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Abstract

Energy markets facilitate the balancing of electricity generation (supply) and demand while ensuring
non-discriminatory access. Understanding energy market dynamics is essential to improving grid effi-
ciency and resilience and optimizing the development of new energy conversion and storage technologies.
Accurate energy price forecasts are essential for many energy storage technologies to be profitable from
price arbitrage. In this paper, we apply the novel spatial-temporal dimensionality reduction method of
Dynamic Mode Decomposition (DMD) to forecast 6587 locational marginal prices in the California Inde-
pendent System Operator (CAISO) on the Day-Ahead Market (DAM). DMD is a promising equation-free
modeling technique in systems with inherent periodic tendencies in time such as financial markets and
fluid dynamics. Yet we show, for the first time, that DMD cannot reliably forecast day-ahead energy
prices due to the so-called standing wave problem. Instead, we find Augmented DMD (ADMD) overcomes
these limitations is a fast and accurate price forecaster. We benchmark DMD, ADMD, and backcasting
forecasting methods for optimal price arbitrage with an energy storage system. We find, using ADMD, a
market-connected energy storage system can capture up to 92% of allowable revenues in rolling horizon
simulations. Lastly, we show ADMD is up to 1000-times faster than time-series forecasting methods (i.e.,
ARIMA) which requires orders of magnitude less data than deep/machine learning techniques.
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1. Introduction

Wholesale energy markets are ubiquitous across the globe and provide a competitive mechanism to bal-
ances electrical energy supply and demand and ensure reliable operation of large-scale power systems.[41]
Energy prices encapsulate complex trade-offs between costs and flexibility of diverse generation technolo-
gies (e.g., coal, nuclear, natural gas, solar, wind, hydro), demand elasticity (e.g., demand response), and
operational limits of high-voltage transmission systems. These constraints interact with uncertainties from
demand, renewable availability, unplanned equipment outages to create strong spatial-temporal variations
in energy prices.[12, 40] Figure 1 illustrates stochastic and periodic variations in wholesale prices for six
nodes in the day-ahead market run by the California Independent System Operator (CAISO). In this paper,
we analyze hourly time-series data obtained from http://oasis.caiso.com/ for all 6587 nodes (locations)
during the calendar year 2015. Descriptive statistics for these data are reported in [12, 13].

The economics of modern electricity generation and consumption is driven by these price variations. For
example, the economic case for energy storage systems is based, in part, on energy arbitrage. Through “buy
low, sell high” operating policies, storage systems can monetize time fluctuations in wholesale energy prices.
In their seminal work, Walawalkar et al. [48] use mathematical optimization to estimate the maximum possi-
ble revenue from historical market data and compare energy storage technology options. This now-standard
approach has been applied by many technologies including batteries[12, 43, 16, 30, 44], and concentrated
solar thermal with energy storage[13, 25, 22, 27, 14]. Likewise, time-varying energy prices incentivize large
energy consumers to either directly participate in wholesale markets or demand response programs.[1, 34].
Early work focused on optimizing the schedule of large energy consumers such as flour mills, air separation,
and combined heat and power plants subject to time-varying electricity prices.[mitra2013optimal , 4, 21,
5, 29] Recent work has focused on providing ancillary services with aluminum smelters, air separation plants,
heat ventilation and air conditioning systems, and chemical plants.[dowling2018economic, 50, 49, 32] Yet
many of these approaches assume market forecasts are available.

Figure 1: Day-ahead market (DAM) electricity prices for six nodes (locations) in the California from
January 25th 28th, 2015. DAM prices exhibit strong daily trends typified with valleys (minimums) at

midday and at night and peaks (maximums) in the morning and evening.

Both time-series and machine learning techniques have been used to extract trends from massive market
datasets and make accurate forecasts. For example, Conejo et al. demonstrate autoregressive integrated
moving average (ARIMA) models can predict 2002 Spanish DAM market prices with 10% mean squared error
(MSE).[9] Likewise, Garcia et al. used generalized autoregressive conditional heteroskedasticity (GARCH)
methods to predict Spanish and California DAM market prices from 2000 with 10% MSE.[18] These classical
time-series models require tedious hypertuning (e.g., feature selection, residual analysis), especially to capture
periodic trends. As such, recent work focuses on applying machine learning algorithms for DAM forecasting
[2, 17, 45, 6, 33, 35, 39, 3, 35, 26]. For example, Lora et al. demonstrated 8% MSE for forecasting 2001 Spanish
DAM prices using a weighted nearest neighbor approach. Similarly, Catalão et al. used a feed forward neural
network to forecast 2002 Spanish and 2000 California day-ahead market prices, achieving 8% and 3% MSE,
respectively. They find that the feedforward neural network is less computationally intensive than an ARIMA
forecast. However, neural network methods are known to struggle with noise and recapitulating multiscale
dynamics[39, 46]. To address these issues, Shafie-khah et al. combined wavelet transformations, ARIMA,
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and neural networks to forecast DAM prices in Spain from 2002 [39] and demonstrated 5% MSE. Similarly,
Tan et al. combined ARIMA, GARCH, and wavelet transformations to achieve near 1% MSE in forecasts for
the Spanish and PJM DAM [46]. Wavelet transformations add robustness to noise and provide a systematic
framework to capture diverse timescale[46, 3, 8]. All of these frameworks build individual forecasting models
for each node in the electricity market, which can cause high computational times, necessitate model tuning
at each node, and offers no fundamental insights about the aggregated dynamics of energy markets.

