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Abstract

Despite the promise of Convolutional neural network (CNN) based classification models for histopathological images,
it is infeasible to quantify its uncertainties. Moreover, CNNs may suffer from overfitting when the data is biased.
We show that Bayesian–CNN can overcome these limitations by regularizing automatically and by quantifying the
uncertainty. We have developed a novel technique to utilize the uncertainties provided by the Bayesian–CNN that
significantly improves the performance on a large fraction of the test data (about 6% improvement in accuracy on
77% of test data). Further, we provide a novel explanation for the uncertainty by projecting the data into a low
dimensional space through a nonlinear dimensionality reduction technique. This dimensionality reduction enables
interpretation of the test data through visualization and reveals the structure of the data in a low dimensional feature
space. We show that the Bayesian-CNN can perform much better than the state-of-the-art transfer learning CNN
(TL-CNN) by reducing the false negative and false positive by 11% and 7.7% respectively for the present data set. It
achieves this performance with only 1.86 million parameters as compared to 134.33 million for TL-CNN. Besides,
we modify the Bayesian–CNN by introducing a stochastic adaptive activation function. The modified Bayesian–CNN
performs slightly better than Bayesian–CNN on all performance metrics and significantly reduces the number of false
negatives and false positives (3% reduction for both). We also show that these results are statistically significant by
performing McNemar’s statistical significance test. This work shows the advantages of Bayesian-CNN against the
state-of-the-art, explains and utilizes the uncertainties for histopathological images. It should find applications in
various medical image classifications.

Keywords: Bayesian Convolutional Neural Networks, Breast Cancer, Histopathological Imaging, Machine
Learning, Uncertainty Quantification, t-SNE.

1. Introduction

1.1. Histopathological imaging for Breast cancer

Breast cancer is the most common cause of cancer
in women [1–3]. It has the highest incidence (43.3
per 100 000 population) than any other cancer and the
highest mortality rate (15%) of all cancer deaths in
women in 2012 [1]. Thus detection and diagnosis of
breast cancer are vital in reducing the impact of the dis-
ease. Histopathological imaging is considered the gold
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standard for breast cancer detection and diagnosis [4].
Histopathology is a diagnostic technique that involves
microscopic examinations of tissues to study the sign
of a disease. This method preserves the underlying ar-
chitecture of the tissues thereby providing a significant
contribution to the diagnosis of diseases. It is the only
way to detect some of the diseases like lymphocytic in-
filtration of cancer. Histopathological images have a lot
of information and structure which makes them highly
reliable in the diagnosis of diseases especially in almost
all types of cancer [5].

1.2. state–of–the–art machine learning algorithms for
Histopathological imaging

With the advancement in digital imaging, computer-
aided diagnosis (CAD) is studied extensively in the
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literature [5–11]. Machine learning algorithms such
as conventional neural networks and deep neural net-
works have shown tremendous potential in CAD ap-
plications. Feature extraction in a conventional neural
network played a significant role in the predictions of
the neural network. Various methods of feature extrac-
tion followed by classifiers such as support vector ma-
chine, K-nearest neighbor, decision tree, Naive Bayes
amongst others were explored in the literature for classi-
fication and segmentation of breast cancer images [12–
18]. Though these methods performed reasonably well
in terms of accuracy, manual feature extraction was a
bottleneck in improving the results.

Convolutional neural networks (CNNs) were the
most successful in learning advanced features automati-
cally from the input images. CNNs perform very well in
classification, both binary [19–21] and multiclass classi-
fications [4, 22], and metastasis detection [23] on breast
cancer images. Apart from being able to perform clas-
sification, CNNs were also successfully implemented in
problems involving segmentation [24–26] and detecting
regions of interest that contain in-depth discriminatory
information for classification in large whole-slide im-
ages [27–29]. CNNs also provided the scope to imple-
ment transfer learning. In transfer learning, the param-
eters learned for one data set are utilized to accelerate
learning for another data set to solve a similar prob-
lem. Transfer learning CNN (TL-CNN) performs the
best and is considered as the state-of-the-art classifier
for breast cancer images [30–32]. A grand challenge
on breast cancer histology images was conducted to ad-
vance the state–of–the–art in classifying these images.
It was concluded that CNN was the most successful
method to classify these breast cancer images [33]. The
top performers [34–36] in this challenge used the ar-
chitecture of an existing network such as Resnet [37],
Densenet [38], Inception [39], VGG16 [40], etc and pre-
trained these networks using ImageNet [41].

Uncertainty quantification provides a measure of trust
in machine decisions and this metric is crucially impor-
tant in medical applications [42]. Given the success
of automatic classifiers for medical images, their un-
certainty quantification is essential. However, there are
only a few studies that report uncertainty quantification
[43]. Although CNN performs better for image classifi-
cation than other machine learning techniques in terms
of accuracy, their parameters are deterministic and thus
can not provide any measure of uncertainty in its pre-
dictions. In addition, predictions based on deterministic
CNNs might provide incorrect results and without any
estimate of confidence, these might lead to undesirable
consequences. To evaluate the confidence of predic-

tions, uncertainty quantification is important [42]. The
Bayesian CNN is an efficient state–of–the–art machine
learning technique to quantify uncertainties [44–46]. It
endows the uncertainty quantification capability in the
CNN framework with nominal additional computational
effort.

