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Abstract 

Computer-driven vehicles will behave differently than human-driven vehicles due to changes in 

perception abilities, precision control, and reaction times. These changes are expected to have 

profound impacts on capacity, yet few models of automated driving are based on empirical 

measurements of computer-driven vehicles in real traffic. To this end, this paper investigates 

characteristics of an early form of longitudinal control automation, a commercially available 

adaptive cruise control (ACC) system driven in real traffic. Two car-following models were 

calibrated to a vehicle with ACC. First, the Intelligent Driver Model was reformulated to comply 

with ACC design standards then calibrated to match speed and range data from the test vehicle. 

The vehicle with ACC was found to decelerate less severely than predicted by the model when 

tested in severe braking and unimpeded acceleration scenarios. Second, the Wiedemann 99 

model was calibrated, as it is the default car-following model in the traffic microsimulation 

software program VISSIM and can therefore be implemented cheaply and quickly in 

sophisticated models of roadways worldwide. Four parameters of the Wiedemann 99 model were 

measured directly from field observations of the test vehicle: standstill distance, startup time, 

unimpeded acceleration profile, and maximum desired deceleration. Simulation results in 

VISSIM were found to match the adaptive cruise control in unimpeded acceleration tests. These 

findings will benefit researchers and modelers seeking more accurate models of car-following 

behavior with adaptive cruise control and automated longitudinal control.  
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INTRODUCTION 

The act of driving is becoming increasingly automated. In the United States, 29 states and the 

District of Columbia have enacted some form of automated vehicle legislation (National 

Conference of State Legislatures 2019), while five automotive manufacturers and two 

technology companies anticipate having full-speed automated vehicles that will not require in-

vehicle driver monitoring by 2021 (Lewis and Grossman 2019). To prepare for automated 

vehicles, governments have begun updating planning and capacity models to account for 

differences between human-driven and computer-driven vehicles. A recent study by the Virginia 

Transportation Research Council found that while planning models for automated vehicles were 

highly dependent on estimates of how automation will affect capacity, the existing literature 

provides no clear estimate on capacity changes due to increasing automation (Miller and Kang 

2019). Existing methods to estimate road capacity are based on the driving behavior of humans, 

and computer-driven vehicles may behave quite differently. For example, the rubber-necking 

effect where drivers pause to observe a shoulder crash may be significantly reduced with 

automated vehicles.  

Adaptive cruise control (ACC) can be described as an intermediate stage of vehicle 

automation. Adaptive cruise control uses radar, lidar, or stereo camera sensors to track the 

distance to the vehicle ahead and attempts to maintain a consistent time headway to the lead 

vehicle (Weinberger et al. 2001). Adaptive cruise control is now offered as a feature on many 

new vehicles from most major automakers, and 7.2% of new vehicles sold in 2020 are expected 

to be equipped with ACC technologies (Wayland 2015).  

The driving behavior of an automated vehicle can be described using several different 

parameters, including reaction time, acceleration profile, deceleration profile, emergency 

deceleration rate, following distance, etc. Specific aspects of automated vehicle behavior, 

including adaptive cruise control behavior, are generally not patented nor disclosed by their 

developers, and are instead handled as trade secrets (Milanés and Shladover 2014). As the car-

following logic employed in adaptive cruise control systems are likely to be used in more 

advanced automated vehicles, there is a value in studying and understanding the car-following 

behavior of various adaptive cruise control systems.   

Adaptive cruise control systems developed by different manufacturers often use different 

settings and may exhibit a range of behaviors. More car-following models based on field 

observations of production vehicles with ACC are needed to improve the ability to model their 

behavior and understand their impact on traffic flow and capacity. The purpose of this research is 

to establish a car-following model that reflects the behavior of a production vehicle with adaptive 

cruise control, and to provide guidance for modeling a vehicle with adaptive cruise control using 

commercial microscopic simulation software.  

This research makes several novel contributions. Two car-following models were 

calibrated to match the longitudinal behavior of a 2017 Audi Q7 with ACC driven on public 

roads in traffic. Two models were selected: the Intelligent Driver Model (IDM) and the 

Wiedemann 99 model.  
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The original IDM (Treiber et al. 2000) was enhanced in 2010 to minimize hard braking 

events due to its collision-free assumptions (Kesting et al. 2010), and this enhanced IDM was 

selected for this analysis for several reasons. Unlike many other models designed for human 

drivers, the enhanced IDM was developed specifically to model ACC systems (Kesting et al. 

