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Abstract

Convolutional neural network (CNN) based classification models have been successfully used on histopathological
images for the detection of diseases. Despite its success, CNN may yield erroneous or overfitted results when the
data is not sufficiently large or is biased. To overcome these limitations of CNN and to provide uncertainty quantifi-
cation Bayesian CNN is recently proposed. However, we show that Bayesian–CNN still suffers from inaccuracies,
especially in negative predictions. In the present work we extend the Bayesian–CNN to improve accuracy and the rate
of convergence. The proposed model is called modified Bayesian–CNN. The novelty of the proposed model lies in
an adaptive activation function that contains a learnable parameter for each of the neurons. This adaptive activation
function dynamically changes the loss function thereby providing faster convergence and better accuracy. The uncer-
tainties associated with the predictions are obtained since the model learns a probability distribution on the network
parameters. It reduces overfitting through an ensemble averaging over networks, which in turn improves accuracy on
the unknown data. The proposed model demonstrates significant improvement by nearly eliminating overfitting and
remarkably reducing (about 38%) the number of false negative predictions. We found that the proposed model pre-
dicts higher uncertainty for images having features of both the classes. The uncertainty in the predictions of individual
images can be used to decide when further human–expert intervention is needed. These findings have the potential to
advance the state–of–the–art machine learning–based automatic classification for histopathological images.

Keywords: Bayesian Convolutional Neural Networks, Breast Cancer, Histopathological Imaging, Machine
Learning, Uncertainty Quantification.

1. Introduction

1.1. Histopathological imaging for Breast cancer
Breast cancer is the most common cause of can-

cer in women [1, 2, 3]. It has the highest incidence
(43.3 per 100 000 population) than any other cancer
and the highest mortality rate (15%) of all cancer deaths
in women in 2012 [1]. Thus detection and diagnosis
of breast cancer are vital in reducing the impact of the
disease. Histopathological imaging is considered as the
gold standard for breast cancer detection and diagnosis
[4]. Histopathology is a diagnostic technique that in-
volves microscopic examinations of tissues to study the

sign of a disease. This method preserves the underlying
architecture of the tissues thereby providing a signifi-
cant contribution to the diagnosis of diseases. It is the
only way to detect some of the diseases like lympho-
cytic infiltration of cancer. Histopathological images
have a lot of information and structure which makes it
highly reliable in the diagnosis of diseases especially in
almost all types of cancer [5].

1.2. State–of–the–art machine learning algorithms for
Histopathological imaging

With the advancement in digital imaging, computer-
aided diagnosis (CAD) is focused in the recent past
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[5, 6, 7, 8, 9, 10, 11]. Machine learning algorithms
such as conventional neural networks and deep neural
networks have shown tremendous potential in CAD ap-
plications. Feature extraction in a conventional neu-
ral network played a significant role in the predictions
of the neural network. Various methods of feature ex-
traction followed by classifiers such as support vec-
tor machine, K-nearest neighbor, decision tree, Naive
Bayes amongst others were explored in the literature for
classification and segmentation of breast cancer images
[12, 13, 14, 15, 16, 17, 18]. Though these methods per-
formed reasonably well in terms of accuracy, manual
feature extraction was a bottleneck in improving the re-
sults.
Owing to their advantage of automatic feature extrac-
tion, deep learning algorithms have become powerful
tools in medical imaging and diagnosis applications.
Convolutional neural networks (CNNs) were success-
ful in learning advanced features from the input images
and were demonstrated to perform well in classification,
both binary [19, 20, 21] and multiclass classifications
[22, 4], and metastasis detection [23] on breast cancer
images. Apart from being able to perform classification,
CNNs were also successfully implemented in problems
involving segmentation [24, 25, 26] and detecting re-
gions of interest which contain in-depth discrimina-
tory information for classification in large whole-slide
images [27, 28, 29]. CNNs also provided the scope
to implement transfer learning, in which the knowl-
edge gained from training one network is applied to
another network to solve a similar problem. Thus,
transfer learning was implemented by researchers to
improve CNNs performance in breast cancer detection
[30, 31, 32]. A grand challenge on breast cancer his-
tology images was conducted to advance the state–of–
the–art in classifying these images. It was concluded
that CNN was the most successful method to classify
these breast cancer images [33]. The top performers
[34, 35, 36] in this challenge used the architecture of
an existing network such as Resnet [37], Densenet [38],
Inception [39], VGG16 [40], etc and pre-trained these
networks using ImageNet [41].
Although CNN perform better for image classification
than other machine learning techniques in terms of ac-
curacy, their parameters are deterministic and thus can
not provide any measure of uncertainty in predictions.
Uncertainty is a measure of trust in machine decisions
and this metric cannot be neglected in medical diagno-
sis applications such as breast cancer detection as these
involve decisions that affect the lives of human beings
[42]. Neural networks in general are prone to overfitting
especially when they are learned over a small data set.

