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Abstract 

 

No existing automated vehicle can operate in all conditions and environments. In order to allow 

unmanned operation of automated vehicles in all conditions, many developers have the 

capability for human drivers to operate the vehicle from a remote location using wireless 

communication. This practice, referred to as remote operation or teleoperation, is prevalent 

among industry, yet has received little attention in the legal and transportation literature. This 

paper describes the legal environment for remote operation of vehicles, both in terms of existing 

motor vehicle codes and model legislation. The operational performance of remote operation is 

explored, and a model is developed to estimate the number of remote operators needed to 

manage large automated vehicle fleets using reasonable assumptions.  
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1 Introduction 

Remote operation is generally considered to be a component of most early automated driving 

systems, as even highly-advanced automated vehicles (AVs) require occasional human input in 

particularly difficult driving environments or in cases of hardware or software failure. SAE’s 

definitions of levels of driving automation, for example, require an in-vehicle driver in levels 0 

to 2, and in-vehicle backup in level 3, and allows for automated driving without human 

monitoring in limited situations in level 4 (SAE International, 2018). Human intervention can be 

performed by an operator located inside the vehicle, but to save costs it may be performed by a 

driver located in an off-site facility using wireless communication.  

An automobile was first controlled via radio by an operator in a following vehicle in 1925 

(“Radio-Driven Auto Runs Down Escort; Wireless Directs Test Car in Wobbly Course Through 

Heavy Broadway Traffic,” 1925). Recent advancements in video allow the operator to be 

completely off-site, as demonstrated in mining operations (Hainsworth, 2001), agriculture 

(Murakami et al., 2008), and drone warfare (Gusterson, 2016). A small fleet of dockless electric 

scooters in Atlanta in the United States are repositioned with the help of remote operators based 

in Mexico City (Hawkins, 2020). By applying this technology to passenger vehicles, a licensed 

driver could remotely operate a vehicle with conditional automation and be available to take 

(remote) control given adequate warning. 

California requires all companies conducting driverless testing of automated vehicles in the 

state to have a licensed human driver who “engages and monitors” the automated vehicle and 

who may also “perform the dynamic driving task,” although they do not specify whether each 

vehicle requires its own dedicated remote operator or if oversight can be shared among several 

drivers (CA DMV, 2018a). As of July 2020, three entities were registered to conduct driverless 

testing in California: Waymo, Nuro, and AutoX Technologies (CA DMV, 2018b). 

There are two main forms of remote operation. In the first, a remote operator assists a stuck 

vehicle with object identification and/or path planning around an object. In this situation, the 

remote operator does not control the vehicle’s motion through steering, throttle, or braking 

directly but rather provides routing instructions which are executed by the vehicle’s automated 

driving system. An automated vehicle might use this approach to navigate through an unfamiliar 

work zone. This approach is generally referred to as remote assistance, and has been used by 

Nissan (Davies, 2017), General Motors’ Cruise, and Waymo (Higgins, 2018).  

In the second form, the remote operator takes control of the vehicle’s steering, throttle, and 

braking to perform the driving task. This approach, referred to as remote driving, often uses 

computer terminals equipped with steering wheels, pedals, and multiple monitors displaying a 

wide-angle camera feed transmitted live from the automated vehicle over wireless networks. The 

communications requirements for remote driving are more demanding than remote assistance; 

while the latter can be conducted over existing cell networks, the former requires highly reliable 

low-latency communication. Although several automated vehicle developers have filed patents 

for remote driving applications (Davies, 2017), most activity is with small technology startups 

(Davies, 2019; Sawers, 2018).   

There are other, less direct ways to remotely control a vehicle. It may be as simple as a user 

standing on the sidewalk and supervising (and stopping, if necessary) a vehicle pulling into tight 

parking spot, a feature available on some Tesla models (Davies, 2016). The lead driver in a 

coordinated, prearranged truck platoon is, in a way, controlling the movements of driverless 

trucks in the platoon which are programmed to follow a lead vehicle. In another example, a 

construction vehicle in an active work zone could be controlled by a worker standing in safe 
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location along the shoulder. In a more complex example, a licensed driver in India could monitor 

five automated taxis in the U.S., interceding when requested. Such a system would drastically 

reduce the costs of operating a taxi, transit, or delivery service, without the need for high/full 

automation. 

Given the widespread adoption of remote operation in industry, there is relatively little 

literature on the subject. Of the 29 states that have enacted automated vehicle legislation, only 

five address remote operation or teleoperation directly. A draft addition to the Uniform Vehicle 

Code defined “remote driver,” (ULC, 2017, p. 14), but this was removed in the final version 

(ULC, 2019). In its most recent guidance, the United States Department of Transportation 

mentions remote operation only briefly in the context of agriculture and space exploration 

(NSTC and USDOT, 2020). Many open questions regarding remote operations remain, such as 

its legality, licensure and location restrictions on drivers, technical feasibility, and economic 

impacts. The purpose of this paper is to establish some of the critical legal, technical, 

operational, and economic challenges of the remote operation of road vehicles, especially 

automated vehicles.  

 

2 Legal aspects 

The legality of the remote operation of motor vehicles has received little attention in the 

literature. This section reviews relevant state legislation in the U.S. The section considers two 

key questions: do jurisdictions in the United States generally require a vehicle’s driver to be 

physically located inside the vehicle and seated at the controls, and if not, are drivers required to 

be physically located in the United States? 