In this paper, we propose the first application of Dynamic Mode Decomposition (DMD) to forecasting
day-ahead energy market prices. DMD is a so-called equation-free dimensionality reduction technique to
extract complex, nonlinear, periodic behavior from experimental and computational simulations.[37, 38, 31,
47, 24, 38, 36] DMD is best-known for its ability to discover low-dimension spatial and temporal insights from
computational fluid dynamics, although emerging applications include video processing and financial (stock)
markets[24]. For example, Mann and Kutz[28] proposed a stock trading algorithm build on spatiotemporal
information encoded in DMD modes and demonstrate 5 times higher growth than the S&P 500 index
via retrospective analysis. Likewise, Cui and Long[10] showed how DMD-based trading beat a benchmark
moving-average strategy in a bull market for Chinese A-stocks. Hua et al.[20] identified four new reproducible
modes (cycles) by analyzing stock prices between 1992 and 2014 for major companies. All of these works
underscore that DMD can successfully capture the underling nonlinear dynamics in stock markets from data
alone. In this paper, we show that Augmented DMD is an accurate short-term forecaster energy prices
in wholesale electricity markets. ADMD requires only a modest amount of training data, much less than
machine learning methods, and is orders of magnitude faster than ARIMA methods.

The paper is organized as follows: Section 2 provides a mathematical primer on DMD and Augmented
DMD (ADMD). Section 3 explores singular value decomposition (SVD) rank reduction, interprets dominate
DMD modes, shows how DMD suffers from the so-called standing wave problem. Section 4 demonstrates
the superior performance of ADMD. Section 5 demonstrates how ADMD forecasting can capture up to 92%
available revenue in a simple energy arbitrage optimize case study. Finally, Section 7 summarizes conclusions
and future work.

2. Mathematical Primer on DMD

In this section, we review the mathematical foundations of DMD in the context of energy market forecasts.
See Kutz et al.[24] and Schmid et al.[38] for additional details.

2.1. DMD Algorithm

DMD starts with an input matrix Xt ∈ Rm×n where the rows (m) of Xt are the spatial data features
and the columns (n) are discrete time measurements. For day-ahead energy market analysis, each row is a
node (location in the transmission network), each column is an hour, and each element is a price. The price
matrix Xt is then partitioned into two matrices X ∈ Rm×(n−1) and X′ ∈ Rm×(n−1), as shown in Eqs. (2)
and (3). Here each xi ∈ Rm×1 is a single time step of spatial data in price matrix Xt.

Xt = [x1 · · ·xn] (1)

X = [x1 · · ·xn−1] (2)

X′ = [x2 · · ·xn] (3)

The overall goal of DMD is to compute a best fit linear operator, A ∈ Rm×m in Eq. (4), which advances
the energy price dynamics by one timestep (one hour).

AX ≈ X′ (4)

A is a finite dimensional approximation to the infinite dimensional Koopman operator, K , which exactly
maps any measurement function f from one state vector, xi, to another state vector, xi+1:
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K f(xi) = f(xi+1) (5)

For practical analysis, we desire a low rank approximation to the linear operator A. This can be accom-
plished via singular value decomposition (SVD) of the data matrix X ∈ Rm×(n−1):

X = UΣV∗ (6)

Here U ∈ Rm×m and V ∈ R(n−1)×(n−1) are unitary matrices and ∗ is the conjugate transpose. Matrix
Σ ∈ Rm×(n−1) has singular values σ on the diagonal ordered σ1 ≥ σ2 ≥ ... ≥ σn−1. When m > n− 1, which
is often the case in DMD analysis, the bottom of Σ are rows of zeros:

U = [u1,u2, ...,um], Σ =



σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn−1

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


, V = [v1,v2, ...,vn−1] (7)

Retaining only the r largest singular values and vectors gives a rank r approximation to X. The choice
of r is an important tuning parameter in DMD workflows (see Section 3). The maximum number of singular
values is rmax = min(m,n− 1).

X ≈ Xr = UrΣrV
∗
r =

r∑
i=1

uiσiv
∗
i

Ur = [u1,u2, ...,ur], Σr =

σ1 . . . 0
...

. . .
...