In addition, predictions based on deterministic estimates
might provide incorrect results with high confidence. In
order to understand the confidence of predictions and
to avoid overfitting problems, uncertainty quantification
is important [42]. The Bayesian neural network is an
efficient state–of–the–art machine learning technique to
quantify uncertainties [43, 44, 45].

1.3. Present work: Modified Bayesian–CNN–based
classification model for Histopathological images

In a Bayesian–CNN, the weights and biases are
random variables as opposed to deterministic variables
used in the CNN. Through the stochastic nature of the
parameters, Bayesian–CNN captures the variability in
the data set and computes the uncertainties in its pre-
dictions. Obtaining probability distributions for the
weights can be seen as training an ensemble of networks
instead of a single network, where each network has its
weights sampled from the learned probability distribu-
tions. Towards this, Blundell et al. [43] introduced an
efficient algorithm called “Bayes by backprop”. This
algorithm can be used to learn the probability distribu-
tion on weights and it was compatible with the conven-
tional backpropagation scheme. They have also shown
that it is possible to regularise the weights by mini-
mizing a loss function known as the variational free
energy and demonstrated that this method of regular-
isation showed performance comparable with dropout
on MNIST classification. Shridhar et al. [44, 45] ex-
tended the “Bayes by backprop” algorithm to convolu-
tional neural networks. The proposed Bayesian-CNN
architecture was implemented for image classification,
image super-resolution, and generative adversarial net-
works. This method has shown performance as good as
conventional CNN and in addition provided uncertainty
measures and regularisation. Kendall et al. [46] pro-
vided a Bayesian deep learning framework combining
aleatoric and epistemic uncertainties. The authors im-
proved the model’s performance by 1 to 3% over its de-
terministic counterpart by reducing the effect of noisy
data. The trade–offs between modeling aleatoric and
epistemic uncertainties were also studied. Kwon et al.
[47] proposed a method of quantifying uncertainties in
classification using Bayesian neural networks.

Bayesian–CNNs are gaining popularity due to their
ability to provide uncertainties associated with the pre-
dictions. Yet, there has been no known work to the
authors’ knowledge that demonstrates the advantages
of Bayesian–CNN over CNN to classify histopatholog-
ical images. In this work, at first we show the ad-
vantages of Bayesian–CNN for classification of breast
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histopathological images. We found that the Bayesian–
CNN improves accuracy and reduces overfitting over
CNN in addition to quantifying uncertainties. Our re-
sults show that the Bayesian–CNN remarkably reduces
the false negative predictions. However, we found there
is still a significant number of false negatives. Re-
ducing false negative predictions is singularly impor-
tant in histopathology (or in any medical imaging ap-
plications). Therefore there is a significant scope for
improvement in reducing the number of false negative
predictions. In the present work, we propose a new
model to extend the Bayesian–CNN with the objective
of further reducing the number of false negative pre-
dictions and to improve its accuracy and convergence.
The proposed model is henceforth referred as modified
Bayesian–CNN.

The key novelty of the proposed model are two
fold: 1) we introduced an adaptive activation func-
tion with learnable parameters to replace the non adap-
tive activation function of the Bayesian–CNN, 2) we
have demonstrated the use of uncertainty measures to
improve the accuracy. The proposed model signifi-
cantly decreases the number of false negative predic-
tions over Bayesian–CNN. The proposed model nomi-
nally improves the accuracy and rate of convergence. A
performance–comparison of the three networks, namely
CNN and Bayesian–CNN and the proposed modified
Bayesian–CNN, is presented.
The rest of the paper is organized as follows: in sec-
tion 2 the data set and the methods used in this work are
described; in section 3 results obtained in the work and
their analysis are presented followed by conclusions in
section 4.

2. Data set and methods

2.1. Data acquisition
The breast histopathological images used in this

work are from a publicly available data set [48]. These
are images containing regions of Invasive Ductal Carci-
noma (IDC) which is the most common subtype of all
breast cancers [48]. These regions are separated from
the whole slide images by pathologists. The original
data set consisted of 162 whole mount slide images of
Breast Cancer specimens scanned at 40x. From the orig-
inal whole slide images, 277,524 patches of size 50 x 50
were extracted (198,738 IDC negative and 78,786 IDC
positive) and provided as a data set for classification.