 

2.1 Driver’s physical presence within the vehicle 

There is some ambiguity regarding whether a licensed driver can legally operate a vehicle 

from a remote location. As Smith notes in a 2014 study of the legality of automated vehicle 

operation, no state’s statutes expressly requires the physical presence of a driver in a motor 

vehicle, especially when considering that some jurisdictions define trailers as vehicles even 

though they are meant for cargo rather than human passengers (Smith, 2014). 

Other rules, however, seem to imply the presence of a human driver. Smith lists seven 

categories where the absence of a driver makes compliance with existing law impossible or 

impractical: unattended vehicles, abandoned vehicles, crash obligations, safety belts, driver sight, 

driver interference, and control (Smith, 2014).  As a brief example, drivers in many states are 

required to provide contact information and, in some cases, render aid following a crash. These 

tasks are impractical, and in some cases impossible, with remote operators. 

Trimble et al. (2018) reviewed statutes and regulations in 15 states and the Uniform Vehicle 

Code (National Committee on Uniform Traffic Laws and Ordinances, 1968) with respect to 

vehicle automation. They found that most states base their requirements for an operator on the 

Uniform Vehicle Code. These requirements generally take the following form: 

 

“No person … shall drive any motor vehicle upon a highway in this state unless 

such person has a valid driver’s license” (National Committee on Uniform Traffic 

Laws and Ordinances, 1968). 

 

Trimble et al. (2018) concluded that based on these definitions, an operator is limited to a 

person (defined either as a “natural person, firm, partnership, association, or corporation” or not 
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defined at all) with a valid license. The definitions of “drive” and “operate,” however, leave open 

questions of what driving acts might be considered as “operating” under the definitions, and 

whether physical presence of the driver or operator is required. Trimble et al. (2018) 

recommended that states review the terms “drive,” “driver,” “operate,” and “operator” to reduce 

ambiguity and remove restrictions on the use of automated driving systems. They argued for a 

broad interpretation of the terms “drive,” “operate,” and “be in physical control,” and proposed 

the following definition: 

 

“Human engages and can disengage vehicle (including remotely) but does not 

need to be physically present or seated behind the controls of the vehicle” 

(Trimble et al., 2018). 

 

By including remote operators, this broader definition ensures that highly automated vehicles 

operating without passengers will still have legal drivers, albeit remote ones. This definition also 

ensures that passengers in the driver seat while the automated driving system is in control are not 

considered as drivers. Finally, the definition ensures that empty AVs are regulated at all. States 

that have not developed new definitions of driver and operator in anticipation of AVs generally 

require that “no person … shall drive … without a valid driver’s license” (National Committee 

on Uniform Traffic Laws and Ordinances, 1968) but do not make the opposite requirement that 

“all vehicles operating in the state must be driven by persons with a valid license” (Trimble et 

al., 2018). Without the opposite requirement, driverless vehicles would have no driver for 

authorities to regulate, and therefore rules of the road would be inapplicable for an automated 

vehicle without a person inside the vehicle to take control.  

The Uniform Law Commission recently published model legislation that addresses this 

responsibility gap by requiring that all automated vehicles be associated with an automated-

driving provider who is responsible for rules of the road violations (ULC, 2019). The 

requirements to register as an automated-driving provider allow technically competent entities, 

such as companies involved in the development and operation of automated vehicles, to operate 

vehicles. The automated-driving provider does not need to be the same person or entity as the 

vehicle owner, and furthermore may operate the vehicle (in automated mode) without a driver’s 

license. Finally, the model legislation stipulates that passengers in the driver’s seat during a 

completely automated trip are not required to possess a driver’s license. If this model legislation 

is adopted by states, it will allow automated vehicles to have legal, non-human drivers 

responsible for adhering to rules of the road.  

 

2.2 Remote operator’s physical presence within the United States 

Every state reviewed in Trimble et al.’s (2018) legal audit recognized driver’s licenses from 

other states as presumptively valid. If operating an automated vehicle remotely does not require a 

special license, then a remote operator could use a valid driver’s license from any state. Unless 

expressly prohibited, a remote operator could also be physically located in another state; no state 

currently requires remote operators to be located within the state’s boundaries.  

Driver’s licenses from foreign countries are generally recognized in the United States, 

although some states require drivers possess an International Driver’s License along with a 

driver’s license from his or her country of residence (USA.gov, 2019).  

Several states have enacted AV legislation that addresses remote operation. A summary of 

relevant legislation is provided in Table 1. 
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Table 1. State laws and regulations addressing remote operation of road vehicles. 

State Title Driver’s License Requirements Operator’s 

Physical Location 

California Testing of Autonomous 

Vehicles 

Valid driver’s license required; 

jurisdiction not specified. 

Not specified. 

Florida House Bill 311 U.S. driver’s license required. United States. 

Alabama Senate Bill 47 Valid driver’s license required; 

jurisdiction not specified. 

Not specified. 

Vermont Senate Bill 149 Valid driver’s license required; 

jurisdiction not specified. 

Not specified. 

Utah House Bill 101 Valid driver’s license required; 

jurisdiction not specified. 

Not specified. 

 

California’s AV testing regulations define “remote operator” as: 

 

“a natural person who: possesses the proper class of license for the type of test 

vehicle being operated; is not seated in the driver’s seat of the vehicle; engages 

and monitors the autonomous vehicle; is able to communicate with occupants in 

the vehicle through a communication link. A remote operator may also have the 

ability to perform the dynamic driving task for the vehicle or cause the vehicle to 

achieve a minimal risk condition” (CA DMV, 2018a).  