2010). Four of its parameters can be directly-measured from a single test vehicle: minimum time 

gap, gap at stopped traffic, maximum acceleration, and desired deceleration. Because maximum 

acceleration, desired deceleration, and minimum time gap are separate parameters, the enhanced 

IDM can be calibrated to adhere to ISO standards for ACC vehicles (ISO 2010). Finally, IDM 

has been used many times to estimate capacity (Kesting et al. 2007b; a, 2010; Milanés and 

Shladover 2014; Shladover et al. 2012) and model ACC vehicles from empirical data (Milanés 

and Shladover 2014; Su et al. 2016); by using IDM, this effort allows direct comparisons with 

previous work. This paper represents only the second attempt to calibrate the IDM based on a 

vehicle with ACC and the first with an Audi Q7.  

Several parameters of the Wiedemann 99 model used in the microscopic traffic 

simulation software VISSIM were derived directly from field measurements of the same 2017 

Audi Q7 with ACC. The Wiedemann 99 model is psychophysical designed around human 

perception and reaction abilities, and is therefore not ideal for modeling a computer-controlled 

system. A different or custom model might be preferred, but modelers and transportation 

agencies may be hesitant to implement an unfamiliar model. The main motivation for using 

Wiedemann 99 is its widespread use by government transportation agencies and contractors 

through the simulation software package VISSIM. VISSIM is the most widely used microscopic 

traffic simulation software according to a survey conducted by Brackstone et al. (2012). 

Governments have made significant investments in developing highly sophisticated and 

calibrated VISSIM models of many roadways. By calibrating the Wiedemann 99 model to 

empirical car-following, this effort builds on traffic modelers’ investment and training to provide 

improved model results that can be implicated quickly at minimal cost. This is the approach 

taken by the European Union’s CoEXist project. The Federal Highway Administration also 

supports this as a viable option for modeling automated vehicle behavior (Mahmassani et al. 

2018). This paper represents the first effort to measure Wiedemann 99 parameters for a named 

vehicle with ACC using disclosed empirical data collected on public roads.  

 

LITERATURE REVIEW 

There have been several attempts to model the behavior of vehicles with adaptive cruise control. 

Brackstone and McDonald (1999) reviewed the history of car-following models, while Xiao and 

Gao (2010) provided an overview of ACC systems. Jerath and Brennan (2012) used the General 

Motors car-following model to estimate capacities with ACC-enabled vehicles, and found 

drastically higher capacities as market penetration neared 100 percent.  Ntousakis et al. (2015) 

used the Gipps car-following model (Gipps 1981) as implemented in the AIMSUM microscopic 

simulation software to model automated vehicle behavior to estimate capacities at various ACC 

penetration rates and found capacity improvements when ACC time headways were set to 1 s or 
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less. VanderWerf et al. (2002) used Monte Carlo simulations of a ACC car-following model 

(VanderWerf et al. 2001) with 1.4 s desired headways to estimate capacity impacts. Cellular 

automata models of ACC behavior have been developed by Yuan et al. (2009). Recently, 

Makridis et al (2020) measured the response time of an actual ACC-controller as 0.8–1.2 s, 

similar to human response time. 

Two studies have attempted to model adaptive cruise control systems based on empirical 

data from production vehicles. In 2014, Milanés and Shladover (2014) measured the behavior of 

four Nissan Infiniti M56s equipped with ACC following another vehicle following pre-planned 

accelerations on a test track. The IDM was fit to the empirical data but was found to have an 

undershoot problem with lower than expected accelerations and a time gap error. The authors 

developed a simplified car-following model based on distance and speed errors between the 

ACC vehicle and the leading vehicle. The new model was able to predict the accelerations of the 

test vehicle with greater accuracy than the IDM.  