In a Bayesian–CNN, the weights and biases are ran-
dom variables as opposed to deterministic variables
used in CNN. Through the stochastic nature of the pa-
rameters, Bayesian–CNN captures the variability in the
data set and computes the uncertainties in its predic-
tions. Towards this, Blundell et al. [44] introduced an
efficient algorithm called “Bayes by backprop”. This
algorithm can be used to learn the probability distribu-
tion on weights and it was compatible with the conven-
tional backpropagation scheme. They have also shown
that it is possible to regularise the weights by mini-
mizing a loss function known as the variational free
energy and demonstrated that this method of regular-
isation showed performance comparable with dropout
on MNIST classification. Shridhar et al. [45, 46] ex-
tended the “Bayes by backprop” algorithm to convolu-
tional neural networks. The proposed Bayesian-CNN
architecture was implemented for image classification,
image super-resolution, and generative adversarial net-
works. This method has shown performance as good
as conventional CNN and in addition, provided uncer-
tainty measures and regularisation. Kendall et al. [47]
provided a Bayesian deep learning framework combin-
ing aleatoric and epistemic uncertainties. The authors
improved the model’s performance by 1 to 3% over its
deterministic counterpart by reducing the effect of noisy
data. The trade–offs between modeling aleatoric and
epistemic uncertainties were also studied. Kwon et al.
[48] proposed a method of quantifying uncertainties in
classification problems using Bayesian neural networks.
Bayesian networks are used in the literature to perform
active learning. Uncertainties were utilized to add new
samples in the training data to improve performance
by Gal et al [43]. An accurate, reliable active learn-
ing framework was introduced by Raczkowski et al [49]
utilizing the variational dropout-based uncertainty mea-
sures.

1.3. Present work: Quantification, explanation, and
use of uncertainty, and the Modified Bayesian–
CNN

Bayesian–CNNs are gaining popularity due to their
ability to provide uncertainties associated with the pre-
dictions. Yet, there has been no known work to the au-
thors’ knowledge that demonstrates the advantages of
Bayesian–CNN over CNN to classify histopathological
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images. In this work, at first, we perform uncertainty
quantification for the classification of breast histopatho-
logical images and show the advantages of Bayesian–
CNN over CNN. We found that the Bayesian–CNN im-
proves accuracy and reduces overfitting in comparison
to CNN in addition to quantifying uncertainties. To ex-
ploit the advantages of uncertainty quantification, we
have developed a novel technique to divide the data into
low and high uncertainty subsets. We show significant
improvement in accuracy in the majority of data that has
low uncertainty. A small fraction of the data that has
higher uncertainty can be referred to the experts. Thus,
uncertainty provides an avenue to determine which im-
ages require human intervention. We explain the reason
for this high uncertainty in a subset of data by project-
ing the data into a low dimensional space (latent space)
using t–distributed stochastic neighbor embedding (t-
SNE). We choose a three-dimensional latent space to
facilitate the visualization of data. To the best of the au-
thors’ knowledge, such an explanation of uncertainty is
not reported in the literature.

We propose a new model to extend the Bayesian–
CNN to further improve its performance and name it
as the modified Bayesian–CNN. Adaptive activation
functions have shown improvement in performance for
both deep neural networks and convolutional neural net-
works [50–52]. However such adaptive activation func-
tions are not applied to Bayesian Neural networks. The
novelty of the proposed adaptivity lies in the fact that
the learnable parameter is random as opposed to deter-
ministic parameters reported in the literature. Thus the
activation function is now sampled from an ensemble of
such functions based on the probability distribution of
parameters learned from the data.

The rest of the paper is organized as follows: in sec-
tion 2 the data set and the methods used in this work are
described; results obtained in the work and their analy-
sis are presented in section 3 followed by conclusions in
section 4.

2. Data set and methods

2.1. Data acquisition

The breast histopathological images used in this work
are from a publicly available data set [53]. These are im-
ages containing regions of Invasive Ductal Carcinoma
which is the most common subtype of all breast cancers
[53]. These regions are separated from the whole slide
images by pathologists. The original data set consisted
of 162 whole mount slide images of Breast Cancer spec-
imens scanned at 40x. From the original whole slide

images, 277,524 patches of size 50× 50 pixels were ex-
tracted (198,738 negative and 78,786 positive) and pro-
vided as a data set for classification.

2.2. Data Preparation

The data set consists of two classes: positive (1) and
negative (0). The classification of the data was carefully
done by experienced pathologists providing the ground
truth for training. 20% of the entire data set was used as
the testing set for our study. The remaining 80% of the
entire data was further split into a training set and a val-
idation set (80%-20% split) to perform hyperparameter
optimization.

The image size is 3 × 50 × 50 (D×H×W), where D is
the depth (color channels), H is the height, and W is the
width. The images were shuffled and converted from
uint8 to float format for normalizing. For most of the
images, the majority of the pixel values are greater than
200. This makes the computation extremely expensive
especially with the large size of data. Further, it leads to
problems such as singularity/gradient explosion during
the evaluation of loss function. In addition, the original
images are such that the information that needs to be
highlighted has low pixel values. To solve these prob-
lems, we computed the complement of all the images
(training and testing) and then used them as inputs to
the neural network. The pixel-wise normalization and
complement was carried out as pn = (255 − p)/255.
Where p is the original pixel value and pn is the pixel
value after normalization and complement.