 

This definition covers a range of control ability both within (but not in the driver’s seat) and 

outside the car. A person that sits in the passenger seat, engages the vehicle, and sets the speed of 

the autonomous driving system might be considered a remote operator under California’s 

definition. California requires that the remote operator have a valid driver’s license but does not 

specify if the license must be from California or another U.S. state with which California extends 

reciprocity. The statute does not require that the driver be physically located in either California 

or the United States (CA DMV, 2018a). 

Florida’s House Bill 311, enacted June 13, 2019, defines a “remote human operator” as “a 

natural person who is not physically present in a vehicle equipped with an automated driving 

system who engages or monitors the vehicle from a remote location.” The bill requires that 

remote human operators be “physically present in the United States and be licensed to operate a 

motor vehicle by a United States jurisdiction” (Fischer, 2019). 

Alabama’s Senate Bill 47, enacted June 10, 2019, defines a “remote driver” as “a natural 

person who is not seated in a commercial motor vehicle, but is able to perform the entire 

dynamic driving task.” (Gerald, 2019). The bill states that the remote driver “is considered to be 

the operator of the vehicle for the purpose of assessing compliance with applicable traffic or 

motor vehicle laws” (Gerald, 2019). In the event of a crash, the remote driver is deemed to have 

given consent to provide blood and urine for testing the presence of drugs and alcohol, 

“regardless of the jurisdiction in which the remote driver is physically present” (Gerald, 2019). 

The bill does not specify the jurisdiction of the operator’s license, nor does it require any 

geographic location for the operator. 
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Vermont Senate Bill 149 was signed by the Governor on June 14, 2019. The bill defines an 

“operator” as “an individual employed by or under contract with an automated vehicle tester who 

has successfully completed the tester’s training on safe driving and the capabilities and 

limitations of the automated vehicle and automated driving system, can take immediate manual 

or remote control of the automated vehicle being tested, is 21 years of age or older, and holds an 

operator’s license for the class of vehicle being tested” (Senate Transportation Committee, 

2019). The bill does not specify the jurisdiction of the operator’s license, nor does it require any 

geographic location for the operator. 

Utah’s House Bill 101, enacted in March 29, 2019, defines a “remote driver” as “a human 

driver who is not located in a position to manually exercise in-vehicle braking, accelerating, 

steering, or transmission gear selection input devices, but operates the vehicle” (Spendlove, 

2019). The remote driver is required to have a “valid license to operate a motor vehicle of the 

proper class for the motor vehicle being operated” (Spendlove, 2019) but there are no restrictions 

on geographic location. 

 

3 Technical feasibility 

There are two main forms of remote operation: remote assistance and remote driving. 

Remote assistance requires transmission of video or still images, audio, and coordinates and 

sensor data from vehicles to remote operators. Remote operators must have the ability to transmit 

audio and waypoints to the vehicle. Because the vehicles theoretically request assistance from 

safe location, ideally while stopped (Higgins, 2018), a reasonable amount of latency is 

acceptable. There is little literature on latency and bandwidth requirements for remote assistance, 

but given California DMV’s requirements for communicating with driverless vehicles during 

testing (CA DMV, 2018a), as well as examples of autonomous vehicle developers using remote 

assistance in the field (Higgins, 2018), it can be assumed that remote assistance is feasible using 

existing wireless networks. The remainder of this section is therefore focused on technical 

feasibility of remote driving.   

Remote driving requires significant bandwidth over wireless networks to allow reliable, low-

latency two-way communication between vehicle and remote operator. Vehicles must be able to 

transmit high-resolution video and audio, as well as coordinates, sensor data, and verification of 

message receipt. Remote operators must be able to transmit audio (to communicate with 

passengers or emergency responders) and steering, brake, throttle, and signaling control inputs. 

Several companies have demonstrated remote driving on public roads at various ranges using 

wireless networks. Table 2 lists remote driving demonstrations. 

There is some disagreement over the extent to which wireless networks can support remote 

driving. Some developers estimate less than 100 millisecond latency over Verizon and AT&T 

networks (Davies, 2019), while other demonstrations have experienced occasional but 

unacceptable loss of signal (Higgins, 2018). Several companies have demonstrated remote 

driving on public roads at various ranges using both existing and enhanced wireless networks, 

but there are few details regarding the precise technologies used. Table 2 lists remote driving 

demonstrations. 
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Table 2. Road vehicle remote operation demonstrations. 

Demonstration Year Network Range Details 

Huawei and Shanghai 

Automotive Industry 

Corporation 

2017 5G* 30 km 240 degree HD video, 10 ms claimed 

end-to-end control latency (Huawei 

Technologies, 2017) 

Telefonica and Ericsson 2017 5G*  70 km Mobile World Cong. (González, 2017) 

Phantom Auto 2018 LTE 600 km Simultaneous AT&T and Verizon 

networks (Harris, 2018) 

*5G standards had not been released at the time of demonstration (3GPP, 2017), suggesting these were prototypes 

using some 5G concepts. 

 

Latency over wireless networks varies over time and space. The exact variation depends on 

many factors, but field tests have shown average video streaming latencies of 121 ms 

(Chucholowski et al., 2014) and 205 ms (Shen et al., 2016) over 3G networks, and 183 ms over 

4G networks (Shen et al., 2016). Two-way latency was measured over LTE networks at 75–83 

ms (Dano, 2013) and about 100 ms (Kang et al., 2018; Liu et al., 2017).  

Latency has a significant effect on driver performance. Studies have shown that small 

consistent delays below 170 ms (Chen et al., 2007) and 300 ms (Neumeier et al., 2019b) have 

minimal effect on remote drivers. Tests of a real vehicle on a closed track with constant 500 ms 

delay showed a lateral offset standard deviation of 0.4 meters, demonstrating that the operator 

was able to safely follow a lane at 30 km/h (Gnatzig et al., 2013). Other studies have shown 

worse driver performance when delays are greater than 300ms (Neumeier et al., 2019b) and 700 

ms (Davis et al., 2010; Vozar and Tilbury, 2014). These studies have generally been conducted 

in simulation or in controlled, low-risk environments; it is not clear whether results will transfer 

to dynamic driving environments.  