In 2016, Su et al. (2016) studied a 2013 Cadillac SRX equipped with ACC on freeways 

and collected speeds and gaps from the vehicle’s own sensors. The authors were unable to 

successfully fit the IDM to their data, and instead developed a three-phase car-following model 

based on leading, transitioning, and following modes. Their results showed good agreement 

between IDM and empirical data for speeds and acceleration but noted that small speed errors 

compounded to produce large gap errors, with root-mean-square errors as high as 69 meters. At 

the test speeds of 30 m/s, this translated into gap errors of 2 seconds or more, nearly double the 

1.1 second headways used by the vehicle with ACC. In calibrating the IDM, the authors set the 

desired speed at 39.5 m/s (88 mi/h) in order to produce realistic behavior, requiring the vehicle to 

stay behind a slower lead vehicle through simulation to prevent speeding. 

Most of the studies in the literature have used assumptions of adaptive cruise control 

characteristics when modeling vehicle behavior or estimating capacity. Of the two studies which 

used empirical data (Milanés and Shladover 2014; Su et al. 2016), both operated the vehicles at 

speeds of over 25 m/s (55 mi/h) and did not investigate characteristics of ACC systems at low 

speeds. This study contributes to the literature through an analysis of a previously untested 

manufacturer and model of vehicle with adaptive cruise control, as well as unexamined 

behaviors at low speeds.  

 

INTELLIGENT DRIVER MODEL 

Most adaptive cruise control systems studied in the literature have been best described by the 

Intelligent Driver Model (IDM). A commonly used IDM is an enhanced version developed by 

Kesting et al. (2010) which defines an acceleration target from the following equation: 

 

 𝑎𝐼𝐷𝑀 = 𝑎

[
 
 
 
 

1 − (
𝑣

𝑣0
)
𝛿

− (

𝑠0 +𝑚𝑎𝑥 [0, 𝑣𝑇 +
𝑣∆𝑣

2√𝑎𝑏
]

𝑠
)

2

]
 
 
 
 

 (1) 
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v = current vehicle speed 

v0 = desired speed 

s = gap  

s0 = gap at stopped traffic 

T = minimum time gap 

a = maximum acceleration 

b = desired deceleration, expressed as a positive value 

δ = free acceleration exponent 

 

To our knowledge, this equation does not appear in the literature in this form. Kesting et 

al. (2010) neglected to include the maximum function on the last term to prevent it from taking 

negative values. This was updated on the IDM website and reflected by Milanés and Shladover 

(2014). In the equation displayed by Milanés and Shladover (2014), however, the last term was 

not raised to second power as it was by Kesting et al. (2010) and others (Li et al. 2015; Liebner 

et al. 2012; Su et al. 2016). This error has been corrected in Equation 1. 

Most production vehicles with ACC adhere to the ISO standard 15622 on adaptive cruise 

control performance requirements (ISO 2010). The standard states that “The average rate of 

change of automatic deceleration (negative jerk) shall not exceed 2.5 m/s3 (average over 1 s)” 

(ISO 2010). The IDM equation can be modified to adhere to the standard. 

 

 𝑎𝐼𝐷𝑀 = {
𝑗𝑚𝑎𝑥 + 𝑎𝑡−𝑟 , 𝑎𝐼𝐷𝑀 − 𝑎𝑡−𝑟 < 𝑗𝑚𝑎𝑥 

𝑎𝐼𝐷𝑀, otherwise
 (2) 

 

jmax = maximum jerk over one second (m/s3) 

t = current timestep 

r = simulation time steps per second 

  

ISO 15622 further mandates a maximum deceleration rate: “The average automatic 

deceleration of ACC systems shall not exceed 3.5 m/s2 (average over 2 s)” (ISO 2010). The IDM 

equation is amended to adhere to the standard. 

 

 𝑎𝐼𝐷𝑀 = {
2𝑟𝑏𝑚𝑎𝑥 − ∑ 𝑎𝑖

𝑡+1−2𝑟

𝑖=𝑡−1

,
1

2𝑟
(𝑎𝐼𝐷𝑀 + ∑ 𝑎𝑖

𝑡+1−2𝑟

𝑖=𝑡−1

) < 𝑏𝑚𝑎𝑥 

𝑎𝐼𝐷𝑀, otherwise

 (3) 

    

bmax = maximum deceleration over 2 s, expressed as a 

negative value (m/s2) 

 

Combining both amended equations yields the following: 
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 𝑎𝐼𝐷𝑀 =

{
 
 

 
 