2.3. Methods

The mathematical background for Bayesian–CNN
and its uncertainty quantification [45], and for t-SNE
[54] is revisited in this section. The implementation of
stochastic adaptive activation on Bayesian–CNN is also
described.

2.3.1. Bayesian Neural Networks
The neural network can be defined as a probabilis-

tic model P(y|x,w), where x ∈ Rp is an input to the
network, y ∈ Υ is the output. Where Υ is a set of
all possible outputs. The network consists of a set of
trainable random parameters w. This set of parameters
w is learned using a complete Bayesian approach. In
this approach given training data D, the posterior distri-
bution of weights P(w|D) is calculated using Bayesian
inference for neural networks which involves marginal-
ization over all possible values of w. Once the poste-
rior distribution P(w|D) is obtained, predictions on the
unseen data are obtained by taking expectations on the
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predictive distributions. The predictive distribution of
an unknown label ŷ of a test data item x̂ is given by
P(̂y|̂x) = EP(w|D)[P(̂y|̂x,w)] =

∫
Ωw

P(̂y|̂x,w)P(w|D)dw.
To estimate the posterior distribution we use Bayes’

Rule which gives:

P(w|D) =
P(D|w)P(w)

P(D)
(1)

The term P(D|w) is the likelihood of the training data
(D) given a parameter setting (w). Assuming each
training data to be independent and identically dis-
tributed, the above term becomes the product of like-
lihood, P(D|w) =

∏N
n=1 P (yn|w, xn) where, (xn, yn) are

the training data item and known label respectively.
The prior P(w) is our belief about the distribution of
weights without seeing the data. The term P(D) in
the equation (1) is intractable which makes the pos-
terior distribution P(w|D) intractable. The term P(D)
involves marginalization over the weight distribution:
P(D) =

∫
Ωw

P(D|w)P(w)dw.
For variational inference [44], the posterior distribu-

tion P(w|D) which is intractable is approximated with
a tractable simpler distribution over the model weights
q(w). If we assume our weight distributions to be Gaus-
sian, this simpler tractable distribution has variational
parameters θ, where θ = (µ, σ). We fit the varia-
tional parameters θ such that q(w|θ) ≈ P(w|D). The
variational posterior q(w|θ) is used instead of the in-
tractable posterior P(w|D) for the inference, P(̂y|̂x) =
Eq(w|θ)[P(̂y|̂x,w)]. Estimating q(w|θ) ≈ P(w|D) we can
say that we have learned the distribution of weights
given training data.

To make the variational posterior q(w|θ) and the true
posterior P(w|D) similar, we minimize the KL diver-
gence between them:

KL[q(w|θ)∥P(w|D)] = Eq(w|θ)

[
log

q(w|θ)
P(w|D)

]
=

∫
q(w|θ)log

q(w|θ)
P(w)

dw +
∫

q(w|θ)log(P(D))dw

−

∫
q(w|θ)log(P(D|w))dw (2)

The term log(P(D)) makes the above equation in-
tractable. Although intractable, it is constant. There-
fore, minimizing the KL divergence can be defined as:

min (KL[q(w|θ)∥P(w|D)]) = min(KL[q(w|θ)∥P(w)]
− Eq(w|θ)[log(P(D|w))] (3)

The term
(
KL[q(w|θ)∥P(w)] − Eq(w|θ)[log(P(D|w))]

)
is

called the Variational Free Energy (VFE) which is to be

minimized. Exact minimisation of the cost function is
computationally expensive, therefore it is approximated
through a Monte Carlo sampling procedure as follows:

F (D, θ) ≈
n∑

i=1

[logq
(
w(i)|θ

)
− logP

(
w(i)
)
− logP

(
D|w(i)

)
]

(4)

Where, w(i) denotes the ith Monte Carlo sample drawn
from the variational posterior q(w(i)|θ). Each term in
F (D, θ), the loss function that needs to be minimized,
also known as the cost function has weights that are
drawn from the variational posterior. For further details
on the cost function, readers are referred to [44, 45]. To
implement and compute the above cost we need three
terms: 1) log of variational posterior, 2) log of prior
(Gaussian or scale mixture), 3) log-likelihood of the
data.

The variational posterior (q) is composed of in-
dependent Gaussian distribution for each parameter.
The sample of weights are obtained by sampling the
unit Gaussian, shifting and scaling by the mean µ
and a standard deviation σ respectively. To ensure
that the standard deviation is always non-negative,
it is expressed as σ = softplus (ρ) = log(1 + exp(ρ)),
point-wise. Parameters, w, of the variational posterior,
q, can be re-written in terms of a parameter–free noise
as [w = µ + log(1 + exp(ρ)) ◦ ε] or [w = µ + σ ◦ ε].
Where, ◦ is point-wise multiplication, ε is a sample
drawn from unit normal [44]. The steps for optimiza-
tion are presented in supplementary document.

2.3.2. Bayesian Convolution Neural Networks
The parameters of CNNs are filters or kernels which

are to be learned during training. In the case of a
Bayesian–CNN these kernels are represented by prob-
ability distributions as shown in Fig. 1.