0 . . . σr

 , Vr = [v1,v2, ...,vr]

(8)

Next, we calculate A using Eq. (4) and the pseudoinverse X−1. Substituting Eqs. (6) and (8) gives:

A ≈ X′X−1 = X′(UΣV∗)−1 = X′V∗Σ−1U ≈ X′VrΣ
−1
r Ur (9)

Often it is more convenient to use the low-rank projection Ã ∈ Rr×r:

Ã = U∗rAUr = U∗rX
′VrΣ

−1
r (10)

which advances the low-dimensional projected states, x̃ ∈ Rr×1, from timestep k to k + 1:

x̃k+1 = Ãx̃k (11)

High-dimensional states are reconstructed via projection with Ur ∈ Rm×r:

xk = Urx̃k (12)

Because Ã is a linear operator, the price trajectories can be calculated analytically using an eigendecom-
position:

ÃW = WΛ (13)

Here the columns of W ∈ Cr×r are eigenvectors and the diagonal of Λ are the corresponding eigenvalues.
The spatial modes, Φ = [φ1 · · ·φr] ∈ Cm×r, are then calculated via Eq. (14), and represent how prices
depend on geographic location in the electric transmission network. Next, the discrete time eigenvalues, Λ,
are converted to continuous time eigenvalues, Ω ∈ Cr×r, via Eq. (15). Here i and j are row and column
indices, respectively, such that i = j are the diagonals of Λ and Ω. Thus Ω encodes price time dynamics
that are independent of spatial behavior.
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Φ = X′VrΣ
−1
r W (14)

Ωij =

{
ln(Λij)

∆t if i = j

0 otherwise
(15)

The low-dimensional time dynamics, D(t) ∈ Cr×1, are defined in Eq. (16). The vector b ∈ Cr×1 is the
initial condition of the low-dimensional system, which is obtained by solving Eq. (17), often via least-squares.

D(t) = eΩtb (16)

Φb = x1 (17)

This concludes the decomposition of the original price data. A key advantage of DMD is that forecasting
for any time and every node (location) can be quickly computed via Eq. (18).

x(t) = ΦD(t) (18)

In DMD literature, reconstruction of the original data refers to evaluating Eq. (18) for all of the times
in the original original Xt input matrix. Recall that DMD assumes a low-dimensional linear system governs
the data. When this assumption is violated, the reconstructed prices can differ dramatically from the actual
(training) prices. We further discuss the relationship between reconstruction error and forecasting error in
Section 3.

2.2. Augmented DMD Algorithm

A well-documented challenge for standard DMD is modeling simple dynamics of standing waves, e.g.,
x(t) = sin(t) [24]. The fundamental problem for this example is that the input matrix X is rank one, and
as such DMD identifies a single mode with a positive real eigenvalue. But a sine wave is the solution to the
differential equation ẍ+ x = 0; a conjugate pair of complex eigenvalues are needed to correctly recapitulate
a sine wave. For typical days, the energy price closely resembles a simple oscillating wave (Fig. 1), which
offers one explanation for the mediocre reconstruction and forecasting errors with standard DMD.

Augmented DMD (ADMD) overcomes the so-called standing wave problem by stacking time-shifted copies
of input data to form the augmented input matrix which has higher rank than the original input matrix.
This is analogous to applying a finite difference rules to estimate unobserved derivates needed to model
higher order systems (e.g., sine wave) and differencing data to achieve stationary for ARIMA time-series
modeling [7]. To implement ADMD, we stack l < n time-shifted copies of the data to form the augmented
input matrix. The augmented matrix is then partitioned into two matrices, similar to Eqs. (2) and (3):

Xaug =


x1 x2 · · · xn−l
x2 x3 · · · xn−l+1

...
...

. . .
...

xl xl+1 · · · xn−1

 , X′aug =


x2 x3 · · · xn−l+1

x3 x4 · · · xn−l+2

...
...

. . .
...

xl+1 xl+2 · · · xn

 (19)

The DMD algorithm prescribed in Eqs. (2) - (18) is applied to augmented matrices Xaug ∈ R(m·l)×(n−l)

and X′aug ∈ R(m·l)×(n−l) in place of X and X′, giving eigenvalues Λaug and modes Φaug. The first m rows of
Φaug correspond to the current (not shifted) time and are used to forecast x(t). For ADMD, the maximum
number of singular values is rmax = min(m× l, n− l)

3. DMD Results and Discussion

We now apply DMD to CAISO energy price data. Our analysis focuses on truncation level, window size,
consistency, forecasting, interpretation of DMD modes. Throughout this paper, we measure percent error
using the `2 norm:

% error =
||Xt −XDMD||2

||Xt||2
× 100 (20)

where XDMD are either reconstructions or forecasts calculated with Eq. (18).
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3.1. Optimal Singular Value Trunctionation to Minimize Reconstruction Error

An essential tuning parameter in DMD analysis is the level of singular value truncation, especially for
noisy data[24]. We begin by systematically exploring the impact r, the number of singular values retained
in Eqs. (8) - (10) on reconstruction and forecasting error for DAM energy price data. It is well-known
that retaining too many singular values, especially for noisy datasets, can corrupt DMD results.[24] Fig. 2
shows this trade-off holds for DAM price data for all nodes for three days (Xt ∈ Rm=6587×n=96). Too
much truncation leads to decaying reconstruction with damped dynamics, whereas not enough truncation
leads to an exponentially growing reconstruction (diverges to ∞) with exaggerated dynamics. The optimal
truncation level was determined via sensitivity analysis and corresponds with the minimum reconstruction
error of 12%, computed via Eq. (20). We reiterate these findings are consistent with DMD literature for
noisy datasets.