𝑗𝑚𝑎𝑥 + 𝑎𝑡−𝑟 , 𝑎𝐼𝐷𝑀 − 𝑎𝑡−𝑟 < 𝑗𝑚𝑎𝑥

2𝑟𝑏𝑚𝑎𝑥 − ∑ 𝑎𝑖

𝑡+1−2𝑟

𝑖=𝑡−1

,
1

2𝑟
(𝑎𝐼𝐷𝑀 + ∑ 𝑎𝑖

𝑡+1−2𝑟

𝑖=𝑡−1

) < 𝑏𝑚𝑎𝑥 

𝑎𝐼𝐷𝑀, otherwise

 (4) 

 

In the same paper, Kesting et al. (2010) acknowledge that, as a collision-free model, the 

IDM leads to excessive braking when following a leading vehicle as it assumes the lead vehicle 

may brake at its maximum rate at any moment. To relax this assumption and produce more 

realistic driving, they introduce the constant acceleration heuristic (CAH) which assumes leading 

vehicles will maintain current speeds for a few seconds. The formula for acceleration using the 

CAH is given by:   

 

 𝑎𝐶𝐴𝐻 =

{
 
 

 
 𝑣2𝑎̃𝑙

𝑣𝑙
2 − 2𝑠𝑎̃𝑙

, 𝑣𝑙(𝑣 − 𝑣𝑙) ≤ −2𝑠𝑎̃𝑙

𝑎̃𝑙 −
(𝑣 − 𝑣𝑙)

2 Θ (𝑣 − 𝑣𝑙)

2𝑠
, otherwise

 (5) 

 

vl = current speed of leading vehicle (m/s) 

ãl = min(al, a) 

Θ, Heaviside step function: 𝐻(𝑛) = {
0, 𝑛 < 0
1, n ≥ 0

 

 

 According to Kesting et al. (2010), the CAH accelerations are too relaxed in some 

situations, showing zero acceleration when moderate braking is practical. If the IDM produces 

extreme decelerations while the CAH recommends accelerations greater than the desired 

deceleration b, then the situation can be described as mildly critical and the acceleration of a 

vehicle with ACC is equal to the comfortable deceleration plus a fraction 1 – c of the IDM 

deceleration. The constant c refers to a coolness factor, which corresponds to the sensitivity of 

the ACC vehicle to the preceding vehicle. Kesting et al. (2010) use c = 0.99, and recommend 

realistic values between 0.95 and 1.00. The formula for their enhanced IDM model for ACC 

vehicles is given by: 

 

 𝑎𝐴𝐶𝐶 = {
𝑎𝐼𝐷𝑀, 𝑎𝐼𝐷𝑀 ≥ 𝑎𝐶𝐴𝐻

(1 − 𝑐)𝑎𝐼𝐷𝑀 + c [𝑎𝐶𝐴𝐻 + 𝑏𝑡𝑎𝑛ℎ (
𝑎𝐼𝐷𝑀 − 𝑎𝐶𝐴𝐻

𝑏
)] , otherwise

 (6) 

 

b = desired deceleration, expressed as a positive value 

(m/s2) 

c = coolness factor 
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Often aACC will be greater than zero and produce abnormally high accelerations. A final 

check should confirm that aIDM should be used if aACC results in a positive value. 

 

 𝑎𝐴𝐶𝐶 = {
𝑎𝐼𝐷𝑀, 𝑎𝐴𝐶𝐶 ≥ 0
𝑎𝐴𝐶𝐶 , otherwise

 (7) 

 

 This model, aACC, is referred to as the ACC model throughout this paper, while the earlier 

version without the constant acceleration heuristic, aIDM, is referred to as the IDM model. 

 The formulation of IDM in equations 1–4 is unique to this paper, and not found in 

existing literature. The formulation of the ACC model in equations 5–7, however, are reproduced 

directly from Kesting et al. (2010).” 

  

DATA COLLECTION 

The test vehicle is a 2017 Audi Q7 with adaptive cruise control functionality. In order to develop 

a car-following model, at least two points are required: speed difference between the leading and 

following vehicle, and the gap between the leading and following vehicle. By measuring the rate 

of change of these characteristics, one can determine the accelerations of both leading and 

following vehicles. These data were obtained in live traffic by using a smart phone’s GPS sensor 

placed inside the vehicle to determine speed once per second, from which acceleration was 

calculated. The gap to the leading vehicle was obtained by a laser scanner mounted on a tripod 

inside the Audi measuring the rear of the leading vehicle. The laser scanner provided the gap 

between vehicles, while the speed difference was obtained by calculating the rate of change of 

the gap and comparing it to the speed of the Audi as measured by the GPS. The laser scanner 

installation is shown in Figure 1. 