Figure 1: Schematics of the convolution of Bayesian–CNN showing
probability distributions of random parameters.

During the training of Bayesian–CNN the reparam-
eterization trick is applied on these filters or kernels,
which are of shape h×w×d. They are sampled from the
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variational posterior q(w|θ) using the following equa-
tion:

wh,w,d = µh,w,d + log
(
1 + exp

(
ρh,w,d

))
◦ εh,w,d (5)

where h is the height, w is the width and d is the depth
of the filter and ◦ represents point-wise multiplication.
After the sampling from the variational posterior, simi-
lar optimization steps as explained in the previous sec-
tion are followed.

2.3.3. Uncertainty Quantification
The uncertainty quantification becomes extremely

important when dealing with the applications related to
autonomous vehicles, medical imaging, etc. Bayesian
deep learning makes it possible to quantify the uncer-
tainties in the prediction as we have probability distribu-
tion over weights. Taking an expectation of the predic-
tive posterior probability distribution: Eq(w|θ)[P(̂y|̂x,w)]
gives us the most probable prediction of the unknown
data x̂. The variance of the predictive posterior proba-
bility distribution: Varq(w|θ)[P(ŷ|x̂,w)] quantifies the un-
certainties. There are two types of uncertainties: the
Aleatoric and the Epistemic uncertainty. The variance
of the predictive posterior probability distribution is the
sum of both these uncertainties:

Varq(w|θ)[P(̂y|̂x,w)] = aleatoric + epistemic (6)

The aleatoric uncertainty corresponds to the noise in the
data set whereas the epistemic uncertainty corresponds
to the variability of the model developed[45]. One of
the promising approaches to quantify the uncertainties
is explained in [48]. The uncertainties are obtained from
the variance of the predictive posterior probability dis-
tribution,

Varq(w|θ)[P(̂y|̂x,w)] = Eq(w|θ)

[
(y − E[y])2

]
=

∫
Ωw

[[
diag
(
EP(̂y|̂x,w) [̂y]

)
−EP(̂y|̂x,w) [̂y]EP(̂y|̂x,w) [̂y]T

]
q(w|θ)dw

]
+

∫
Ωw

[[
EP(̂y|̂x,w) [̂y] − Eqθ (̂y|̂x) [̂y]

]
[
EP(̂y|̂x,w) [̂y] − Eqθ(Y|x) [̂y]

]T
q(w|θ)dw

]
(7)

The above expression is the sum of aleatoric and the
epistemic uncertainties which is derived from the vari-
ant of the law of the total variance [48]

The first term of Eq. 7 is defined as the aleatoric
uncertainty and the second term is the epistemic
uncertainty. Due to the integral term in Eq. 7, it
is intractable and requires approximations as fol-
lows. The equation of the aleatoric uncertainty is

defined as: 1
N
∑N

n=1 diag
(
p̂n
)
− p̂n p̂T

n where, p̂n =

p
(
ŵn
)
= softmax

{
f ŵt (x̂)

}
. And the equa-

tion of the epistemic uncertainty is defined as:
1
N
∑N

n=1
(
p̂n − p

) (
p̂n − p

)T where, p̂n = p
(
ŵn
)
=

softmax
{
f Ŵt (x̂)

}
and p =

∑N
n=1

p̂n
N . The overall equation

for the variance is:

Varq(w|θ)[P(̂y|̂x,w)] =

 1
N

N∑
n=1

diag
(
p̂n
)
− p̂n p̂T

n


+

 1
N

N∑
n=1

(
p̂n − p̄

) (
p̂n − p̄

)T  (8)

The variance of the predictive distribution can be cal-
culated by Eq. 8 which provide us with the confidence
of the network in making predictions for a given image.

2.3.4. Adaptive activation
The weights and bias of a perceptron in a neural net-

work perform a linear transformation of the inputs. The
output of this linear transformation is passed to an acti-
vation function that determines if a particular perceptron
is activated for a given input. A non-linear activation
function is a key component of a neural network, which
enables it to learn complex functions with a small num-
ber of perceptrons. However, this nonlinearity of the ac-
tivation function is known to introduce problems such as
exploding or vanishing gradients. Thus, there is a trade-
off between the learning capabilities vs training com-
plexities of a perceptron, which can be optimized. To
achieve this, we modify the Bayesian-CNN by introduc-
ing a learnable stochastic activation function that adapts
to the training data. Such adaptivity in the context of
other machine learning models has been reported in the
literature [50, 52], in which the learnable parameter is
deterministic. In this work, we introduce a probabilistic
learning parameter for the adaptivity of Bayesian-CNN.
This adaptive activation function contains a probabilis-
tic parameter that is learned during the training of the
neural network. To this end, a trainable probabilistic
hyperparameter (α) is introduced in the activation func-
tions of a Bayesian–CNN and the resulting network is
the modified Bayesian–CNN. The details of the pro-
posed adaptive activation function are given below.

σ(α fk(xk−1)) (9)

where
fk(xk−1) = wk xk−1 + bk

σ is the activation function
α is the probabilistic hyperparameter that can be trained
w and b are the weights and bias of the kth layer and
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xk−1 is the output from the previous layer of the neural
network.