Figure 2: Three DMD reconstructions for DAM energy prices from all nodes for January 1st to 4th, 2015
such that Xt ∈ Rm=6587×n=96. The mean price for all nodes is shown in black (dashed) and the mean DMD

reconstruction is shown in red (solid). Too much truncation, r = 70 (70/95 = 73.7%), causes the DMD
reconstruction to decay to constant value as t→∞. Too little truncation, r = 91 (91/95 = 96.8%) causes
the DMD reconstruction to diverge as t→∞. But with the best truncation, r = 82 (82/95 = 82.3%), the

DMD reconstructions recapitulates the dominant dynamics of the energy price signals.

We now explore how the optimal singular value truncation level, r, changes for different datasets. Fig. 3
shows the sensitivity analysis of reconstruction error versus r for three four-day windows considering all
nodes (Xt ∈ Rm=6587×n=96). For all three datasets, we clearly see the trade-off between not enough and
too much truncation. Moreover, the optimal truncation level (lowest reconstruction error averaged over all
nodes) varies between r = 81 and r = 91, which is 81/96 = 84% and 91/96 = 95% of the full rank number of
singular values. This means that standard DMD fails to extract coherent low-rank structures from the DAM
energy price data. Moreover, each individual training window requires a different r to recover the optimal
reconstruction. We will revisit these two observations in Section 4 when we discuss ADMD.

Next, we quantify how DMD performance varies for individual nodes. Fig. 4 shows the distribution of
reconstruction errors across all nodes for three 4-day training windows. These errors are approximately
normally distributed for the January 1st - 4th dataset, but skewed-left for the January 11th - 14th dataset
and bimodal for January 6th - 9th dataset. All three datasets show statistical outliers, which are likely due to
random phenomena in the market clearing (price setting) process. Next, we compute average reconstruction
errors for individual nodes using the optimal r (determined via sensitivity analysis) for all eight-day training
windows (Xt ∈ Rm=6587×n=192) spanning January 1st through 30th. Fig. 5 visualizes means reconstruction
errors in a histogram (all nodes) and overlaid on a map (≈ 2000 nodes with known latitude and longitude
coordinates). We find 75% of nodes have an average reconstruction error between 12% and 13% for January
2015. Reconstruction errors follow a right-skewed distribution, with 1.9% of nodes with 20% to 30% error.
From these results, we six geographically separated nodes in California such that nodes 1 and 2 have great
(less than 11%), nodes 3 and 4 have average (≈ 12%), and nodes 5 and 6 have poor (greater than 16%)
reconstruction errors. Table 1 highlights official CAISO node names, location, and mean reconstruction
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Figure 3: Comparison of reconstruction error aggregated over all 6587 nodes (%) versus the number of
retained singular values (r) for three 4-day training windows. The ? symbol marks the minimum

reconstruction error: (left) r = 81 corresponds with 11.95% error; (middle) r = 85 gives 18.46% error;
(right) r = 91 gives 16.72% error.

error. For these six nodes, we reproduce the sensitivity analysis from Fig. 3. The reconstruction error versus
r plots are only 1% different from those shown in Fig. 3. This suggests that the optimal r for the entire
dataset (all nodes) is near optimal for individual nodes. Moreover, there are no obvious geographic trends
in the distribution of reconstruction errors in Fig. 5 (middle).

Figure 4: Histogram of reconstruction errors tabulated per node for three training windows using r = 81
(left), 91 (middle), and 92 (right), m = 6587, and n = 96. While each window has a distinct distribution of
errors, a majority of errors are between 5% and 15%. Each window shows a few nodes, which are outliers,

with reconstruction errors above 15%.
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Figure 5: (Left) Distribution of the mean reconstruction error over calendar year 2015 tabulate for each
node using m =6587, n =96, and the optimal r for each window. (Center) Spatial distribution of mean

reconstruction errors for 2220 nodes in CAISO GPS coordinates publicly available on oasis.caiso.com.
(Right) Location for six example nodes detailed in Table 1.

Node Name Mean % Error Map Index Location General Performance
CORNING 6 N102 10.76 1 Corning, CA Great

PRAXAIR 1 B1 10.93 2 Antioch, CA Great
PARADISX 6 N004 12.23 3 Paradise, CA Average
CERTTEED 1 N002 12.23 4 Madera Acres, CA Average

URBAN 6 N005 16.87 5 San Diego, CA Poor
PALA 6 N001 17.01 6 Pala, CA Poor

Table 1: We select six geographically distinct nodes, shown in Fig. 5 (right), ordered from lowest to highest
mean reconstruction error. The node names are the unique identifiers used by CAISO.