While varying latency has been shown to negatively impact driver performance, these 

impacts can be mitigated by artificially inserting delay to produce greater but consistent latency 

(Davis et al., 2010; Luck et al., 2006). Liu et al. (2017) was able to reduce driving errors by half 

by inserting delay in data transmission, increasing a variable average delay of 97 ms to a 

constant delay of 358 ms. Although artificial latency can improve performance in benign 

conditions, it may prove disastrous when responding to sudden emergencies. 

5G networks are expected to increase bandwidth and reduce latency significantly compared 

to 3G/4G/LTE networks. Saeed et al. (2019) used a conservative estimate of remote driving data 

needs, using a 3GPP (2018) estimate of required upload rates of 20 Mbps at 99.999 percent 

reliability. The authors found that widescale deployment of 5G infrastructure to support remote 

driving on all roads may be impractical due to cost of fiber backhaul, signal interference, and 

limited upload capacity. Instead, they recommend that remote driving occur only in designated 

corridors such as freight or transit routes where infrastructure needs are not cost prohibitive.  

Relaxed uptime requirements may make remote driving more feasible under 5G networks. 

Reduced bandwidth requirements may help as well—remote driving might use digital panning to 

transmit video only if the driver looks in that direction (Gnatzig et al., 2013), or lower frame 

rates or compression might be found to have minimal effects on driver performance. Neumeier et 

al. (2019a), for example, estimated that 3 Mbps upload bandwidth was sufficient to provide a 

180 degree view ahead and 90 degree view behind, far lower than the 20 Mbps requirement used 
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by Saeed et al. (2019). In another example, Shen et al. (2016) were able to remotely drive a road 

vehicle using off-the-shelf hardware, transmitting two 640×480 pixel video streams over 4G 

networks with an average delay of 184 ms. Given these demonstrations and the examples in 

Table 2, it may be possible to safely drive a vehicle remotely with less stringent requirements 

than those considered by Saeed et al. (2019). 

 

4 Staffing requirements to remotely operate a fleet of automated vehicles 

None of the states regulating remote operation require that there be a single remote operator 

for each automated vehicle. It is also unlikely that AV developers plan to employ a one-to-one 

operator-to-vehicle ratio in the long term, as the only cost advantages it offers over a human 

driver in the vehicle are lower wages due to outsourcing. Instead, remote operators may work in 

teams, responsible for monitoring several vehicles and taking control as requested either by the 

passengers or the automated driving system.  

The ratio of operators to vehicles has clear safety implications. With one operator assigned to 

a single vehicle, the operator is always available to take control. If instead one operator were 

responsible for two vehicles, there would be rare occasions when both vehicles required 

assistance simultaneously and one is left waiting. The number of remote operators needed to 

service a fleet also has economic impacts, as it serves as a rough estimate of potential job losses 

as vehicles no longer require their own dedicated drivers.  

This section estimates the number of remote operators needed to manage all driving in the 

United States assuming all driving is highly automated and that vehicles can anticipate their need 

for human intervention with reasonable warning. 

 

4.1 Model selection 

The number of remote operators required to manage a fleet of vehicles can be estimated 

using queueing theory. Many call centers with known call volumes and call durations use the 

Erlang C formula (Erlang, 1917) to estimate the number of staff needed to achieve performance 

goals and minimize caller wait times (Klungle, 1997). The Erlang C formula in its original form 

estimates the probability PC that an incoming request cannot be immediately served based on the 

number of agents m and the request load a.  

 

𝑃𝐶(𝑚, 𝑎) =

𝑎𝑚𝑚
𝑚! (𝑚 − 𝑎)

∑
𝑎𝑖

𝑖! +
𝑎𝑚𝑚

𝑚! (𝑚 − 𝑎)
𝑚−1
𝑖=0

 

 

The load a can be defined as the average number of requests per unit time λ divided by the 

average number of requests than can be serviced by a single operator per unit time μ. 

 

𝑎 =
𝜆

𝜇
 

 

The request rate λ can be calculated as the takeover request rate of an automated driving 

system rv multiplied by the number of automated vehicles in the fleet nv. 
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𝜆 = 𝑟𝑣𝑛𝑣 

 

This form of the Erlang C distribution is difficult to calculate for large values of agents due 

to the factorial operation. For this paper, a recursive algorithm for calculating Erlang C 

developed by Zeng (2003) was used. To determine the number of servers m required to handle a 

known load a for a given probability of immediate service PC the following algorithm is 

employed. 