To incorporate the stochastic adaptive activation, the
loss function F (Eq. 4) is modified to include the addi-
tional stochastic parameter α. Specifically, the set of
trainable network parameters w = {w, b} in F is ex-
tended to W = {w, b, α}. Thus the modified loss function
F̃ (D, θ) is given as

F̃ (D, θ) ≈
n∑

i=1

[logq(W (i)|θ) − logP(W (i)) − logP(D|W (i))]

The parameter α is learned in the same way as the
parameters w as described in Sec. 2.3.1. A prior
distribution (a mixture of Gaussian) for the parameter α
is assumed and the posterior distribution is obtained via
Bayes’ rule. This posterior distribution is approximated
by a Gaussian variational posterior qα with mean µα
and standard deviation σα. The parameters of this
variational posterior are updated through gradient
descent as,
µm+1
α = µm

α − η∇µαF̃
m and

σm+1
α = σm

α − η∇σαF̃
m

Where, η is the learning rate. Refer to section II of the
supplementary document for further details.

In this work, an adaptive ReLu given by
σ(γ) = max(0, γx) is used for the fully connected
layers.

The networks were trained, validated, and tested on
GPUs using Apache MXNet on Python 3. Details of the
computational platform are given in the supplementary
document.

2.3.5. t-distributed stochastic neighbor embedding (t-
SNE)

t-SNE [54] is an unsupervised non-linear dimension-
ality reduction technique that helps in visualizing high
dimensional data by mapping it into a low dimensional
space. In this method, as a first step, a conditional prob-
ability (p j/i) is assigned between data points xi and x j

in a high dimensional space. This conditional proba-
bility p j/i represents the similarity of data points such
that similar points in the high dimensional space have
a higher probability than dissimilar points. One such
measure of similarity is the Euclidean distance between
a pair of data points. In the second step, a similar con-
ditional probability (q j/i) is defined for the low dimen-
sional counterpart yi and y j. If the low dimensional
representation of the data correctly models similarity

between the points in the high dimensional space, the
two conditional probabilities p j/i and q j/i will be equal.
Thus, in the third step, by minimizing the KL diver-
gence between the two conditional probabilities a low
dimensional map of the data points is obtained via t-
SNE. In this work, we explain the high uncertainty of
images by projecting them into a latent space via t-SNE.

3. Results and analysis

This section presents classification results for
histopathological data, its uncertainty quantification ob-
tained through the proposed modified Bayesian–CNN
(Section 2.3). It also provides an explanation of the
predicted uncertainty via t-SNE. Further, the proposed
model is analyzed and juxtaposed with Bayesian–CNN
and transfer learning CNN (TL-CNN).

3.1. Hyperparameter optimization

Hyperparameters and architecture for all the net-
works considered here are chosen through hyperparam-
eter optimization. A Tree-structured Parzen Estimator
(TPE) algorithm is used which is a sequential model-
based optimization approach [55]. In this approach,
models are constructed to approximate the performance
of hyperparameters based on historical measurements.
New hyperparameters are chosen based on this model to
evaluate performance. A python library Hyperopt [56]
is used to implement this optimization algorithm over a
given search space. Data is split into a training set and a
validation set as explained in the Data preparation sec-
tion 2.2. An optimization is performed to maximize the
validation accuracy for different configuration and hy-
perparameter settings of the network.

The architecture of TL-CNN follows VGG-16
[40]. Architectures for Bayesian–CNN and modified
Bayesian–CNN are shown in Fig. 2. In the case of mod-
ified Bayesian–CNN, the ReLU function after the FC 1
layer (see Fig.2) is changed into a stochastic–adaptive
ReLU. Using stochastic-adaptive Relu in convolution
layers as well increased the computational cost with-
out any significant improvement in performance. More
details are given in the supplementary document. The
number of filters for convolution layers and the number
of neurons in the fully connected layers are obtained
through hyper-parameter optimization. The results of
the optimisation are presented in Tables. 1 and 2.
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Figure 2: Architecture for Bayesian–CNN and modified Bayesian–
CNN. Conv represents convolution layers and FC represent fully con-
nected layers. Number of neurons in FC 2 is fixed as 2 for binary
classification. Optimized kernel size of all convolution layers is fixed
as 3×3 with stride 1. Optimized kernel size of max pool layers is 2×2
with stride 2.

Table 1: Selected hyperparameters

Network Learning
rate

Batch
Size

Layers
learnt

TL-CNN 0.001 64 2
Bayesian–CNN 0.001 128 All
Modified Bayesian-
CNN

0.0001 64 All

Table 2: Selected hyper parameters for network architecture

Network con1 con2 con3 con4 con5 con6 FC1
Bayesian–
CNN

16 32 32 64 128 256 512

modified
Bayesian-
CNN

32 64 64 128 128 128 256

3.2. Training, validation, and testing of networks
The networks are trained using the images as inputs

and the corresponding known classes as outputs. The
cross-entropy loss and the variational free energy loss
are minimized for TL-CNN and Bayesian networks re-
spectively. The training is done until the loss converges
or the validation accuracy starts to decrease. In the fol-
lowing the details of training, validation, and testing for
TL-CNN, Bayesian–CNN, and the modified Bayesian–
CNN are described.