 

 
Fig. 1 Laser scanner installed in the test vehicle. 
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The test vehicle has five time headway settings of 1, 1.3, 1.8, 2.4, and 3.6 seconds. 

Testing was conducted using the 1.8 second headway, which is the default setting whenever the 

vehicle’s power is cycled. The test vehicle was driven in live traffic on signalized arterials and 

highways in order to maximize the potential for lead vehicle decelerations. Finally, the vehicle 

was tested with ACC with a desired speed of 96 km/h (60 mi/h) from a standing start with no 

leading vehicles present to determine its unimpeded acceleration profile.  

Data collection was filmed with dash-mounted digital video cameras that were synced to 

the GPS time. These cameras not only show traffic conditions and presence of a leading vehicle, 

they also monitor the vehicle dashboard and record vehicle status, ACC settings, and ACC 

engagement, as well as unusual traffic scenarios such as cut-in maneuvers that quickly shorten 

the vehicle’s perceived following distance. A screenshot of the timestamped video is shown in 

Figure 2. 

 

 
Fig. 2 Consolidated timestamped video of test vehicle with ACC engaged. 

 

 Data from the laser scanner and smartphone GPS sensor application were fused into a 

master file with a common time stamp. As all sensors record data at different intervals, some 

intermediate readings had to be extrapolated from sensor readings. For example, GPS records 

position once per second, while gap was recorded approximately three times per second. Linear 

interpolation was used to extrapolate gaps, positions, and speeds at 0.1 second intervals for 

consistency. Noisy range data was checked against the video file to determine if the position of 

the lead vehicle was responsible or if the lidar sensor had targeted the wrong object. Faulty range 

measurements were removed, and data was smoothed using linear interpolation where practical.  

 

ACC CHARACTERISTICS RELEVANT TO CAR-FOLLOWING 

Four characteristics of car-following common to many models were studied as part of this effort: 

standstill distance, startup time, acceleration profile, and deceleration profile.  
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Standstill Distance 

Standstill distance is the desired gap between the front of the following vehicle and the back of 

the leading vehicle when both vehicles are stationary. The IDM refers to this distance as jam 

distance (Kesting et al. 2010).   

Eight instances of vehicles stopped traffic were recorded while the vehicle was operating 

with ACC. In five instances, the gap was measured at 3.65 meters, with the remaining 

measurements between 3.35 and 4.2 meters. Some measurements may disagree somewhat with 

actual bumper-to-bumper distance, as the range finder was aimed at the broadest surface, often 

the back of the vehicle, and may have measured slightly farther than the rear-most part of the 

lead vehicle’s bumper. A standstill distance of 3.5 meters is the most practical value and was 

used in calibration of the IDM. 

 

Startup Time and Distance 

A critical component of intersection capacity and queue clearance formulas is the time from 

when a lead vehicle accelerates from stopped to when the following vehicle begins to accelerate. 

In traffic engineering, this time gap is used to estimate the capacity of a traffic signal, generally 

using a default value of two seconds (Transportation Research Board 2010). 

 Startup time was measured from timestamped video recorded while the vehicle was in a 

stopped queue at a traffic signal and operating with ACC. Two times were measured: (a) the time 

between when the brake light of the lead vehicle turned off and the ACC vehicle began moving, 

and (b) the time between when the lead vehicle appeared to move and when the ACC vehicle 

began to move. While eight samples are reported for standstill distance, only six were recorded 

for startup time and distance because in two samples ACC was disengaged after the vehicle 

stopped. The results are shown in Table 1. The time between both vehicles moving ranged 

between 1.2 and 3.0 seconds, with an average value of 1.73 seconds. This is similar to the 2 

second default value used in traffic engineering.  