 

input: PC and a 

output: m 

begin 

 Initialize m to ⌊𝑎⌋ + 1, 𝑎 

 Initialize PB to 1 

 for 𝑖 ∶= 1 to ⌊𝑎⌋ + 1 do 

 𝑃𝐵(⌊𝑎⌋ + 1, 𝑎) ∶=
𝑃𝐵(⌊𝑎⌋+1,𝑎)

𝑃𝐵(⌊𝑎⌋+1,𝑎)+𝑖 𝑎⁄
 

Initialize simulated probability P to 

 
𝑃𝐵(⌊𝑎⌋+1,𝑎)

1−
𝑎

⌊𝑎⌋+1
[1−𝑃𝐵(⌊𝑎⌋+1,𝑎)]

 

 while 𝑃 > 𝑃𝐶 

  𝑚 ∶= 𝑚 + 1 

  𝑃 ∶=
(𝑚−1−𝑎)𝑃

(
𝑚

𝑎
−1)(𝑚−1)−𝑃

 

 end 

end 

 

4.2 Model inputs and assumptions 

The demand λ for remote operator assistance can be estimated by employing a few 

assumptions. The rate at which an automated vehicle might require remote takeover (rv) is 

unknown. Companies testing automated vehicles in California are required to report all 

disengagements, defined as the “deactivation of the autonomous mode when a failure of the 

autonomous technology is detected or when the safe operation of the vehicle requires that the 

autonomous vehicle test driver disengage the autonomous mode and take immediate manual 

control of the vehicle…” (CA DMV, 2018b). A disengagement is not the same as an AV-

initiated takeover request, as some of the disengagement were initiated by the test driver. 

Furthermore, a future AV may initiate takeover requests at a higher rate than seen in the 

California reports, as there were likely situations that required human intervention that the AV 

missed. For the purposes of this paper, and in the absence of a better metric, the disengagement 

rate is used here as a surrogate takeover request rate for an advanced automated vehicle. 

In 2017, disengagement rates for different companies ranged from 341 disengagements in 

682,894 kilometers (once per 2,003 kilometers) to 625 disengagements in 1505 kilometers (once 

per 2.4 kilometers) (Lv et al., 2018). Disengagement rates improved in 2018, with the top two 

companies reporting averages of 8,328 and 17,847 kilometers between disengagements (Herger, 

2019).    

In order to estimate remote operator staffing needs, the remote takeover rate must be 

expressed in units of time. In the disengagement reports, hours of vehicle operation were not 
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provided. The National Household Travel Survey reported an average vehicle trip length of 15.4 

kilometers and an average vehicle trip duration of 20.6 minutes, yielding an average speed of 45 

km/h for all vehicle travel in the United States (FHWA, 2017). Assuming that the disengagement 

rate per mile holds for driving nationally, then the number of disengagements per hour can be 

calculated by dividing the average distance traveled between disengagements by average vehicle 

speed of 45 km/h.1  

Additional takeover request rates are used in this analysis for comparison. For example, the 

average American travels in a vehicle for 58.6 minutes per day (McGuckin and Fucci, 2018, p. 

54); a takeover request rate of once per 356 hours would equate to each person experiencing an 

average of one remote takeover per year. Table 3 shows a sample of average hours between 

takeover requests. 

 

Table 3. Evaluated takeover request rates using automated driving disengagement rates as 

surrogates. 

Description Average hours 

between takeover 

requests 

Takeover request 

rate per hour per 

vehicle, rv 

Once per hour 1 1 

Once per 10 hours 10 10-1 

Waymo 2017 disengagement rate 44 2.27×10-2 

GM Cruise 2018 disengagement rate 185 5.41×10-3 

Once per year for average American 356 2.81×10-3 

Waymo 2018 disengagement rate 397 2.52×10-3 

Once per 1,000 hours 1,000 10-3 

Once per 10,000 hours 10,000 10-4 

Once per 100,000 hours 100,000 10-5 

 

The number of vehicles on the road (nv) can be calculated from transportation surveys. The 

Federal Highway Administration estimates that vehicles in the United States traveled a total of 

5.1 trillion kilometers in 2017, or 14 billion kilometers per day (FHWA, 2018). Vehicle travel 

volumes vary throughout the week. Estimates from Schrank et al. (2015). found that volumes on 

Fridays are 10% greater than an average day. Volumes also vary throughout a typical day. 

Schrank et al. (2015) provide figures displaying the percentage of daily volumes that occur in 

each hour of the day, categorized by congestion level, road facility type, and whether a road 

carries higher volumes during the morning or evening peak period.  

To determine the total distance traveled for each of the day for the entire United States, first 

the average daily vehicle-kilometers traveled (VKT) from each state were multiplied by a Friday 

 
1 Both GM Cruise and Waymo test on lower speed roads in San Francisco and Mountain View, California, 

respectively. If their disengagements are primarily a function of time rather than distance, then a lower 

disengagement rate per hour should be used for national figures. Average arterial speeds in San Francisco are 

approximately 22 km/h compared to 45 km/h nationally (City and County of San Francisco, 2017). 
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adjustment factor 1.1 (Schrank et al., 2015). Then, for each hour in the day, each state’s daily 

volume was multiplied by the appropriate hour factor for its time zone. For simplicity, states that 

crossed multiple time zones were assigned to the time zone with the greatest geographic 

coverage.  

Remote operators must work in shifts to provide 24-hour coverage. Emergency response 

agencies that provide 24-hour service in the United States often assign employees to 12-hour 

shifts (Picarello, 2016). Ideally the shifts should be scheduled so that minimum staff are needed 

during the overnight shift, meaning that the low-volume 12-hour shift has the lowest possible 

peak hour volume. Hourly vehicle-kilometers traveled per hour in the United States are shown in 

Figure 1, along with the peak hour volumes for the preceding and following 12-hour shifts for 

each possible shift change hour. The hours of 8 AM and 8 PM Eastern Time show the greatest 

differences between peak hour volumes for each 12-hour period and is designated as the day 

shift. 

 

 
Fig. 1. Differences in peak hour vehicle-kilometers traveled for a typical Friday in the United 

States over a 12-hour shift. Greatest difference in demand is at 8 AM, the recommended time for 

shift change. 