3.2.1. Convolutional neural networks
Transfer learning is the state-of-the-art for CNNs and

has consistently performed the best for medical image
classification [33, 57]. In transfer learning, the learned
parameters for one data set are utilized for other data
sets to perform a similar task. Here we use the weights
of VGG16 [40] architecture trained on Imagenet data
set [41] for classification and perform transfer learning
to classify the histopathological data. The accuracy for
training and validation for each epoch is shown in Fig. 3
for TL-CNN. The accuracy increases with the epoch for
the training data whereas the accuracy remains constant

for the validation data after the first few epochs. This
problem is known as overfitting. Thus, TL-CNN fails
to generalize its predictions to unknown validation data
and overfits the training data. Beyond 40 epochs, the
validation accuracy remains almost a constant while the
training accuracy is still increasing, which is long before
the training loss has converged.
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Figure 3: Training and validation accuracy of TL-CNN. We can
clearly see the problem of overfitting as the training accuracy in-
creases while the validation accuracy does not improve. The results
presented for the TL-CNN henceforth are for the maximum validation
accuracy.

To alleviate the overfitting of the networks, reg-
ularization strategies are used, such as L1 or L2
regularization, cross-validation, early stoppage, and
dropout [58–60]. However, these may require human
intervention during training (such as parameter tuning,
determination of early stoppage) or may lead to loss of
information due to drop out [59].
In Bayesian networks the prior distribution on weights
p(w) introduces regularisation of weights automati-
cally. A Gaussian prior yields L2 regularisation on the
weights and a Laplace prior yields L1 regularisation on
the weights. In addition, due to the stochastic nature of
the parameters, an average across multiple models is
computed during training which introduces a regular-
isation effect on the network. However, similar to the
selection of a regularisation parameter in deterministic
networks, the selection of prior parameters in Bayesian
networks is challenging. Herein we show that through
a Bayesian framework the limitations of overfitting is
overcome automatically.

3.2.2. Bayesian–CNN and the modified Bayesian–CNN
The accuracy of predictions for both training and val-

idation data of the Bayesian and modified Bayesian-
CNN is shown in Fig. 4 and Fig. 5 respectively. It is
evident that the problem of overfitting is eliminated by
using a Bayesian network as the accuracy of predictions
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for both training and validation data increases with an
increase in the number of epochs.
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Figure 4: Training and validation accuracy of Bayesian–CNN. We can
see that both training and validation accuracy increases with epoch
which implies automatic regularisation.
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Figure 5: Training and validation accuracy of modified Bayesian–
CNN.

The values of the accuracy of training, validation,
and test data upon the convergence of the loss func-
tion are provided in Table 3. It is seen that the problem
of overfitting drastically reduces the accuracy for val-
idation and test data in a TL-CNN whereas this prob-
lem is not present for Bayesian–CNN and the modified
Bayesian–CNN. The training, validation, and test accu-
racies of the modified Bayesian–CNN is slightly higher
than the Bayesian–CNN when the loss function is con-
verged. We found that the modified Bayesian–CNN re-
quires about the same time as that of Bayesian–CNN
for the same batch size but twice the computational cost
per epoch during the training as compared to TL-CNN.
More details on the training times are presented in the
supplementary document. We have performed a com-
parative study of the Bayesian–CNN and the modified
Bayesian–CNN on the MNIST data [61]. We found that
the modified Bayesian–CNN shows a similar improve-
ment in performance on the accuracy for the MNIST
data set. Further details are presented in the supplemen-
tary document.

Table 3: A Comparison of TL-CNN, Bayesian–CNN and modified
Bayesian-CNN

Network Training
Accu-
racy

Validation
Accu-
racy

Testing
Accu-
racy

TL-CNN 0.9078 0.8691 0.8676
Bayesian–CNN 0.8848 0.8817 0.8801
modified Bayesian-
CNN

0.8898 0.8856 0.8837

3.3. Quality assessment metrics

The performance of the classifier is presented using
the confusion matrix in Fig. 6. Details of the confusion
matrix is provided in the supplementary document.

(a) (b) (c)

Figure 6: Comparison of confusion matrices for a) TL-CNN, b)
Bayesian–CNN and modified Bayesian–CNN

In addition to the improvement of accuracy, the mod-
ified Bayesian–CNN remarkably reduces the number
of false-negative predictions as seen in Fig. 6, which
is a significant achievement. CNN is known to per-
form poorly for biased data set [62]. Given the data set
used in this work is highly biased to the negative class,
the TL-CNN model fails to overcome this bias yield-
ing more negative predictions. We demonstrate that the
modified Bayesian–CNN, overcomes this limitation of
the CNN and provides an unbiased result. The modified
Bayesian–CNN reduces the false negative and false pos-
itive predictions by about 13.7% and 10.4% respectively
as compared to TL-CNN. The modified Bayesian–CNN
reduces both the false negative and false positive by
3% as compared to Bayesian–CNN as seen in Fig. 6,
demonstrating unbiased prediction. This is a remark-
able advancement given that medical imaging data sets
are usually biased towards negative labels. This signif-
icant improvement in performance is achieved despite
having only 1.11 million parameters as compared to
134.33 million for TL-CNN.

The improvement in the performance of modified
Bayesian–CNN is due to the adaptive nature of the ac-
tivation function. The adaptive activation function with
a probabilistic learning parameter works better because
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through it the network trains an ensemble of activation
functions where each activation function has its weights
drawn from a probability distribution which is learned
from the data. Learning the probability distribution for
the activation parameter from the training data reduces
the bias in the model by eliminating the assumption in
the functional form of the activation.