 

Table 1. Startup Times and Distances for Queued Vehicle using ACC 

Sample Time between lead brake 

light off and ACC vehicle 

movement (s) 

Time between lead vehicle 

movement and ACC vehicle 

movement (s) 

Distance traveled by lead vehicle 

distance before ACC vehicle 

movement (m) 

A 2.84 2.02 1.0 

B 2.68 1.94 3.0 

C 2.36 1.44 1.5 

D 2.70 1.64 2.5 

E 2.27 1.24 1.2 

F 2.02 1.27 1.2 

Average 2.48 1.59 1.73 

 

Acceleration 

Car-following models use acceleration rates as inputs, often based on a vehicle’s maximum 

comfortable acceleration when unimpeded. To determine acceleration rates, the test vehicle’s 
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ACC was engaged with a desired speed of 96 km/h (60 mi/h) from standstill while accelerations 

were derived from locations measurements taken once per second from GPS. The results of nine 

test runs were averaged to produce an acceleration profile at different speeds, shown in Table 2. 

Accelerations at times exceed the ISO 15622 standard’s maximum of 2.0 m/s2 (ISO 2010).  

 

Table 2. Average ACC Acceleration from Stationary to 96 km/h (60 mi/h) 

Vehicle 

Speed 

(km/h) 

Average 

Acceleration 

(m/s2) 

0 0.36 

10 2.02 

20 2.10 

30 2.66 

40 2.36 

50 2.01 

60 1.75 

70 1.53 

80 1.17 

90 0.57 

 

Deceleration 

Car-following models often use desired and maximum decelerations as inputs. For an ACC 

vehicle, maximum deceleration may be defined as the maximum allowable under ISO 15622, 

defined as -3.5 m/s2 over two seconds. The desired deceleration is less severe, and values of -2 

m/s2 is used by both Kesting et al. (2010) and Milanés and Shladover (2014). In observations, the 

98% of the test vehicle’s decelerations were less severe than -2 m/s2 as seen in Figure 3. 

Therefore, a value of -2 m/s2 was selected as the desired deceleration, although it must be 

expressed as a positive value when used in the IDM. 
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Fig. 3. Empirical distribution function of test vehicle decelerations with ACC engaged. 

 

IDM AND ACC MODEL DEVELOPMENT 

ACC behavior attributes studied in the previous section were used to determine parameters for 

the IDM and ACC models developed by Kesting et al. (2010). The parameters are shown in 

Table 3, with sources for selected values listed.  

 

Table 3. IDM and ACC Model Parameters 

Parameter Symbol Value Source 

Desired speed  v0 Varies Data 

Free acceleration exponent  δ 4 (Kesting et al. 2010; Milanés and Shladover 2014) 

Desired time gap  T 1.8 s (Audi AG 2016) 

Jam distance s0 3.5 m Data 

Maximum acceleration  a 2.0 m/s2 Data, (ISO 2010) 

Desired deceleration b 2.0 m/s2 Data, (Kesting et al. 2010; Milanés and Shladover 

2014) 

Coolness factor c 0.99 (Kesting et al. 2010) 

Maximum deceleration over 2 s bmax -3.5 m/s2 (ISO 2010) 

Maximum jerk over 1 s jmax -2.5 m/s3 (ISO 2010) 

 

 The model was tested on a 30-second data set with the test vehicle decelerating from 22.2 

m/s (50 mi/h) to 5 m/s (11 mi/h) to avoid a car slowed in a queue, then accelerating to 17.7 m/s 

(40 mi/h) while following the lead vehicle. This is the largest speed oscillation tested in any 

attempt to model real-world ACC behavior. The IDM and the ACC models result in overly 

cautious braking, decelerating at -4 m/s2 when time gaps were just under 3 seconds, while the 
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test vehicle allowed time gaps to reach 1.3 seconds before braking. The speed and position of the 

vehicles over time is shown in Figures 4 and 5. 

 

 
Fig. 4. Position vs. time for vehicles and models in the test scenario. 

 

 
Fig. 5. Speed vs. time for vehicles and models in the test scenario. 