3.2. Optimal Training Window Size to Minimize Reconstruction Error

Besides r, selecting the window size, i.e., the dimensions of the input data Xt ∈ Rm×n, is another
important choice in DMD analysis including financial market forecasting[28]. We repeat sensitivity analysis
of reconstruction error versus r for January 1st to 4th (n = 24 × 4 = 96) with m = 20, 100, 1000, 2000,
3000, and 6587 randomly selected nodes. Figure 6 shows that, in general, as m increases, the minimum
reconstruction decreases. This suggests that standard DMD is extracting useful multimode dynamics and
correlations such that more data (larger m) improves recapitulation of trends (lower error). With only 20
nodes, reconstruction error is between 25% and 40%, which suggests there is insufficient data to extract
meaningful trends. We will revisit this finding in Section 4.

Next, we explore how the time horizon n impacts reconstruction error. Training windows for 2 through
15 days (n ∈ {48, 72, 96, · · · , 360}) were evaluated for a rolling horizon for a whole year (2015) using all
6587 nodes in Figure 7. Each box and whisker plot in Figure 7 reports the reconstruction error with the
optimal r (lowest average reconstruction error for all nodes). For the year 2015 data set, we see the median
reconstruction error gradually increases with n. The lowest median error is 16% for n = 48 (2 days), which
is the shortest time horizon considered. These results are consistent with intuition. DAM prices are strongly
periodic with well-documented seasonal, day of the week, and daily trends.[15] A two-day window captures
two full cycles. But too long of a training window attempts to learn one monolithic linear operator A in
Eq. (4) to explain dynamics across too many days. We conclude by highlight our findings to maximize m
(consider all nodes) and minimize n (short time horizon) are consistent with literature that suggests DMD
inputs should be skinny, i.e., with m >> n [24].
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Figure 6: Sensitivity analysis of reconstruction error with respect to truncation level (r/rmax) for m = 20
to m = 6587. The nodes included in the analysis were randomly selected for m < 6587. The results show

there is a clear benefit for selecting large m.

Figure 7: Sensitivity analysis reveals the impact of training window size for n = 48 (2 days) to n = 360 (15
days) on reconstruction error. The center of each box marks the median reconstruction error calculated
across all nodes. The edges of the box mark the quartiles. The whiskers mark the smallest and largest
reconstruction errors for an individual node, after excluding outliers. n = 48 gives the smallest median

reconstruction error of 16%.

3.3. From Optimal Reconstruction to Optimal Forecasts

We now explore how insights for specifying r, m, and n to optimize reconstruction translate to forecast-
ing. Figure 8 shows sensitivity analysis of forecasting and reconstruction errors versus truncation level r.
For all three data sets considered, we observe the optimal r for reconstruction and forecasting are similar.

9



To generalize this trend, we conduct sensitivity analysis over the entire year with 4-day training windows in
a rolling horizon framework. On average, there was only a 4% difference between r values that minimized
reconstruction error and day 1 forecast errors. Differences were 0.4% and 0.8% for reconstruction error versus
day 2 and day 3 forecast errors, respectively. From these results, we propose a simple heuristic: truncate
DMD the with best r for reconstruction to produce for the (near) optimal forecast.

Figure 8: Reconstruction and forecasting errors are compared for three 4-day training windows (n = 96,
m = 6587) for many different number of retained singular values r. For the first window, training is done

with data from January 1st through 4th. January 5th, 6th, and 7th correspond to the day 1, 2, and 3
forecasts, respectively.

Next, we develop guidelines for the minimum training horizon length n to create stable multi-day DMD
price forecasts. Computing optimal bids for participating in day-ahead energy markets, including CAISO,
often require 48-hour or longer forecasts [12]. We perform a sensitivity analysis of all possible 2 to 15-
day training windows in the year 2015 and record forecast errors for 1 to 4 days after the end of each
training window. Fig. 9 shows forecasting error averaged over all of these windows. When the training
window is shorter than the forecasting horizon, the forecasting error is large. For example, forecasting 4
days into the future using only a 1-day training horizon gives 50% average errors. In contrast, forecasting
4 days into the future with a 5-day or longer training horizon gives average errors less than 20%. This
trend is consistent for all forecasting horizons considered and leads to another heuristic: choose the training
horizon length n to be longer than the desired forecasting horizon. Beyond this threshold, the average
forecasting error only gradually changes as n increases. For shorter forecasts, e.g., 1 day, longer training
windows slightly increase forecasting error. But for longer forecasts, e.g., 4 days, longer training windows
slightly decrease forecasting errors. We emphasize that while reconstruction error is minimized with shorter
training horizons (see Fig. 7), forecasting requires longer horizons. We speculate that unplanned outages,
transmission constraints, uncertain electricity demands, and other factors add noise to the energy prices.
This noise causes reconstruction error to increase with training window length. But, for accurate forecasts,
more data is required to separate meaningful dynamics from noise, and hence longer training horizons are
required.
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Figure 9: Mean forecasting errors for 6587 nodes (m = 6587) calculated with a rolling horizon for 1, 2, 3
and 4 days into the future. The forecasting horizon starts on January 17th and continues through the end

