocked” for a few microseconds before it is ready to detect the next incoming photon.

In the discussion that follows, λn is measured in terms of average number of noise photons that occur
during an observation interval.

For all the experiments, the area of the detector array |A| = 4 mm2. This detector array extends from
-1 mm to 1 mm in each of the two dimensions, and the center of the array coincides with the origin.
Additionally, we want to emphasize that the area of the array |A| is fixed irrespective of the number of
detector M in the array. Thus, a larger M implies a smaller area per detector.
In terms of notation, we want to point out that the expression CRLB(x0, y0) denotes the sum of individual

Cramér-Rao lower bounds—CRLB(x0) and CRLB(y0). This is true since these two parameters can be
treated independently of each other due to circularly symmetric nature of Gaussian beam.

Fig. 5 indicates the Cramér-Rao lower bound plots for (x̂0, ŷ0, Î0) as a three-parameter estimation
problem as defined in (12), (13) and (14). These curves are plotted as a function of noise parameter λn.
Fig. 6 depicts the Cramér-Rao lower bound curves as a function of number of pilot symbols used as
observations in the estimation of parameters.

Fig. 7 shows the Cramér-Rao lower bound plots as a function of beam radius ρ at the point (x0, y0) =
(0.4, 0.4). We note that the Cramér-Rao lower bound of Î0 increases monotonically with ρ. However, for
the CRLB of (x̂0, ŷ0), we see that there is an optimum value of ρ (lets call it ρ∗M for the M -cell array)
at which the Cramér-Rao lower bound is minimized. Additionally, ρ∗N < ρ∗M for N > M . Intuitively,
these observations are straightforward to explain. For a fixed signal-to-noise ratio, if the beam footprint
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Fig. 6: This figure shows the Cramèr-Rao lower bound on the variance of unbiased estimators of beam
center position (x0, y0) (left) and the peak intensity I0 (right) as a function of the number of pilot symbols
N needed in order to estimate (x0, y0). The average signal photon rate is 10 photons/slot period. The
average noise power for both cases is λn = 1 photons/slot period for the figure on top, and λn = 10
photons/slot period for the figure at the bottom.

0.1 0.2 0.3 0.4

10−3

10−2

10−1

100

101

ρ (mm)

C
R

LB
(x

0,
y 0

)
(m

m
)

M = 4
M = 16
M = 64

0 0.1 0.2 0.3 0.4
10−0.6

10−0.55

10−0.5

ρ (mm)

C
R

LB
(I

0)
(W

at
ts

)

M = 4
M = 16
M = 64

Fig. 7: This figure shows the Cramèr-Rao lower bound on the variance of unbiased estimators of beam
center position (x0, y0) (left) and the peak intensity I0 (right) as a function of the beam radius ρ. The
value of x0 and y0 are both set to 0.4 mm on the array. The average signal photon rate is 10 photons/slot
period, and the average number of noise photons λn = 1 photon/slot period for both the figures.

is small, but at least covers one detector completely, then such a small beam footprint will minimize the
mean-square error. This is true since all the power is focused into a small region on the array where the
number of noise photons (on average) is relatively small, and this fact will help the estimator in order to
estimate the beam position more accurately as opposed to a more “spread out” beam.