 

Most factors cannot be calibrated to improve the performance in the test scenario without 

worsening performance in acceleration tests. Increasing the free acceleration threshold δ, for 

example, produces a delayed deceleration similar to the test vehicle, but produces nearly constant 

acceleration from standstill of 2.0 m/s2 until desired speed is attained, which contradicts the field 

data collected in Table 2.  
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VISSIM SETTINGS 

VISSIM is a widely used microscopic traffic simulation software package developed by PTV 

AG (2018). The software uses two car-following models when simulating vehicles. The first, 

Wiedemann 74, is based on published research conducted on the German Autobahn in the early 

1970s (Wiedemann 1974) and updated in 1992 (Wiedemann and Reiter 1992). The second, 

Wiedemann 99, has not been published but appears similar to Wiedemann 74 in terminology, 

e.g. parameters CC0 in Wiedemann 99 and ax in Wiedemann 74 both refer to standstill distance. 

Both models recognize thresholds between different states or “regimes” of driving such as free, 

following, closing, and emergency (PTV AG 2018). Olstam and Tapani (2004) provided a 

thorough analysis of the Wiedemann car-following logic and default settings. 

Because Wiedemann 99 has 10 adjustable parameters compared to just three with 

Wiedemann 74, PTV Group recommends using Wiedemann 99 for modeling automated vehicles 

such as those with adaptive cruise control (Sukennik 2018).  

Two examples in the literature have attempted to provide example Wiedemann 99 

parameters that might apply to automated vehicles or vehicles with adaptive cruise control. 

Sukennik (2018) of PTV Group developed values for each of the ten Wiedemann 99 parameters 

for a cautious, normal, and all-knowing automated vehicle. The models are included in VISSIM 

version 11 as pre-installed driving behavior models. The exact values used in the VISSIM 

models are reproduced in Table 4. Bierstedt et al. (2014) also developed example values for 

Wiedemann 99 parameters to model the effect of ACC on freeway capacity. Their values are 

based on assumptions of ACC behavior such as faster and more precise responses to preceding 

vehicle accelerations. The proposed parameter values are reproduced in Table 4.   

 

Table 4. Recommended Wiedemann 99 Settings for AVs and ACC from the Literature 

  AVs (Sukennik 2018)  ACC (Bierstedt et al. 2014) 

Parameter Units Cautious Normal All-knowing  Aggressive Intermediate Conservative 

CC0  m 1.5 1.5 1.0  1.0 1.25 1.5 

CC1  s 1.5 0.9 0.6  0.5 0.8 1.2 

CC2  m 0.0 0.0 0.0  2.0 3.0 4.0 

CC3  s -10.0 -8.0 -6.0  -8.0 -12.0 -16.0 

CC4 m/s -0.1 -0.1 -0.1  -0.1 -0.35 -0.6 

CC5 m/s 0.1 0.1 0.1  0.1 0.35 0.6 

CC6 1/(m·s) 0.0 0.0 0.0  0.0 0.0 0.0 

CC7 m/s2 0.1 0.1 0.1  0.4 0.25 0.1 

CC8 m/s2 3.0 3.5 4.0  0.4 3.5 3.0 

CC9 m/s2 1.2 1.5 2.0  2.0 1.5 1.0 

 

 Based on the findings of this research and the assumptions and values from the literature, 

values for the Wiedemann 99 model parameters are proposed in Table 5 for use in VISSIM 

software. Ideally, parameters would be calibrated to match traffic conditions. In the absence of a 
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data set of many interacting vehicles using ACC, some parameters were calibrated to a single 

vehicle analyzed as part of this study. For parameters without supporting empirical data, values 

from Bierstedt et al. (2014) and Sukennik (2018) were used. When these sources disagreed, the 

most recent reference (Sukennik 2018) was used. In addition to the parameters, the car-following 

model should use deterministic values when possible, which can be implemented by un-checking 

the “Use implicit stochastics” box within the Driving Behavior editing window in VISSIM 11. 

The maximum and desired acceleration profiles should be set to match the results of the ACC 

acceleration tests in Table 2. Finally, maximum and minimum accelerations at each speed should 

be set equivalent to the average value taken from Table 2, unless the model is designed to reflect 

a range of acceleration profiles from different manufacturers and vehicle models.  

 A comparison of acceleration profiles observed from the ACC test vehicle, as predicted 

by the IDM and ACC models (which are identical during unimpeded acceleration), and from a 

VISSIM simulation using the settings in Table 5 are shown in Figure 6. Accelerations match 

well, with all vehicles reaching 25 mi/h within 37 meters of each other. 