of the year. The SV truncation r was performed for each windom

3.4. DMD Mode Analysis

We now interpret the DMD modes, similar to previous financial market analyses [24, 28, 20]. Specifically,
temporal modes (eigenvalues) capture price periodicity and spatial modes weight different locations (nodes)
in the electricity market. Figure 10 shows spatial-temporal DMD modes for a 4-day training window n = 96
without truncation. In the top three plots, we see eigenvalues ordered by the prominence of the singular
values. The first six singular values explain 99% of the variability in the dataset. Interestingly, as the most
important singular values (lowest number) correspond to the lowest frequency oscillations. Beyond singular
value 60, this linear trend between singular value number and oscillation frequency ceases. We hypothesize
the least prominent singular values are localized fluctuations in energy prices caused by external factors. We
find the real eigenvalue components are both positive and negative. We do not see a clear trend with real
eigenvalue components and the number of retained singular values r. The middle three plots show how the
three most prominent DMD modes φ1, φ2, and φ3 are spatially distributed. We see all three modes place the
least weight on prices from the San Fransisco area. The bottom three plots explore the maximum, minimum,
and median contributions to φ1. We see the minimum contribution has price spikes on the last day. This
makes sense, as we expect the most prominent singular value to capture the average trends of the entire CA
system and deemphasize localized events.
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Figure 10: Visualization and interpretation of the DMD modes. (a) The fraction of variability that can be
attributed to each singular value. The horizontal line marks 1% variability. We see that retaining the r = 6

largest singular values in the truncation explains over 99% of the variability in the dataset. (b) and (c)
The imaginary and real components of the eigenvalues associated with each singular value ordered from

largest to smallest. (d), (e), (f) Three most prominent spatial modes, φ1, φ2, and φ3, respectively. Larger
absolute values (red or blue) indicate a larger weight for the specific location in the DMD mode. (i)

Time-series price data from January 4th to 7th for corresponding to the nodes with the maximum (most
positive), minimum (most negative), and median, respectively, weights in φ1.

4. ADMD Results and Discussion

As discussed in Section 3, standard DMD, even with optimal truncation, is only able to achieve a 16%
reconstruction error for the CAISO dataset from 2015. We now show that ADMD overcomes these limitations
and consistently achieve less than 5% reconstruction error.

4.1. ADMD is Less Sensitivity to Truncation

First, we explore the sensitivity of ADMD to truncation level r for three n = 96 training windows
containing 100 randomly selected nodes and augmentation level l = 48. Figure 11 clearly shows ADMD is
more robust with 1.5 to 3 times smaller reconstruction error than DMD. ADMD reconstruction error reaches
a plateau around r = 15%, suggesting ADMD successfully identifies a low-rank structure. To explain this,
we verified the condition number of X is 10,000 times larger than Xaug. These results support our hypothesis
that standard DMD struggles to extract low-rank trends because of the standing wave problem.
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Figure 11: Sensitivity analysis of reconstruction error versus truncation level r shows that ADMD
consistently outperforms DMD. For this comparison, m = 100, l = 48, and n = 96 such that X ∈ R96×100

and Xaug ∈ R4800×48. DMD performs much better in Figure 6 with m = 6587 whereas this Figure
considers m = 100 to benchmark against ADMD.

4.2. ADMD Performs Best Augmenting Over At Least 1 Day

Next, we explore the impact of augmentation level l in Eq. 19 on ADMD performance. In Fig. 12, we
see reconstruction error is not robust with l = 12 and l = 18. In contrast, reconstruction error reaches a
plateau around truncation level r/rmax = 15% with l = 24, l = 36, and l = 48. We hypothesize this is
because the dominant price dynamics in energy markets have 24-hour periodicity. Based on these results,
we recommend l = 36, l = 48, or a similar value.

Figure 12: Sensitivity analysis of ADMD reconstruction error with respect to the truncation level r/rmax

where rmax = min(m · l, n− l). Results show l ≥ 24 is needed for a robust low rank approximation with a
small reconstruction error.

4.3. ADMD Does Not Benefit from Training Many Nodes Simultaneously

Next, we determine if ADMD benefits from analyzing multiple nodes simultaneously. Recall, DMD
performs best when the data matrix X is “tall and skinny”, i.e., there are many more nodes than timesteps.
As consequence, we show in Section 3.2 DMD works best with m = 6587 (all nodes considered). But as
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augmentation level l increases, the number of rows in Xaug increase and the number of columns decrease.
This means ADMD can be applied to a single node. Figure 13 compares reconstruction error for a single node
and 100 randomly selected nodes over with r = 8 and l = 48 for 96 hours of training data. Surprisingly, we
find reconstruction error only improves 0.65% when forecasting many nodes simultaneously. This suggests
there is less valuable information available in the spatial dynamics than previously postulated.