However, if the beam radius is much smaller than the dimensions of a single detector, then the beam
will only give rise to photons in the detector in which it is located, and the neighboring detectors will
not register any signal photons. Since we round off the locations of the photons—that occur inside a
given detector—to the center of that detector, any movement of the “super thin” beam inside the given
detector cannot be tracked. Therefore, the Cramér-Rao lower bound rises if ρ diminishes beyond a certain
(optimum) value.
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Fig. 8 and Fig. 9 show the effect of beam radius on the Cramér-Rao lower bounds of (x̂0, ŷ0) and Î0 as
a function of (x0, y0) for a 4× 4 detector array when pilot symbols are used for parameter estimation. In
these figures, the beam center (x0, y0) varies along a diagonal on the array, i.e. from point (−0.8,−0.8)
to point (0.8, 0.8). For (x̂0, ŷ0), we note that for small ρ, the Cramér-Rao lower bound is highly sensitive
to the location of the beam center (x0, y0). For example, if we consider the case for ρ = 0.12 mm, we
note that the diameter of the beam 2ρ is much smaller than the breadth of a single detector in this case
(the breadth of a single detector for a 4 × 4 array is `(Am) = 0.5 mm). Thus. 2ρ << `(Am). First, we
note that the points (−0.75,−0.75), (−0.25,−0.25), (0.25, 0.25), (0.75, 0.75) correspond to the centers of
the detectors on the diagonal, and the points (−0.5,−0.5), (0, 0), (0.5, 0.5) corresponds to the edges of
detectors. We additionally note that the Cramér-Rao lower bound attains its peak value at the centers of
detectors and its minimum values on the edges. This pattern is explained by our earlier understanding (as
argued during elaboration of Fig. 7) that when the beam is very thin and its center resides on the center
of a particular detector, then all the energy of the beam resides in that particular detector, and a small
movement of the beam cannot be detected by the array. However, if the beam center of such a thin beam
lies on the edge of a detector, its slightest movement can be tracked by detecting the change in the energy
difference of the two detectors that share the edge. For the case of M = 64, `(Am) = 0.25 mm, and since
2ρ ≈ `(Am), we observe that the fluctuation of the Cramér-Rao lower bound as a function of (x0, y0) is
almost negligible.

When the beam radius is larger such that 2ρ > `(Am), then the energy of the beam is not confined to
a single detector regardless of where the beam center resides on the array. In this case, any movement of
the beam will be registered because of change in the detected energy reported by the detectors. However,
whether the beam diameter is large or small, once the beam center gets too close to the edge of the array,
part of the beam energy will fall off the edge of the array and the detector array will experience a net
loss in received signal energy. This leads to a higher Cramér-Rao lower bound at the edges of the detector
array. Additionally, even though the fluctuation in Cramér-Rao lower bound is minimized for a higher
beam radius, the minimum value of the Cramér-Rao lower bound suffers significantly (the minimum value
of Cramér-Rao lower bound goes up) as compared to the smaller beam radius scenario. This is because
with a larger beam radius, the signal energy is spread out to a larger number of detectors, which results in
a smaller signal-to-noise ratio per detector. With a smaller beam radius, the beam energy is confined to a
smaller number of detectors, and the average signal-to-noise ratio in these detectors remains significantly
higher compared to the large beam radius case. This observation corroborates our previous assertion
that the Cramér-Rao lower bound decays as O(ρ2) and O(ρ4) for the high and low signal-to-noise ratio,
respectively, as ρ→ 0 for the continuous array (see (21), and (24)).

Regarding the Cramér-Rao lower bound of Î0, we observe that the Cramér-Rao lower bound is not very
sensitive to the beam radius and the performance does not change significantly over the chosen range of
beam radii. Additionally, the Cramér-Rao lower bound performance between the 4 × 4 detector and the
8× 8 case is not significant.

Fig. 10 illustrates the Cramér-Rao lower bound comparisons for the observations based on pilot symbols
versus data symbols. We note that—as expected—the Cramér-Rao lower bound based on pilot symbols
outperforms the Cramér-Rao lower bound based on data symbols (both for slot period and symbol period).
We also note that the Cramér-Rao lower bound based on slot period performs better than the Cramér-Rao
lower bound related to symbol period for large SNR, and the gap between the performance of the two
schemes closes as λn grows large. Fig. 11 show the performance comparison of the maximum likelihood
estimator of (x0, y0) for the pilot and data symbol based observations, and we see a similar trend as the
Cramér-Rao lower bound curves in Fig. 10.