2.2. Data Preparation
The classification of the data was carefully done

by experienced pathologists providing the ground truth

for training. The entire data set was divided into a
training set and a testing set (80%-20% split) in our
study. The training set and the testing set consists of
two classes (IDC positive (1) and IDC negative (0))
each. Data training was carried out on the training set
and testing set was used to evaluate the classification
and uncertainty quantification performance. The train-
ing data is shuffled before training which ensures each
data item creates an independent and unbiased change
on the model. The image size is 3 x 50 x 50 (D x
H x W), where D is the depth (color channels), H is
the height, and W the width. The images were stored
in the form of arrays compatible with the software and
network architecture. The images were converted from
uint8 to float format for normalizing, as uint8 type ar-
rays are compatible only with integers. For most of the
images, the majority of the pixel values are greater than
200. This makes the computation extremely expensive
especially with the large size of data. Further, it leads to
problems such as singularity/gradient explosion during
the evaluation of loss function. In addition, the original
images are such that the information that needs to be
highlighted has low pixel values. To solve these prob-
lems, we computed the complement of all the images
(training and testing) and then used as inputs to the neu-
ral network. Fig. 1 shows the comparison of original
and processed images.

(a) (b)

Figure 1: (a) Original image of training data ; (b) complementary im-
age of training data

2.3. Methods

An overview of methods used in Bayesian Neural
Networks and Bayesian Convolution neural networks
that are developed in [43] and [44] respectively are pro-
vided in this section. Bayesian convolution neural net-
work presented in [44] is the extension of the concepts
of Bayesian neural network presented by Blundell et al.
in [43]. The mathematical background in this section is
revisited for completeness.

The neural network can be defined as a probabilistic
model P(y|x,w), where x ∈ Rp is an input to the net-
work, y ∈ Υ are each possible outputs for which the
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neural network assigns probability, trained with the set
of parameters w.

This set of parameters w is learned using a com-
plete Bayesian approach. In this approach given train-
ing data D, the posterior distribution of weights P(w|D)
is calculated using Bayesian inference for neural net-
works which involves marginalization over all possible
values of w. Once the posterior distribution P(w|D) is
obtained, predictions on the unseen data are obtained by
taking expectations on the predictive distributions. The
predictive distribution of an unknown label ŷ of a test
data item x̂ is given by P(̂y|̂x) = EP(w|D)[P(̂y|̂x,w)] =∫

Ωw
P(̂y|̂x,w)P(w|D)dw.

To estimate the posterior distribution we use Bayes’
Rule which gives:

P(w|D) =
P(D|w)P(w)

P(D)
(1)

The term P(D|w) the likelihood of the training data
(D) given a parameter setting (w). Assuming each
training data to be independent and identically dis-
tributed, the above term becomes the product of like-
lihood, P(D|w) =

∏N
n=1 P (yn|w, xn) where, (xn, yn) are

the training data item and known label respectively.
The prior P(w) is our belief about the distribution of
weights without seeing the data. The term P(D) in
the equation (1) is intractable which makes the poste-
rior distribution P(w|D) intractable . The term P(D)
involves marginalization over the weight distribution:
P(D) =

∫
Ωw

P(D|w)P(w)dw.

For variational inference, the posterior distribution
P(w|D) which is intractable is approximated with a
tractable simpler distribution over the model weights
q(w), with variational parameters θ, where θ = (µ, σ)
if we assume our weight distributions to be Gaussian.
Therefore, each of the weight (parameter) of the neu-
ral network will be parameterized by two parameters,
the mean µ and the standard deviation σ, doubling the
number of parameters. We fit the variational parameters
θ such that q(w|θ) ≈ P(w|D). The variational posterior
q(w|θ) is used instead of the intractable posterior P(w|D)
for the inference, P(̂y|̂x) = Eq(w|θ)[P(̂y|̂x,w)]. Estimating
q(w|θ) ≈ P(w|D) we can say that we have learned the
distribution of weights given training data.

To make the variational posterior q(w|θ) and the true
posterior P(w|D) similar, we minimize the KL diver-

gence between them:

KL[q(w|θ)‖P(w|D)] = Eq(w|θ)

[
log

q(w|θ)
P(w|D)

]
=

∫
q(w|θ)log

q(w|θ)
P(w)

dw +

∫
q(w|θ)log(P(D))dw

−

∫
q(w|θ)log(P(D|w))dw

The term log(P(D)) makes the above equation in-
tractable. Although intractable, it is constant. There-
fore, minimizing the KL divergence can be defined as:

min (KL[q(w|θ)‖P(w|D)]) = min(KL[q(w|θ)‖P(w)]
− Eq(w|θ)[log(P(D|w))]

The term
(
KL[q(w|θ)‖P(w)] − Eq(w|θ)[log(P(D|w))]

)
is

called the Variational Free Energy (VFE) which is to
be minimized.