 

For the two shifts, the peak volumes are 1,144 million VKT and 800 million VKT. When 

adjusted for the 45 km/h average vehicle speed, these are equivalent to 25.3 million vehicle-

hours traveled (VHT) and 17.7 million VHT, respectively. Because each peak period is exactly 

one hour, the 25.3 million VHT corresponds to 25.3 million vehicles on the road during the peak 

hour on average. (As the average vehicle trip is 20 minutes in duration (FHWA, 2017), there 

would be vehicles on the road over the course of the hour, but only 25.3 million vehicles on the 

road at any given moment.) The demand for remote operator takeover λ can then be defined as: 

 

𝜆𝑑𝑎𝑦 = 𝑟𝑣𝑛𝑣 = 𝑟𝑣(2.53 × 107 ) 

 

𝜆𝑛𝑖𝑔ℎ𝑡 = 𝑟𝑣𝑛𝑣 = 𝑟𝑣(1.77 × 107 ) 
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The service rate μ must be estimated as the California disengagement reports do not list 

takeover durations. A range of average remote takeover durations of one, five, and ten minutes 

was used, resulting in service rates μ of 60, 12, and 6 per hour. 

 

4.3 Target failure rate selection 

The Erlang C distribution outputs the probability that a request cannot be immediately 

handled by the agents. For remote operation of vehicles, a target probability must be established 

to determine staffing needs. A typical target for a call center is to answer 80% of calls within 20 

seconds (Klungle, 1997). Automated vehicles, however, may request takeover during safety-

critical events, necessitating a higher target.  

Commercial airline travel involves considerable risk, and the Federal Aviation 

Administration (FAA) provides guidance of failure rates for critical systems. FAA regulations 

specify that some system failures (such as the failure of a door-closed indicator) be 

“improbable,” while others (such as a door failure) must be “extremely improbable” (FAA, 

2004). The Federal Aviation Administration does not specify precise failure rates, but suggests 

rates of 10-5 per flight-hour for improbable events and 10-9 per flight-hour for extremely 

improbable events (FAA, 1988).  

These standards apply to an aircraft’s equipment and systems and may not be applicable to a 

remote operator whose original function is to supplement an automated driving system that itself 

replaced a human driver. A better target might be the probability that a human driver becomes 

incapacitated in some way. This standard could be stated as: the probability that both a) an 

automated driving system requires takeover and b) no operator is available to provide immediate 

service should be less than the probability that a human driver becomes incapacitated. To ensure 

that the failure rate of the automated driving system combined with the backup remote operator 

is no worse than the medical event rate of a human driver, the following equation is employed: 

 

ADS Failure Rate × Remote Operator Failure Rate ≤ Target Failure Rate 

 

This can be rewritten using established terminology: 

 

𝑟𝑣 × 𝑃𝐶(𝑚, 𝑎) ≤ 𝑟𝑡 

 

Solving for 𝑃𝐶(𝑚, 𝑎) while keeping consistent units of time yields the following equation. 

 

𝑃𝐶(𝑚, 𝑎) ≤ 𝑟𝑡 𝑟𝑣⁄  

 

The probability that a human driver becomes incapacitated can be estimated from records of 

pilot incapacitation in commercial aviation. The population of pilots differs from the general 

population in age (DeJohn et al., 2004), health, and level of certification (FAA, 2006), and 

therefore a pilot medical event rate will likely be lower than that of the driving population. 

Medical event rates for airline pilots serve as a lower boundary for a human failure rate.  

The FAA studied in-flight medical events involving U.S commercial airline pilots between 

1993 and 1998, where medical events were defined as circumstances in which a pilot was unable 

to perform full flight duties (DeJohn et al., 2004). Fifty medical events were found over a six-

year period, with an in-flight medical event rate of 0.058 per 100,000 flight hours. This is in 
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agreement with studies of Air France pilots at 0.044 per 100,000 flight hours (Martin-Saint-

Laurent et al., 1990) and United States Air Force pilots at 0.019 per 100,000 flight hours 

(McCormick and Lyons, 1991). Rates were not reported per pilot-hour, only per flight-hour, and 

therefore pilot-hour rates must be estimated. An estimate of 2.5 pilots per flight can be used to 

calculate a medical event rate of 0.0232 medical events per 100,000 pilot-hours. This translates 

to a target failure rate rt of 2.32×10-7 per person-hour. 

Four example target failure rates were established: a typical call center (no rt but 80 percent 

of calls answered within 20 seconds), FAA improbable (10-5 per hour), FAA extremely 

improbable (10-9 per hour), and medical event for a human (2.32×10-7 per hour). While the target 

failure rates vary greatly, the number of operators required to meet them does not. In queuing 

theory, arrivals are typically modeled as a Poisson distribution, where the time between arrivals 

is represented as an exponential function. This has the effect of producing demands that are fairly 

uniform. When tested in this study, changing the target failure rates from 10-2 to 10-9 required 

only a 6.3% increase in operators assuming 5-minute durations and 397 average hours between 

takeover requests. The number of required operators is driven more by average call duration and 

mean time between takeover requests for AVs. For the purposes of this analysis, the medical 

event for a human of 2.32×10-7 is selected as the sole target failure rate per hour rt.   

A summary of all model inputs is provided in Table 4. 

 

Table 4. Erlang C model parameters. 