Fig. 12 and Fig. 13 depict the performance of the method of moment estimator of λn and I0, respectively.
The performance of the method of moments estimator is compared with the Cramér-Rao lower bound
as well. We note in Fig. 13 an interesting case where the mean-square error of the method of moments
estimator based on slot period exceeds the mean-square error based on symbol period for large λn.
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Fig. 8: This figure shows the effect of beam radius ρ on the Cramér-Rao lower bound on the variance of
unbiased estimators of (x0, y0) and I0 for the 4×4 and 8×8 detector arrays. The value of noise parameter
λn is 1 photon/slot period. The average signal photon rate is 10 photons/slot period.
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Fig. 9: This figure shows the effect of beam radius on the Cramér-Rao lower bound on the variance of
unbiased estimators of (x0, y0) and I0 for the 4 × 4 and 8 × 8 detector arrays. The number of average
received signal photons/symbol is 11. The value of noise parameter λn is 1 photon/slot period. The average
signal photon rate is 10 photons/slot period.
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Fig. 10: This figure shows the Cramèr-Rao lower bound on the variance of unbiased estimators of beam
center position (x0, y0) (left) and the peak intensity I0 (right) as a function of noise parameter λn for three
types of observations: pilot symbol, symbol period, and (signal) slot period. The average signal photon
rate is 10 photons/slot period and the beam radius is 0.2 mm.
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Fig. 11: This figure shows the performance of the the maximum likelihood estimator of (x0, y0) which
is carried out for three different observations: pilot symbol, symbol period, and (signal) slot period. The
average signal photon rate is 10 photons/slot period, and the beam radius is 0.2 mm. The performance
of the maximum likelihood estimator is compared to the Cramér-Rao lower bound for the pilot symbol
observations.
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Fig. 12: This figure shows the performance of the method of moments estimator of the noise parameter
λn for a 4× 4 array. The noise parameter is estimated by simply turning the transmitter off during regular
intervals of time.
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Fig. 13: This figure shows the performance of the method of moments estimator of I0 for the three different
observations: pilot symbol, symbol period, and (signal) slot period. The average signal photon rate is 10
photons/slot period, and the beam radius is 0.2 mm. The performance of the method of moments estimator
is compared with the Cramér-Rao lower bound of pilot symbol scheme as well. The number of detectors
in the array is M = 16 (a 4× 4 array).



22

VIII. A Brief Complexity Analysis of Estimators
It is easy to see from (32) and (33), that the computational complexity of the method of moments

estimator is O(M) real additions if just one symbol is used for the purpose of estimation.
Regarding the maximum likelihood estimator, first we need O(M) real additions and O(M) real

multiplies (see (52)) in order to compute the loglikelihood function. Thereafter, a genetic algorithm is
employed in order to find the global maximum of the loglikelihood function. The complexity of the real
number genetic algorithm is discussed in detail [6]. We note from [6] that the complexity of the genetic
algorithm is a function of number of chromosomes, Nc, and the number of generations9, Ng. The values
of Nc and Ng have to be chosen according to the nature of the objective function—a “spikier” function
requires relatively large Ng and Nc for convergence to the true maximum. Additionally, the larger the
number of dimensions of the objective function, the larger the values of Nc and Ng in order to speed up
convergence. In our simulations, we set Nc = 50, and Ng = 400. Since the value of the loglikelihood
function is computed for each chromosome, the total complexity of the maximum likelihood estimator is
approximately Nc ×Ng ×O(M) real multiplications and real additions 10.
The interested reader is referred to [26] for more details on genetic algorithms.

IX. Conclusion
In this paper, we have analyzed the Cramér-Rao lower bounds for the robust beam position estimation

problem for a deep space optical communication system that uses an array of photon counting detectors
at the receiver. In this regard, we derived the Cramér-Rao lower bounds for observations based on pilot
symbols as well as data symbols (symbol period and slot period) of the pulse position modulation scheme.
Even though the pilot symbols provide a superior performance in terms of estimation of beam parameters,
we pay an extra price in terms of a larger bandwidth and a higher energy expenditure for transmission
of dedicated pilot symbols. With data symbols, no extra bandwidth and energy expenditure is required.
Additionally, for estimation of beam parameters with data symbols, we discovered that the estimators based
on slot period outperform the estimators based on a symbol period, especially for the high signal-to-noise
ratio case.