Figure 13: Comparison of ADMD with m = 1 (red) and m = 100. Each panel is a different 48-hour
training window. There is little benefit to reconstructing and forecasting multiple nodes simultaneously.

4.4. ADMD Outperforms DMD for Forecasting

Next, we compare forecasting error from DMD and ADMD for a single node. Fig. 14 shows forecasts
for January 16th and 17th, 2015 (48 hours) using the previous 96 hours for training. DMD forecasts were
constructed with all 6587 nodes, whereas ADMD was only trained using the node of interest (same as Fig. 14)
with r = 8 and l = 48. The results show the ADMD forecast closely tracks the realized price with around
10% forecasting error. In contrast, the DMD forecast fails to predict major temporal features and is out of
phase.
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Figure 14: Comparison of DMD and ADMD forecasts using n = 96 training data (January 12th through
15th, 2015) and two-days of testing data (January 16th and 17th, 2015). The ADMD forecast is superior

and most importantly captures the phase of the testing data.

5. Optimal Market Arbitrage for Energy Storage Systems

Accurate price forecasts are important for many aspects of grid reliability, including optimal control of
individual energy systems such as conventional generators, grid-connected storage, microgrids, and virtual
power plants. In this section, we benchmark the performance of deterministic model predictive control of
a price-taker battery energy storage system self-scheduling into a wholesale energy market using different
price forecasting techniques including DMD and ADMD.

5.1. Optimization Formulation

We consider a storage system with time-varying energy hold-up Ei at time i. The system can purchase
(charge) or sell (discharge) energy to and from the market at rates ci and di, respectively, during time interval
[i, i+ 1). The energy storage operator seeks to maximize net revenue as follows:

max
c,d,E

n∑
i=0

xi(di − ci)) (21a)

s.t. Ei+1 = Ei + ci
√
η − di√

η
∀i ∈ {0, ..., n− 1} (21b)

where xi is the market price forecast during time interval [i, i+ 1). The hold-up is constrained by an energy
balance and subject to round trip efficiency η. Variable bounds, parameter values, and units are specified in
Table 2. Figure ?? illustrates the interaction between the energy storage system and the energy market.

Fig. 15 compares the solution to Eq. (21) for the market node near Chino, CA. Price 48-hour forecasts
were generated with ADMD using the previous 96 hours of prices for the node of interest as training data
with r = 8 and l = 48. As expected, the optimal solution is to sell energy when the forecasted price is
lowest and buy energy when the forecasted price is the highest. Although price forecasts are consistently
biased (e.g., higher than the actual price) the periodicity (e.g., when prices increase and decrease) is correct,
leading to an effective control strategy.

15



Variables Description Units Dimensions Range
c Charging Rate MW Rn [0,1]
d Discharging Rate MW Rn [0,1]
E Battery Charge MWh Rn [0,4]

Parameters Description Units Dimensions Range√
η Round Trip Efficiency - R1 0.88

n Length of Forecast h Z
E0 Initial Battery Charge MWh R1 [0,4]
x Price Forecast $/MWh Rn

Indicies Description Units Dimensions Range
i Time index h Z [0,n]

Table 2: Optimization variables and parameters used in the battery optimal control problem.
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Figure 15: Example battery optimization solution for Chino, CA for January 7th and 8th, 2015. (Top) The
historical market price and ADMD forecast both show 4 distinct price maximums which correspond with

early morning (6 am) and late afternoon (3 or 4 pm). (Middle) As expected, the optimal arbitrage policy
is to charge the battery (buy from the market) during low price periods and discharge (sell) at higher
prices. (Bottom) The state-of-charge (SOC) in the battery is the integral of the charge and discharge
signals. The black ? marks the SOC at the end of the first day (E24). In the rolling horizon framework,

this value is the fixed initial condition E0 for the subsequent day.
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5.2. Backcasting Benchmark

We use simple backcasting as a benchmark forecasting strategy[43]. In backcasting, prices for the n
most recent observed days as used as forecasts for the next n days. We compare 48-hour rolling horizon
forecasting errors for backcasting, DMD (48 hours of training data, optimal truncation), and ADMD (96
hours of data using, r = 8, l = 48) averaged over all 6587 nodes in CAISO for January 5th, 2015 to December
7th, 2015. Surprisingly, we found median forecasting errors of 17%, 26%, and 31% for backcasting, ADMD,
and DMD respectively. Below we show the lowest median forecasting error does not always correspond
with the maximum realized revenue. Sioshansi et al observe backcasting is extremely effective because it
recapitulates the periodicity of day-ahead energy market prices. [42]

5.3. Rolling Horizon Computational Results

We now compare the performance of DMD, ADMD, and backcasting for energy arbitrage by repeatedly
solving Eq. (21) in a rolling horizon framework for January th, 2015 to December 9th, 2015. Each instance
of Eq. (21) is first solved with a 48 hour prediction horizon. The computed policy is then simulated over
the first 24 hours and profits are recorded with the real (historical) price. The simulation window is then
advanced 24 hours. The value for E24 for the previous day is copied to E0 for the next day.