To quantitatively assess the performance of the pro-
posed binary classification the following metrics are
used in addition to the confusion matrix: Accuracy,
Precision, Recall, F1-score, Cohen’s-kappa (CK) coeffi-
cient [63]. Cohen’s Kappa coefficient varies between 0-
1 where: 0 – agreement is equivalent to chance and 1.0
– perfect agreement. Improvement in Cohen’s Kappa
coefficient is achieved by using the modified Bayesian–
CNN as seen from table 4 which implies that it works
better than both Bayesian–CNN and TL-CNN for an un-
balanced data set.

The performance of the neural network classifiers is
evaluated based on all of the above metrics and the re-
sults are provided in table 4. The modified Bayesian–
CNN performs slightly better than Bayesian–CNN and
much better than TL-CNN on all the performance met-
rics for this data set.

Table 4: Performance metrics of TL-CNN and BCNN

Network Recall Precision F1-
score

CK

TL-CNN 0.7552 0.7722 0.7636 0.6717
Bayesian–CNN 0.7823 0.7917 0.7870 0.7036
modified
Bayesian–CNN

0.7888 0.7981 0.7934 0.7125

3.3.1. Statistical significance
In order to ensure that the difference in the re-

sults obtained by the Bayesian–CNN and the modified
Bayesian–CNN is not by chance, we performed a sta-
tistical significance test. Importance of statistical sig-
nificance tests is highlighted in [64, 65]. The McNe-
mar’s test [66] is performed and the results show that
the difference in performance is statistically significant
(p < 0.001). Therefore, the Bayesian–CNN and the
adaptive Bayesian CNN are statistically different mod-
els. The details and the results of the statistical signifi-
cance test are provided in Sec. VIII of the supplemen-
tary document.

3.4. Uncertainty quantification
Uncertainty quantification informs how confident the

network is in its predictions, which is crucial for medi-
cal applications. Thus in addition to the accuracy met-

rics, uncertainty is an important measure that can be es-
timated naturally through the Bayesian approaches. On
the contrary, the parameters of CNN are deterministic
and large in number (134 million) that makes its uncer-
tainty quantification infeasible. The parameters of the
(modified) Bayesian–CNN are probability distributions
whose variance provides an estimate of the uncertain-
ties associated with the predictions. The larger the vari-
ances the more uncertain the model is on its predictions.
The change of the probability distribution of a parame-
ter for the modified Bayesian–CNN is shown for dif-
ferent epochs in Fig. 7. As the training continues, the
standard deviation decreases increasing the confidence
in predictions (see the supplementary document).

-0.15 -0.1 -0.05 0 0.05 0.1

Weight parameter
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Figure 7: Probability density of a parameter for different epochs of
the modified Bayesian-CNN.

(a) (b) (c)

(d) (e) (f)

Figure 8: Sample images having negative labels and their uncertain-
ties: a) TN [A = 9.25×10−3, E = 6.50×10−6], b) TN [A = 1.8×10−2,
E = 5.65 × 10−5], c) TN [A = 4.44 × 10−3, E = 2.53 × 10−6], d)
TN [A = 2.77 × 10−1, E = 5.42 × 10−3], e) FP [A = 3.19 × 10−1,
E = 4.59×10−3], f) FP [A = 3.74×10−1, E = 5.57×10−3]. Aleatoric
and epistemic uncertainties are given by A and E respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 9: Sample images having positive labels and their uncertain-
ties: a) TP [A = 7.0× 10−2, E = 2.60× 10−4], b) TP [A = 6.60× 10−2

, E = 1.74 × 10−4], c) TP [A = 1.14 × 10−1, E = 4.91 × 10−4], d)
TP [A = 4.72 × 10−1, E = 2.03 × 10−2], e) FN [ A = 4.64 × 10−1,
E = 9.37 × 10−3] f) FN [A = 4.74 × 10−1, E = 6.26 × 10−3].

The uncertainty values associated with an individual
image denote the confidence with which the network
predicts the class label for that image. The aleatoric
uncertainty corresponds to the noise in the data which
cannot be reduced by improving the model. The epis-
temic uncertainty represents the variability due to the
model, which can be improved. A set of sample im-
ages from the test data set, their predicted class and
their aleatoric and epistemic uncertainty in prediction
are shown in Fig. 8 and 9. The images with negative
and positive ground truth labels are shown in Fig. 8
and Fig. 9 respectively. The important features appar-
ent from these images are the texture density and color.
It appears that the positive class has darker and denser
images. It seems that the images with high epistemic
uncertainty, Fig. 8(d,e,f) and 9(d,e,f) has features from
both the classes. Therefore, the model gives high epis-
temic uncertainty to those images indicating mixed fea-
tures or mislabeling. Thus, the Bayesian approach pro-
vides an avenue to identify which images should be re-
ferred back to a human expert.