Appendix
Taking the first partial derivative of the loglikelihood function, we have that

∂ ln p(Z|x0, y0)
∂x0

=
M∑
m=1

Zm
Λm

∫∫
Am

I0

ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0)
ρ2 dx dy −

∫∫
A

I0

ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0)
ρ2 dx dy

≈
M∑
m=1

Zm
Λm

∫∫
Am

I0

ρ4 (x− x0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy (53)

since
∫∫
A
I0
ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 (x−x0)
ρ2 dx dy is approximately zero because it can be approximated as∫∫

A

I0

ρ2 e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0)
ρ2 dx dy ≈ κ0 (E[X]− x0) (54)

where κ0 is a constant, and E[X] = x0. Tis approximation is valid when `(A) >> ρ and the beam resides
well within the boundaries of the array. Additionally,

∂2 ln p(Z|x0, y0)
∂x2

0
≈

M∑
m=1
−ZmΛ2

m

(∫∫
Am

I0

ρ4 (x− x0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy

)2

9The number of generations can be regarded as the number of iterations required in order to converge to the true maximum/minimum of
the objective function.

10This does not include the complexity involved in comparing the fitness of the chromosomes during each iteration of the algorithm.
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−
M∑
m=1

Zm
Λm
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I0

ρ4 e
− (x−x0)2+(y−y0)2

2ρ2 dx dy +
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Zm
Λm
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Am

I0

ρ6 (x− x0)2e
− (x−x0)2+(y−y0)2

2ρ2 dx dy. (55)

Now, the expectation is taken with respect to Zm:

− E
[
∂2 ln p(Z|x0, y0)

∂x2
0

]
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. (56)

Similarly, it can be shown that

−E
[
∂2 ln p(Z|x0, y0)

∂y2
0

]
=

M∑
m=1

1
Λm

(∫∫
Am

I0

ρ4 (y − y0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy
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. (57)

Furthermore,

∂2 ln p(Z|x0, y0)
∂x0∂y0

=
M∑
m=1
−ZmΛ2

m
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2ρ2 dx dy ×
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+
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− E
[
∂2 ln p(Z|x0, y0)
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]

=
M∑
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1
Λm

∫∫
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I0

ρ4 (y − y0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy
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I0

ρ4 (x− x0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy

−
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I0
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2ρ2 dx dy (59)

where,
∫∫
A
I0
ρ6 (x− x0)(y − y0)e−

(x−x0)2+(y−y0)2

2ρ2 dx dy ≈ 0 since it can be approximated as∫∫
A

I0

ρ6 (x− x0)(y − y0)e−
(x−x0)2+(y−y0)2

2ρ2 dx dy ≈ κ1 [(E[X]− x0)(E[Y ]− y0)] (60)

where E[X] = x0 and E[Y ] = y0 for some constant κ1. This approximation is valid if `(A) >> ρ and the
beam resides well within the boundaries of the array. Therefore,

−E
[
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=
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= −E
[
∂2 ln p(Z|x0, y0)

∂y0∂x0

]
. (61)

Moreover, the Fisher Information Matrix is

I(x0, y0) =

−E
[
∂2 ln p(Z|x0,y0)

∂x2
0

]
−E

[
∂2 ln p(Z|x0,y0)

∂x0∂y0

]
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[
∂2 ln p(Z|x0,y0)

∂y0∂x0

]
−E

[
∂2 ln p(Z|x0,y0)

∂y2
0

]
 , (62)

and Var [x̂0] ≥ [I−1(x0, y0)]1,1, and Var [ŷ0] ≥ [I−1(x0, y0)]2,2. Finally,

Var[x̂0] ≥

∑M
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I0
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Ψ(x0, y0, I0, ρ) , (63)

and

Var[ŷ0] ≥
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Ψ(x0, y0, I0, ρ) , (64)

where

Ψ(x0, y0, I0, ρ)

,

 M∑
m=1

1
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)2 . (65)
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