 

 
Fig. 6. Accelerations and speeds of unimpeded acceleration. 
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Table 5. VISSIM Wiedemann 99 Model Recommended Parameters for Vehicle with ACC 

Wiedemann 

99 Parameter 

Description Recommended 

Value 

CC0 Standstill distance: The desired gap between two stationary 

vehicles. Observed distance was 3.5 m. 

3.5 m 

CC1 Following distance: The minimum desired time gap between 

two vehicles. The vehicle’s default following distance was 

1.8 s, although this should be altered based on known or 

estimated settings. 

1.8 s 

CC2 Longitudinal oscillation: The gap distance beyond the 

minimum safety distance at which a vehicle will accelerate to a 

leading vehicle. Test vehicle set at 1.8 s following distance 

would accelerate when following distance exceeded 1.9 s at 

speeds of 15-20 m/s, resulting in a value of 1.5 to 2.0 meters.  

2.0 m 

CC3 Perception threshold for following: The number of seconds 

prior to which reaching a safety distance at which deceleration 

begins, expressed as a negative value. Value recommended in 

the literature (Bierstedt et al. 2014; Sukennik 2018). 

-8.0 s 

CC4 Negative speed difference: Threshold for negative difference 

in speed between leading and following vehicle for reaction 

during the following regime. Value recommended by Sukennik 

(2018). 

-0.1 m/s 

CC5 Positive speed difference: Threshold for positive difference in 

speed between leading and following vehicle for reaction 

during the following regime. Value recommended by Sukennik 

(2018). 

0.1 m/s 

CC6 Influence speed on oscillation: Measure of the impact of gap 

on speed oscillation. Value recommended in the literature 

(Bierstedt et al. 2014; Sukennik 2018). 

0 / (m·s) 

CC7 Oscillation during acceleration: Limits the jerk during the 

first time step while a vehicle is in the free regime. Value from 

observations of the test vehicle’s initial acceleration when 

starting from standstill with no leading vehicle. 

0.36 m/s2 

CC8 Desired acceleration starting from standstill: Value from 

maximum allowable acceleration in ISO 15622 (ISO 2010). 

2.00 m/s2 

CC9 Desired acceleration at 80 km/h: Value from acceleration 

tests. 

1.17 m/s2 
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CONCLUSIONS 

Governments must adapt their planning and capacity models to the increase in computer-

controlled driving, yet the car-following models which serve as the basis for capacity models are 

based on human drivers and limited by human visual perception and psychology. Adaptive cruise 

control, where a vehicle follows a leading vehicle at a constant time headway, is available on 

production vehicles and may exhibit similar car-following behavior to prototype highly 

automated vehicles. The purpose of this study was to investigate the characteristics of a 

production vehicle with adaptive cruise control which may apply to modeling efforts.  

A 2017 Audi Q7 with adaptive cruise control was equipped with a GPS sensor, 

rangefinder, and video to determine the vehicle’s speed, acceleration, gap distance to the 

proceeding vehicle, and ACC status. Data was consolidated under a common time stamp and 

analyzed for various car-following characteristics. 

Four attributes were measured directly: standstill distance (3.5 m), startup time (1.59 s), 

accelerations (Table 2), and decelerations (effective maximum of 2.0 m/s2). The empirical data 

was compared to the Intelligent Driver Model over a 30-second scenario exhibiting braking from 

22.5 m/s to 5 m/s, the most drastic deceleration of an ACC vehicle analyzed in the car-following 

literature. The ACC vehicle showed less severe deceleration when encountering congestion, 

allowing headways of 1.3 seconds before decelerating compared to IDM’s 3 second headways. 

Finally, sample values for parameters of the Wiedemann 99 car-following model were provided 

based on the empirical data and the literature so that ACC vehicles can be modeled in the widely 

used microscopic simulation software package VISSIM with less reliance on assumed behavior 

of ACC and automated vehicles. 

 Future research could involve validating the ACC car-following models developed by 

Milanés and Shladover (2014) and Su et al. (2016) against the data collected in this project, as 

the vehicle used here was produced by a different manufacturer and may exhibit different car-

following behavior. Additionally, a scenario could be staged in such a way that it could be 

recreated in VISSIM to test the performance of the recommended Wiedemann 99 parameters in a 

realistic car-following situation. Finally, the effect of lane changing and lateral movements on 

ACC behavior should be investigated. 
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