Exact minimization of the cost function is computa-
tionally impossible, therefore gradient descent and var-
ious other approximations are used. The cost func-
tion given above can be approximated through a Monte
Carlo sampling procedure as follows:

F (D, θ) ≈
n∑

i=1

[logq
(
w(i)|θ

)
− logP

(
w(i)

)
− logP

(
D|w(i)

)
]

Where, w(i) denotes the ith Monte Carlo sample drawn
from the variational posterior q(w(i)|θ). Each term in the
cost function has weights that are drawn from the vari-
ational posterior. To implement and compute the above
cost we need three terms: 1) log of variational poste-
rior, 2) log of prior (Gaussian or scale mixture), 3) log-
likelihood of the data.
The operation on the cost function works well with
mini-batch optimization. The exact loss form on mini
batch i is as follows [49]:

F (Di, θ) =
1
M

KL[q(w|θ)|P(w)] − Eq(w|θ) [P (Di|w)]

≈
1
M

log q(w(i)|θ) − log P(w(i)) − log P(Di|w(i))

Where, M corresponds to the number of batches, and
F (D, θ) =

∑M
i=1F (Di, θ)

The variational posterior (q) is composed of inde-
pendent Gaussian distribution for each parameter. The
sample of weights are obtained by sampling the unit
Gaussian, shifting and scaling by the mean µ and a
standard deviation σ respectively. To ensure that the
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standard deviation is always non-negative, it is ex-
pressed as σ = softplus (ρ) = log(1 + exp(ρ)), point-
wise. Parameters, w, of the variational posterior, q,
can be re-written in terms of a parameter–free noise
as [w = µ + log(1 + exp(ρ)) ◦ ε] or [w = µ + σ ◦ ε].
Where, ◦ is point-wise multiplication, ε is defined be-
low [43]. The steps for optimization are as follows:
Optimization steps:

1. Sample ε
j
i ∼ N(0, 1) {i = 1, ...,N and j =

1, ...,M}
N: Number of parameters in the network,
M: Number of samples drawn from the varia-
tional posterior.

2. Let w j
i = µi + log(1 + exp(ρi)) ◦ ε

j
i .

3. Let f ({w j
i (µi, ρi), µi, ρi}i=1...N, j=1...M)

=
∑M

j=1
∑N

i=1

[
logq(w j

i |µi, ρi) − logP(w j
i )P(D|w j

i )
]

4. Calculate the gradient w.r.t the mean µi

∂ f (w j
i (µi, ρi), µi, ρi)
∂µi

=

M∑
j=1

∂ f

∂w j
i

+
∂ f
∂µi

5. Calculate the gradient w.r.t the standard deviation
parameter ρi

∂ f (w j
i (µi, ρi), µi, ρi)
∂ρi

=

M∑
j=1

∂ f

∂w j
i

ε
j
i

1 + exp(−ρi)
+
∂ f
∂ρi

6. Update the variational parameters:

µi ← µi − α
∂ f (w j

i (µi,ρi),µi,ρi)
∂µi

ρi ← ρi − α
∂ f (w j

i (µi,ρi),µi,ρi)
∂ρi

where α is the learning rate

2.3.1. Bayesian Convolution Neural Networks
The parameters of CNNs are filters or kernels which

are to be learned during training. In the case of a
Bayesian–CNN these kernels are represented by prob-
ability distributions as shown in Fig. 2.

Figure 2: Parameters of the Bayesian–CNN representing probability
distributions instead of deterministic values.

During the training of Bayesian–CNN the reparam-
eterization trick is applied on these filters or kernels,
which are of shape h×w×d. They are sampled from the
variational posterior q(w|θ) using the following equa-
tion:

wh,w,d = µh,w,d + log
(
1 + exp

(
ρh,w,d

))
◦ εh,w,d

where h is the height, w is the width and d is the depth of
the filter and ◦ represents point-wise multiplication. Af-
ter the sampling from the variational posterior, similar
optimization steps as explained in the previous section
are followed.