3.5. Use of uncertainty to improve performance

We utilize the uncertainty to further improve the per-
formance on a subset of data. The aleatoric uncertainty
of the test set is normalised by the maximum and mini-
mum values of aleatoric uncertainty of the training set.
For every threshold of aleatoric uncertainty, we divide
the test data into two subsets having uncertainty lower
and higher than the threshold. The ratio of the num-
ber of images in the low uncertainty subset is plotted
against the uncertainty–threshold used to create the sub-
set in Fig. 10(a). The accuracy corresponding to each of

this subset are also plotted against the threshold. The
number of false-negative and false-positive predictions
are plotted for different thresholds of aleatoric uncer-
tainty in Fig. 10(b). For instance, if the threshold value
is 0.6, the low uncertainty subset contains 77% of the
test data and its accuracy is 94.6% which is about 6%
improvement in accuracy over the entire test data set.
The remaining 23% of the test data, which has uncer-
tainty higher than this threshold (0.6) may be referred
to a human expert for a more accurate prediction. Fur-
thermore, for this subset, the percentage of false nega-
tives reduces from 6.2% for the entire data set to 2.7%
and the percentage of false positives reduces from 5.8%
for the entire data set to 1.5%, which are significant im-
provements. We found that normalized uncertainty val-
ues lesser than 0.8 provided significant improvement in
performance for this data set. For other data sets this
threshold on uncertainty can be set by looking at change
in slope of the accuracy vs uncertainty plot. A similar
study is done using the epistemic uncertainty and the
results are presented in the supplementary document.
Therefore, we show that uncertainty quantification can
be used to improve the performance significantly for a
subset of test data.
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(a) Fraction of test data having uncertainty below the threshold and their
accuracy plotted against the uncertainty–threshold.
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Figure 10: Performance improvements for a subset of test data that
has uncertainty less than the uncertainty–threshold. Dotted Lines rep-
resents two thresholds of aleatoric uncertainty.
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3.6. Explanation of uncertainty by visualization in low
dimension

In the following, we provide an explanation of uncer-
tainty by visualizing the test data in a low dimensional
space (latent space). A dimensionality reduction is per-
formed on the data using t-SNE to project the 7500-
dimensional feature into 3 dimensions (3D).

(a) Low uncertainty

(b) Medium uncertainty

(c) High uncertainty

Figure 11: Low dimensional representation of the test data for three
subsets using t-SNE. blue: negative class, red: positive class

The epistemic uncertainty (E) evaluated through the
Bayesian approach is normalized to range between [0 −
1]. The test data set is divided into three subsets: low
(E ≤ 0.01), medium (0.01 < E ≤ 0.1) and high un-
certainty (E > 0.1). t-SNE is performed for these three
subsets. Low dimensional representations obtained via
t-SNE are presented in Fig. 11 where each data point
represents a test image. Fig. 11 explains the uncer-
tainty associated with the individual images. The low
uncertainty images have a clear separation between the
positive and negative classes in the latent space. Thus
the model classifies these images with high confidence.
The images with medium uncertainty are clustered at
different locations in the latent space however have sig-
nificant overlap. Therefore the model classifies these
images with lesser confidence. For the high uncertain
images, the negative and the positive classes are not at
all separable in the latent space. Thus the model can-
not distinguish between the two classes for this subset,
yielding poor accuracy and low confidence.

4. Conclusions

In this study, we have quantified the uncertainty in
the classification of histopathological images through
Bayesian–CNN and compared its performance against
the state-of-the-art. We have explained the uncertainty
and utilized the uncertainty to improve the performance.
To conclude this study, we summarize its main findings.

Firstly, we have shown that Bayesian–CNN performs
better than the state-of-the-art transfer learning CNN on
all performance metrics and provides uncertainties in
classifying breast histopathological images. Bayesian–
CNN improves the test accuracy by 1.2% and reduces
the false negative and false positive by 11% and 7.7%
respectively as compare to TL-CNN, despite having
only 1.86 million parameters as compared to 134.33
million for TL-CNN.

Secondly, we explained the uncertainties in the test
data by projecting them into a low-dimensional space.
This low-dimensional projection enables visual inter-
pretation of the data. The data structure in the low di-
mensional feature space reveals that images with high
uncertainty are not separable whereas the images with
low uncertainty are clearly separable.

Thirdly, using different uncertainty thresholds, we
demonstrate that the accuracy of Bayesian networks can
be significantly improved on a large fraction of test data
(6% improvement on 77% test data).

Fourthly, we have proposed a novel stochastic–
adaptive activation enabled Bayesian–CNN and call it
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modified Bayesian–CNN. In the proposed model we in-
troduce a probabilistic learnable activation function that
adapts to the training data to improve predictive capabil-
ities. We have shown that the modified Bayesian-CNN
performs slightly better than the Bayesian–CNN in all
performance metrics. Especially it can reduce the false
negative and false positive predictions by 3% as com-
pared to Bayesian–CNN.

Fifthly, we have demonstrated that using the pro-
posed modified Bayesian–CNN and the Bayesian–
CNN, the problem of overfitting can be nearly elimi-
nated without any recourse to regularization. That is the
Bayesian approach work with almost equal accuracy for
unknown and known data sets.

This work improves the understanding of the un-
certainties in Bayesian–CNN-based classification and
helps to leverage these uncertainties to further improve
its performance. These findings require further inves-
tigation on larger data sets, however, they show poten-
tial routes to improve upon the state–of–the–art classi-
fier for a broad range of biomedical applications.
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