We start by considering all 6587 nodes in the CAISO market. For DMD, we use a 48-hour training window
(Xt ∈ R48×6587) with optimal truncation. For ADMD, we generate forecasts individually for each node using
r = 8 and l = 48 with 96 hours of training data (thus 6587 unique instances of Xaug ∈ R48×48). Backcasting
was performed using the previous 48 hours of data. Figure 16 compares the market revenues for optimal
arbitrage with perfect information, backcast, DMD, and ADMD price forecasts. The perfect information
scenario, which uses historical prices in Eq. (21), represents the maximum available revenue. We see hot
spots in the perfect information map, which show the greatest potential for arbitrage is in central California
as well as the coasts. We find that DMD performs poorly, yielding only 24% of the perfect information
revenue. This is expected as DMD suffers from the so-called standing wave problem. In contrast, ADMD
and backcasting capture 81% and 84% of the perfect information revenue, respectively. Backcasting and
ADMD capture the hot spot in central California but miss the opportunities along the coast. These results
are summarized in Table 3.

Next we identified 2209 nodes (2209 / 6587 = 33.5% of the original data set) for which the prices were
always between 0 $ / MWh and 200 $ / MWh during calendar year 2015. We refer to these as Select Nodes.
We find that ADMD and backcasting recover 92% and 88% of potential revenues, respectively, for only select
nodes. This is a modest increase compared to all nodes. DMD, however, recovers less relative profit when
only considering select nodes. We hypothesize this is because DMD benefits from forecasting as many nodes
as possible.

Backcasting DMD ADMD
All Nodes 83.7% 24.3% 80.8%
Select Nodes 88.3% 21.7% 92.2%

Table 3: Comparison of net revenues, relative to the perfect information case, for each forecasting method
for January 5th to December 9th in 2015. Select nodes are locations where the market price was always

between 0 $ / MWh and 200 $ / MWh.

18



Figure 16: Simulated net profits for energy arbitrage for all nodes in the CAISO day-ahead market in 2015.
DMD forecasting greatly underperforms relative to ADMD and backcasting. ADMD and backcasting

perform well through most of CAISO, but fail to capture the largest revenue opportunities across the coast.
The perfect information reference shows the maximum available revenue.

6. Computational Timing Results

A key advantage of DMD and ADMD is computational speed. Training is quick, often limited by the SVD
calculation, and forecasting is almost instantaneous using the explicit formula in Eq. (18). To demonstrate
these benefits, we performed simple computational benchmarks using an Auto-Regressive Integrated Moving
Average (ARIMA) model implemented in the StatsModel package. We considered 48 hours of training data
and ARIMA model form (p, d, q) = (7, 1, 1). Training and forecasting with an ARIMA model took 33 seconds
per node on average. In contrast, it took 11.2 seconds in total for ADMD (r = 8, l = 48, n = 96) to train and
forecast for all 6587 nodes, which is 0.002 seconds per node. On a per-node basis, ADMD is 20,000 times faster
than ARIMA. Our custom implementation of DMD using SciPy is available on GitHub (https://github.
com/dowlinglab/dmd-energy-markets). These benchmark tests were performed on a 2014 MacBook Pro
(3.0 GHz Intel Core i7 processor, 16 GB of RAM) using an Anaconda Python environment.

7. Conclusions and Future Work

In this paper, we extend the success of DMD in forecasting financial markets[28, 10] to wholesale elec-
tricity markets. We find that standard DMD is unable to extract coherent low-rank structures in California
Independent System Operator (CAISO) day-ahead market prices for the calendar year 2015. Instead, we
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find Augmented DMD (ADMD), which is equivalent to differencing in a time-series model, overcomes the
so-called standing wave problem and can consistently reconstruct and forecast with errors less than 5% with a
low-rank approximation. We benchmark DMD, ADMD, and backcasting in a rolling horizon model predictive
control case study for energy arbitrage with a market connected battery. We show that ADMD outperforms
backcasting by capturing 92% versus 88% of available net market revenue at nodes without extreme prices.
We also find that ADMD is up to 20,000 times faster than ARIMA for training and forecasting.

There are several opportunities to further enhance DMD for energy market forecasting. Denoising pro-
cedures can greatly improve the performance of DMD with experimental data and should be exploring
for energy price forecasting.[11, 19] Multiresolution DMD may better identify and recapitulate dynamics
at disparate time-scales in electricity markets.[23] Both of these methods may help explain why ADMD
as currently implemented does not benefit from forecasting multiple nodes simultaneously. We also plan to
more thoroughly benchmark DMD against other forecasting techniques, including emerging machine learning
methods, to understand trade-offs between data requirements, computational time, need for model tuning,
and forecasting error. Real-time markets (RTMs) set prices in 5 to 15-minute increments and are much more
volatile than day-ahead markets.[13] Studying the performance of DMD for RTMs and other geographic
regions is another future opportunity.
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