2.3.2. Uncertainty Quantification
The uncertainty quantification becomes extremely

important when dealing with the applications related to
autonomous vehicles, medical imaging, etc. Bayesian
deep learning makes it possible to quantify the uncer-
tainties in the prediction as we have probability distribu-
tion over weights. Taking an expectation of the predic-
tive posterior probability distribution: Eq(w|θ)[P(̂y|̂x,w)]
gives us the most probable prediction of the unknown
data x̂. The variance of the predictive posterior proba-
bility distribution: Varq(w|θ)[P(ŷ|x̂,w)] quantifies the un-
certainties. There are two types of uncertainties: the
Aleatoric and the Epistemic uncertainty. The variance
of the predictive posterior probability distribution is the
sum of both these uncertainties:

Varq(w|θ)[P(̂y|̂x,w)] = aleatoric + epistemic

The aleatoric uncertainty corresponds to the noise in the
data set whereas the epistemic uncertainty corresponds
to the variability of the model developed[44]. One of
the promising approaches to quantify the uncertainties
is explained in [47]. The uncertainties are obtained from
the variance of the predictive posterior probability dis-
tribution,

Varq(w|θ)[P(̂y|̂x,w)] = Eq(w|θ)

[
(y − E[y])2

]
=

∫
Ωw

[[
diag

(
EP(̂y|̂x,w) [̂y]

)
−EP(̂y|̂x,w) [̂y]EP(̂y|̂x,w) [̂y]T

]
q(w|θ)dw

]
+

∫
Ωw

[[
EP(̂y|̂x,w) [̂y] − Eqθ (̂y|̂x) [̂y]

]
[
EP(̂y|̂x,w) [̂y] − Eqθ(Y|x) [̂y]

]T
q(w|θ)dw

]
The above expression is the sum of aleatoric and the
epistemic uncertainties which is derived from the vari-
ant of the law of the total variance [47]
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The first term of the above equation (variance
if the predictive posterior probability) is defined as
the aleatoric uncertainty and the second term is the
epistemic uncertainty. Due to the integral term in
the above equations, it is intractable and requires
approximations as follows. The equation of the
aleatoric uncertainty is defined as: 1

N
∑N

n=1 diag
(
p̂n

)
−

p̂n p̂T
n where, p̂n = p

(
ŵn

)
= softmax

{
f ŵt (x̂)

}
. And

the equation of the epistemic uncertainty is defined
as: 1

N
∑N

n=1
(
p̂n − p

) (
p̂n − p

)T where, p̂n = p
(
ŵn

)
=

softmax
{
f Ŵt (x̂)

}
and p =

∑N
n=1

p̂n
N . The overall equation

for the variance is:

Varq(w|θ)[P(̂y|̂x,w)] =

 1
N

N∑
n=1

diag
(
p̂n

)
− p̂n p̂T

n


+

 1
N

N∑
n=1

(
p̂n − p̄

) (
p̂n − p̄

)T


The variance of the predictive distribution can be

calculated by the above equations which provide us with
the confidence of the network in making predictions for
a given image.

2.3.3. Adaptive activation
The weights and bias of a perceptron in a neural net-

work performs a linear transformation of the inputs. The
output of this linear transformation is passed to an ac-
tivation function that determines if a particular percep-
tron is activated for a given input. Non-linear activation
function is a key component of a neural network, which
enables it to learn complex functions with a small num-
ber of perceptrons. However, this nonlinearity of the ac-
tivation function is known to introduce problems such
as exploding or vanishing gradients. Thus, there is a
trade off between the learning capabilities vs training
complexities of a perceptron, which can be optimised.
To achieve this, we propose a formulation for Bayesian-
CNN through introducing a learnable activation func-
tion that adapts to the training data. Such adaptivity in
the context of other machine learning models has been
reported in the literature [50, 51], but not for Bayesian-
CNN.
This adaptive activation function contains a parameter
that is learnt during the training of the neural network.
To this end, a trainable hyperparameter (α) is introduced
in the activation functions of a Bayesian–CNN and the
resulting network is the modified Bayesian–CNN. The
details of the proposed adaptive activation function is
given below.

σ(α fk(xk−1))

where,
fk(xk−1) = wk xk−1 + bk

σ is the activation function
α is the trainable hyperparamter
w and b are the weights and bias of the kth layer and
xk−1 is the output from the previous layer of the neural
network.

The modified loss function J(Θ) has an additional
parameter α which is to be optimised along with the pa-
rameters w and b, i.e Θ = (w, b, α).
We seek to find

α∗ = arg min(J(α))

.
The parameter α is updated by gradient descent as,

αm+1 = αm − η∇αJm(α)

Where, η is the learning rate.