Parameter Symbol Value Source 

Operators m Varies Calculated 

ADS failure rate rv Varies (Herger, 2019; Lv et al., 2018) 

Vehicles on road 

during shift peak hour 

nv 25.3 million day 

17.7 million night 

(FHWA, 2017; Schrank et al., 

2015) 

Request rate λ 𝑟𝑣 𝑛𝑣⁄  Calculated 

Service rate µ 6, 12, 60 per hour Assumption 

Requests (load) a 𝜆 𝜇⁄  Calculated 

Target failure rate rt 2.32 ×10-7 Pilot medical event rate 

Remote operator 

missed call rate 

PC ≤ 𝑟𝑡 𝑟𝑣⁄  (Erlang, 1917; Zeng, 2003) 

 

 

4.4 Model results 

The Erlang C distribution was calculated for both day and night shift values of λ, ranges of μ, 

and ranges of PC. For each minimum number of remote operator agents N required, the day and 

night shift values were added. As many emergency response agencies use 12-hour shifts with 

employees working four days on followed by four days off, the total number of remote operators 
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required to manage a single day’s demand was multiplied by two to represent the full staffing 

requirements to manage the automated vehicle demand.2  

Table 5 and Figure 2 show the estimated number of remote operators required to manage the 

takeover requests for all vehicles in the United States assuming they had automated capabilities.  

 

Table 5. Estimated number of remote operators needed to assist entire United States vehicle 

fleet. 

Average hours between 

takeover requests 

 Minutes to service each takeover request 

 1 min/request   5 min/request   10 min/request 

1  1,445,392  7,193,604   14,371,422 

10   146,812   724,424   1,444,296 

44 (Waymo 2017)  34,126   166,328   330,628  

185 (GM Cruise 2018)  8,452   40,298   79,676  

356 1x/year per American  4,518  21,214  41,786 

397 (Waymo 2018)  4,074   19,072   37,538  

1,000   1,710   7,772   15,184  

10,000   220   878   1,658  

100,000   36   112   198  

1,000,000   8   14   24  

 

 
2 An anonymous reviewer noted that the vigilance, periods of low activity, and safety-actions required of remote 

operators might necessitate shorter shifts with more frequent breaks. Extensive human factors research on air traffic 

control may have applications for remote operators (National Research Council, 1997). More research is needed on 

human factors specific to remote operation. 
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Fig. 2. Estimated number of remote operators needed to assist entire United States vehicle fleet. 

4.5 Performance during severe, unplanned events 

Requests for remote operation may fluctuate over time, requiring greater or fewer remote 

operators. Many of these fluctuations can be predicted in advanced. For these events, additional 

operators can be scheduled to handle the increased call demand. Hurricanes, snowstorms, and 

holidays are examples of events with some warning.  

Other events occur with little or no warning, such as terrorist attacks, earthquakes, and 

tsunamis. To estimate the performance of remote operation when handling unexpected 

fluctuations in call volumes, a terrorist attack scenario is considered.  

During the attacks of September 11, 2001, over a million people fled lower Manhattan 

(DeBlasio et al., 2002). Only 14% of Manhattan commuters travel by passenger car on a typical 

day car (Moss et al., 2012), and even fewer left by car on September 11 (DeBlasio et al., 2002). 

This scenario assumes that peak period travel increased by an additional million automated 

vehicles during the peak traffic hours of both the remote operation day and night shifts. Although 

this is a larger increase in vehicle travel demand than was experienced on September 11 in 

Manhattan, it represents an especially challenging circumstance and may more accurately reflect 

an attack on a less dense city. In the scenario, automated vehicles request remote operation at the 

usual hourly rates, which is set to once per 397 hours (approximately Waymo’s 2018 

disengagement rate). 

Peak hour traffic volumes are 2.3 times the average hourly volumes for night shift and 1.2 

times the average hourly volumes for day shift. Because the shift staffing is designed to handle 

peak hours, an injection of one million vehicles in any non-peak hour could be absorbed by 

operators without exceeding the target failure rate.  

The performance during the peak hour is calculated using a procedure similar to the one 

described in Sections 4.1 and 4.2. The probability PC that a request is not handled immediately 
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can be calculated using Algorithm 4 in Zeng (2003). The average wait time W for those placed in 

the queue is given in the following equation (Chromy et al., 2011). 

 

𝑊 =
𝑃𝐶

𝜇(𝑚 − 𝑎)
 

 

For the night shift peak hour with an additional million vehicles in the system, 57% of 

requests cannot be handled immediately, and vehicles in the queue must wait an average of 8 

seconds before reaching a remote operator. For the day shift, 16% of requests are not answered 

immediately, with an average queue wait time of less than one second.  

These figures assume that all remote operators in the United States can address all U.S. 

requests. If the network of global remote operators could be utilized, the performance would be 

improved.  

 

4.6 Economic impacts 

Automation of the driving task is expected to eliminate many jobs (Milakis et al., 2017; 

Smith, 2017). The U.S. Department of Transportation has argued that technological 

advancements will create new jobs that will require drivers to attain new skills (USDOT, 2018). 

Many but not all professional drivers will be able to transition to jobs as remote operators due to 

limited demand. Based on the calculations presented in this paper, if all driving in the United 

States were to become automated with remote takeover requested on average once per 397 hours 

of operation, all driving could be handled by a team of between 4,074 and 37,538 remote 

operators. According to the U.S. Bureau of Labor Statistics, there are 4.4 million persons 

employed as drivers in the United States (Bureau of Labor Statistics, 2019a). Even if all remote 

operators were required to be based in the United States, this accounts for less than one percent 

of drivers employed today.  

The entire fleet of vehicles in the U.S. need not become automated. Transportation network 

companies, often referred to as ridesharing services, have heavily invested in vehicle automation 

in recent years, with Uber spending as much as $20 million per month on its AV research 

program (Harris, 2019). In 2018, Uber transported passengers 41.8 billion kilometers (Uber 

Technologies, Inc., 2019). Accounting for both ridesharing and empty vehicle movement, i.e. 