In this work, an adaptive sigmoid given by σ(x) =
1

1+e−αx is used.

3. Results and analysis

This section presents the development of an auto-
matically regularized and unbiased classification model
for histopathological data through Bayesian–CNN,
which is described in the Section 2.3. The model is an-
alyzed and juxtaposed with widely used CNN.

3.1. Training and testing of networks
The entire data set is divided into a training data set

and a testing data set, which are used for the training and
the testing of the networks respectively. The training is
done using the images as inputs and the corresponding
known classes (positive and negative) as outputs. The
loss function, which is the cross-entropy for CNN or the
variational free energy for Bayesian–CNN is evaluated
for the training data during each epoch. The training
is done repeatedly and the weights of the networks are
updated until the loss converges. In the following the
details of training and testing for CNN and Bayesian–
CNN are described.

3.1.1. Convolutional neural networks
The accuracy for training and testing for each epoch

is shown in Fig. 3 for CNN. The accuracy increases with
epoch for the training data whereas the accuracy reduces
for the testing data after the first few epochs. This prob-
lem is known as overfitting. Thus, CNN fails to gener-
alize its predictions to unknown testing data and overfits
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the training data. The loss for each epoch during train-
ing is shown in Fig. 4. At around nine epoch, the testing
accuracy starts to fall off compared to the training ac-
curacy, which is long before the loss function has con-
verged. The accuracy upon the convergence of the loss
function is considered as the predictive capability of the
network.
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Figure 3: Training and testing accuracy of CNN.
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Figure 4: Loss of CNN.

To alleviate the overfitting of the networks, regu-
larization strategies are used, such as L1 or L2 regu-
larization, cross-validation, early stoppage, and dropout
[52, 53, 54]. However, these may require human in-
tervention during training (such as parameter tuning) or
may lead to loss of information due to drop out [53].
Herein we use the Bayesian–CNN to overcome the lim-
itations of overfitting automatically through its proba-
bilistic framework.

3.1.2. Modified Bayesian–CNN
The accuracy of predictions for both training and

testing data of the Bayesian and Modified Bayesian-
CNN is shown in Fig. 5 and Fig. 7 respectively. It evi-
dent that the problem of overfitting is eliminated by us-
ing a Modified Bayesian–CNN as the accuracy of pre-
dictions for both training and test data increases with
an increase in the number of epochs. The value of the
loss at different epochs is shown in Fig. 8. Since the

problem of overfitting is eliminated, and the loss is de-
creasing with increasing epochs, we can use the Mod-
ified Bayesian–CNN to obtain a near–optimal solution
by training the network for a higher number of epochs.
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Figure 5: Training and testing accuracy of Bayesian–CNN
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Figure 6: Loss for Bayesian–CNN
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Figure 7: Training and testing accuracy of modified Bayesian–CNN
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Figure 8: Loss for modified Bayesian–CNN
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The values of the accuracy of training and testing
data upon the convergence of the loss function are pro-
vided in Table 1. It is seen that the problem of overfit-
ting drastically reduces the accuracy for test data in a
CNN whereas this problem is not present for Bayesian–
CNN and the Modified Bayesian–CNN. The training
and test accuracy of the Modified Bayesian–CNN is
higher than the Bayesian–CNN when the loss function
is converged. It is also seen from Fig. 5 and Fig. 7
that the convergence of the Modified Bayesian–CNN is
faster as compared to that of the Bayesian–CNN espe-
cially during early epochs of training. These are a sig-
nificant improvement for a nominal increase in the com-
putational cost for the Modified Bayesian–CNN. We
found that the Modified Bayesian–CNN requires about
twice the computational cost per epoch during the train-
ing as compared to CNN.

Table 1: A Comparison of CNN, Bayesian–CNN and Modified
Bayesian-CNN

Network Training
Accu-
racy

Testing
Accu-
racy

CNN 0.9555 0.8443
Bayesian–CNN 0.8855 0.8813
Modified Bayesian-
CNN

0.8948 0.8883

3.2. Quality assessment metrics
Often the accuracy of prediction is not a sufficient

descriptor to assess the performance of the classifier.
So we assess the performance of the classifier through
other popular quality assessment metrics, which are de-
scribed in this section. These performance evaluation
metrics use the testing data set which is unseen by the
model during training. The confusion matrix is one
such metric that presents the performance of a classi-
fication model through a tabular layout facilitating vi-
sualization of the performance. The four values of the
confusion matrix are True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN).

(a) (b) (c)

Figure 9: Comparison of confusion matrices for a) CNN, b) Bayesian–
CNN and Modified Bayesian–CNN

In addition to the improvement of accuracy, the
modified Bayesian–CNN remarkably reduces the num-
ber of false negative predictions as seen in Fig. 9, which
is a significant achievement. CNN is known to per-
form poorly for biased data set [55]. Given the data set
used in this work is highly biased to the IDC negative
class, the CNN model fails to overcome this bias yield-
ing more negative predictions. We demonstrate that the
modified Bayesian–CNN, overcomes this limitation of
the CNN and provides an unbiased result. The modified
Bayesian–CNN reduces the false negative predictions
by about 38% (10% higher than the Bayesian–CNN)
as seen in Fig. 9, demonstrating unbiased prediction.
This is a remarkable advancement given that the med-
ical imaging data sets are usually biased towards nega-
tive labels. To quantitatively assess the performance of
the proposed binary classification the following metrics
are used in addition to the confusion matrix: Accuracy,
Precision, Recall, F1-score, Cohen’s-kappa (CK) coef-
ficient [56]. These metrics can be derived from the con-
fusion matrix, which contains four values based on the
actual label and the model prediction. The above met-
rics are defined by the following equations:

Accuracy =
Number of images correctly predicted

Total number of images

=
TP + TN

TP + TN + FP + FN

Precision =
IDC positive images correctly predicted

Total IDC images predicted positive

=
TP

TP + FP

Recall =
IDC positive images correctly predicted

Total IDC positive images

=
TP

TP + FN

F1score = 2 ×
Precision × Recall
Precision + Recall

=
2 × TP

2 × TP + FP + FN

CK Coefficient =
p0 − pe

1 − pe

Where,

p0 =
TN + TP

TN + TP + FP + FN
pe = pα + pβ

pα =
TN + FP

TN + TP + FP + FN
×

TN + FN
TN + TP + FP + FN

pβ =
FN + TP

TN + TP + FP + FN
×

FP + TP
TN + TP + FP + FN
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The performance of the neural network classifiers
is evaluated based on all of the above metrics and the
results are provided in table 2. It is seen that the mod-
ified Bayesian–CNN over-performs Bayesian–CNN on
all metrics except precision and it over-performs CNN
on all the performance metrics for this data set.

Table 2: Performance metrics of CNN and BCNN

Network Recall Precision F1-
score

CK

CNN 0.6824 0.7458 0.7126 0.6062
Bayesian–
CNN

0.7713 0.8019 0.7863 0.7042

Modified
Bayesian–
CNN

0.8045 0.8017 0.8031 0.7251

3.3. Uncertainty quantification

Uncertainty quantification is a measure of how con-
fident the network is in making predictions for the input
images. Especially in medical applications that involve
machine-assisted decision making, uncertainty quantifi-
cation can help in building the trust needed to make
the right decisions. Since the parameters of CNN are
deterministic, it can not provide any measure of uncer-
tainty in predictions for individual images. Thus along
with other metrics described in the previous section, un-
certainty quantification becomes an important measure
that is estimated through the modified Bayesian–CNN
in this work.
The parameters of the modified Bayesian–CNN are
probability distributions whose variance provides an es-
timate of the uncertainties associated with the predic-
tions. The convergence of the variational probabil-
ity distribution of a modified Bayesian–CNN parameter
with its actual mean and shifted mean (to zero) is shown
for different epochs in Fig. 10.

We see from Fig. 10 that the mean along with the
standard deviation changes with increasing epochs. The
changes in the mean of the distribution are the same as
the frequentist approach when point estimates are used
for the parameters. The convergence of variance of the
distribution decides the certainty or confidence of the
network. The wider (large variance) the distribution is,
the more uncertain the model is. To study the change in
the model parameter’s variance, we shifted the parame-
ter’s distribution to zero mean. As the epoch increases,
the standard deviation decreases making the parameter
more certain about the prediction.

The convergence of the standard deviation of a
weight parameter drawn from the variational posterior
q(w|θ) is shown in Fig. 11. We can see that the standard
deviation decreases as the network is trained.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
Weight Parameter

0

5

10

15

20
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Epoch100
Epoch400
Epoch600
Epoch800
Epoch1000

(a)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
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(b)

Figure 10: a) Probability density functions b) Shifted (zero mean)
Probability density of a parameter for different epochs of the modified
Bayesian-CNN.
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Figure 11: Figure to show the standard deviation of a weight parame-
ter over different epochs.
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(a) (b) (c)

(d) (e) (f)