“deadheading,” Henao and Marshall (2019a) found an average distance weight passenger 

occupancy of 0.8. Using the same average speed assumptions of 45 km/h from the National 

Household Travel Study (FHWA, 2017), Uber vehicles operated for approximately 52.3 billion 

kilometers over 1.2 billion hours in 2018. Assuming uniform hourly demand for worldwide 

operations and a remote takeover request rate equivalent to Waymo’s 2018 disengagement rate, 

Uber’s entire fleet of 3.9 million drivers (Uber Technologies, Inc., 2019, p. 5) could be replaced 

with reliable automated driving systems and between 72 and 356 remote operators. The required 

number of remote operators to manage Uber’s fleet under various assumptions is shown in 

Table 6. Many Uber drivers work part-time, while remote operators in this model are assumed to 

work full-time (42 hours/week on average). In terms of total person-hours, Uber requires an 

estimated 1.2 billion annual person-hours to operate manually compared to 158,000–780,000 

annual person-hours to manage an automated vehicle fleet remotely. This represents a person-

hour reduction of 99.94–99.99%. 
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Table 6. Estimated number of full-time remote operators needed to manage Uber global vehicle 

mileage. 

Average hours between 

assistance requests 

 Minutes per takeover request 

 1 min/request  5 min/request  10 min/request 

1   10,116    47,840   94,396  

10    1,208    5,204    10,028  

44 (Waymo 2017)   344    1,328    2,480  

185 (GM Cruise 2018)   116    384    684  

356 (1x/year per American)   76    228    392  

397 (Waymo 2018)   72    208    356  

1,000    40    104    168  

10,000    12    24    36  

100,000    4    8    12  

1,000,000    4    4    4  

 

5 Cost savings from outsourcing 

If automated vehicles are able to monitor the driving environment and request assistance 

when needed, i.e. Level 3 automation (SAE International, 2018), companies can use teams of 

remote operators to reduce the number of drivers needed to manage a fleet. As shown in 

Section 2.2, only Florida specifically requires that a remote operator be physically located in the 

United States. Some states require that remote operators hold a valid driver’s license, but do not 

specify a jurisdiction. As states generally recognize foreign driver’s licenses, remote operators 

may be able to legally operate a vehicle on U.S. roads with a foreign driver’s license while 

physically located outside the United States.  

If long-range remote operation is technically feasible (which seems likely given today’s 

high-quality international video calls and nearly lag-free intercontinental online gaming), this 

would allow companies to further reduce costs by outsourcing remote operation to countries with 

lower costs of labor. For example, one call center service provider lists hourly rates for a 

dedicated call center operator as $22–28 in North America and $8–15 internationally, a reduction 

of 47–64% (Worldwide Call Centers, 2020). These rates could create the potential for 

outsourcing heavy truck and tractor trailer driving jobs, which have median hourly salaries of 

$21 in the United States (Bureau of Labor Statistics, 2019b). There is less potential to outsource 

jobs for taxi drivers, ride-hailing drivers, and chauffeurs, which earn median salaries of  $12.49 

per hour (Bureau of Labor Statistics, 2019b). Ride-hailing drivers must also account for expenses 

in purchasing and maintaining a vehicle. One study found that ride-hailing drivers earned hourly 

rates of $15.57 gross but between $5.72 and $10.46 after expenses (Henao and Marshall, 2019b). 

It may be impractical to outsource these positions at current pay rates. 
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6 Conclusions 

This paper represents the most thorough analysis of legal and operational challenges 

associated with remote operation of automated vehicles. In most states, remote operation is not 

expressly prohibited by any single statute, nor is it prohibited under most definitions of 

driver/operator, although a physically present driver is implied in other statutes concerning 

unattended vehicles, abandoned vehicles, crash obligations, safety belts, driver sight, driver 

interference, and control. Of the five states that address remote operation within their automated 

vehicle legislation, only Florida requires that the remote operator be physically located within the 

United States. As states generally recognize driver’s licenses from foreign countries, a person 

operating a vehicle remotely may be able to do so using a foreign license while physically 

located outside the United States. 

An analysis using queuing theory and assumptions about automated vehicle failure rates was 

used to estimate the number of remote operators required to safely manage a large fleet of 

vehicles while ensuring that the probability of a vehicle both requesting takeover and not 

receiving it from an operator was less than the probability of a incapacitating medical event for a 

human. Based on the analysis, if all vehicles in the United States were automated and able to 

automatically request takeovers at the same rate that Waymo’s vehicles disengaged from 

autonomous control in 2018, all driving could be managed by between 4,074 and 37,538 remote 

operators. This would eliminate 99% of jobs belonging to the 4.4 million professional driver 

workforce in the United States, while simultaneously covering all non-professional driving. 

Employing the same assumptions, Uber’s operations, currently requiring 3.9 million drivers 

globally, could be managed by fewer than 400 remote operators, representing a reduction of 

99.94–99.99% in person-hours. 

These findings have significant impacts for governments and regulators. It is difficult to 

overstate the economic and safety impacts of automated driving, a technology that will 

fundamentally alter trillion dollar industries (Clements and Kockelman, 2017) and prevent 

millions of crashes (World Health Organization, 2018). Remote operation may accelerate the 

advancement of vehicle automation by outsourcing the most difficult aspects of computerized 

driving—e.g. classifying and navigating occasional situations outside of the vehicle’s operational 

design domain—to humans outside the vehicle. This could drastically accelerate advancement in 

vehicle automation. It is recommended that governments review their policies, if any, regarding 

remote operation’s potential economic and operational impacts.  
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