Figure 12: Sample images showing the predictions of the model.
Aleatoric and epistemic uncertainties are given by A and E respec-
tively. a) False positive [A = 4.05 × 10−1, E = 2.48 × 10−2], b)
True Negative [A = 2.32 × 10−2, E = 3.97 × 10−4], c) True Negative
[A = 4.25×10−1, E = 3.61×10−2], d) True Negative [A = 2.92×10−2,
E = 6.74×10−5], e) False Positive [A = 4.67×10−1, E = 3.19×10−2],
f) True Negative [A = 2.53 × 10−3, E = 9.17 × 10−6]

(a) (b) (c)

(d) (e) (f)

Figure 13: Sample images showing the predictions of the model.
Aleatoric and epistemic uncertainties are given by A and E respec-
tively. a) True Positive [A = 4.17 × 10−1, E = 8.32 × 10−2], b)
True Positive [A = 5.11 × 10−2 , E = 1.80 × 10−4], c) True positive
[A = 3.39×10−1, E = 1.71×10−2], d) True positive [A = 4.06×10−2,
E = 2.29×10−4], e) False negative [ A = 4.56×10−1, E = 4.35×10−2]
f) True Positive [A = 1.37 × 10−1, E = 1.29 × 10−4]

The uncertainty values associated with an individual
image denotes the confidence with which the network
predicts the class label of that image. The aleatoric un-
certainty corresponds to the noise in the data for which
we don’t have any control when we design our model.
The epistemic uncertainty corresponds to the variability
coming from the model predictions which can be im-
proved. 12 images from the test data set with their epis-

temic uncertainty estimates are shown in Fig. 12 and 13.
The images with negative ground truth labels are shown
in Fig. 12 and the ones with positive ground truth la-
bels are shown in Fig. 13. The important features that
we can see from the images of the respective classes are
texture density and color. It appears that IDC positive
class has darker and denser images. The images with
high epistemic uncertainty, Fig. 12(a),12(c),12(e), and
13(a),13(c),13(e), has features from both the classes.
Therefore, no matter its prediction, the model gives high
uncertainty to those images. That is, the network is less
confident about these predictions because of their mixed
features. Thus, uncertainty estimates can be a measure
that can be used to filter out images that the machine is
less confident in predicting so that these images can be
put to further scrutiny either by a pathologist or a more
rigorous machine learning algorithm.

The improvement in results in terms of both accu-
racy and the reduction in false predictions as we im-
pose stricter constraints on the uncertainty limits is de-
picted in Fig. 14. Thus, we demonstrate that modified
Bayesian–CNN has the potential to improve the perfor-
mance of classification, especially when the data is im-
balanced towards a particular class which is the case for
a majority of medical imaging data.
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Figure 14: Improvements in the results with the stricter uncertainty
limits
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4. Conclusions

In this study, we proposed an extension of
Bayesian–CNN model. We utilised it for classification
of breast histopathological images and its uncertainty
quantification. To conclude this study, we recapitulate
upon its four main findings.

Firstly, we have proposed a novel adaptive acti-
vation enabled Bayesian–CNN and call it modified
Bayesian–CNN. In the proposed model we introduce
a learnable activation function that adapts to the train-
ing data in order to improve predictive capabilities. In
addition, the proposed model has faster convergence
and better accuracy over Bayesian–CNN.

Secondly, we have shown that the proposed modi-
fied Bayesian-CNN can reduce the number of false neg-
ative predictions remarkably (about 38%) over CNN, as
compared to 28% reduction through Bayesian–CNN.

Thirdly, we have demonstrated that using the pro-
posed modified Bayesian–CNN and the Bayesian–
CNN, the problem of overfitting can be nearly elimi-
nated without any recourse to regularization. That is,
the Bayesian approach work with almost equal accuracy
for unknown and known data sets. The Bayesian ap-
proach automatically regularizes, since through stochas-
tic parameters it represents an ensemble average over a

set of CNNs instead of a single deterministic CNN.
Fourthly, through analyzing the uncertainty-

quantification, we found that the images which have
higher uncertainties have features of both the classes.
We have also demonstrated that the accuracy of predic-
tions can be improved by imposing stricter constraints
on the uncertainty limits. Thus, uncertainty measures
can guide the need for human expert intervention.

To summarize, the present work demonstrates that a
classifier based on the modified Bayesian–CNN can be
used as an accurate and automated classifier to detect
breast cancer. Further, it can help in diagnosis by quan-
tifying the uncertainty in the prediction. These findings
require further investigation on larger data sets, how-
ever, they show potential routes to improve upon the
state–of–the–art automated classifier for a broad range
of biomedical imaging applications.
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