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ABSTRACT 

Computer code models have become the default tool for analysis in many areas of research and 

industry. The research for evaluating these models has been primarily focused on theoretical 

simulation methods and overlooks the application of these methods. Many existing and highly 

valued computer codes and models do not allow for simulation, uncertainty quantification, or 

other modern computing capabilities. These computer codes are generally comprised of two 

categories: those with limited operation by design and older legacy codes. Updating these 

software codes is not an option in many situations due to time constraints, cost, loss of skills 

needed to upgrade aging programming languages, lack of access to source code, and other 

constraints. This paper compiles and evaluates methods to systematically interrogate computer 

codes, including reduced iteration design of experiments (DoE) methods. It was determined that 

while several of these methods are routinely used in other fields, they have not been applied to 

computer code models. This paper discusses challenges present when evaluating computer 

codes and offers a decision framework for selecting interrogation methods. An example case 

study application of a definitive screening design (DSD) to aerosol transport modeling using the 

Atmospheric Relative Concentrations in Building Wakes (ARCON96) computer code is provided 

to illustrate use of the decision framework and application of DoE fractional factorial designs to 

computer codes.  

Keywords: legacy code, design of experiment, uncertainty quantification, computer 

experiment, computer model, ARCON96 
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1 INTRODUCTION 

Computer code models have become the default tool for analysis in many areas of research and 

industry. Understanding how to effectively explore these models is useful to researchers and 

code operators alike. Computer code models are commonly used to calculate one result without 

mechanisms to consider uncertainty or sensitivity, leading to inefficient and incomplete 

analyses. Further, application of theoretical statistical methods for evaluating these computer 

codes and models has been limited.  

Proper experiment design is needed to ensure the model input factors are varied in a way that 

fully interrogates the model. Multiple iterations, or ‘runs’, are needed for sampling, uncertainty 

quantification, and reliability analyses. Simulation and similar methods have been the focus of 

research for this purpose [1]–[3]. These methods are generally applied to complex computer 

models which have been designed to be compatible with simulation. However, simulation is not 

compatible with the design and operation of most computer codes and models. Therefore, other 

analysis methods must be considered to interrogate these computer codes. To address this gap, 

this paper provides a framework for selection of an analysis method, challenges that must be 

considered, and an example of case study. 

A computer code is defined in this paper as a computer program or software which contains a 

model representative of a system. A computer code model is the portion of the code that 

calculates a response output from inputs. The distinction seems obvious but is inconsistently 

defined in a large portion of the literature. Many computer codes were designed to complete a 

function, and only that function, as efficiently as possible. Older legacy codes were written when 

computational cost was at a higher premium, using less advanced programming languages, 

necessitating simple design. Despite significant reduction in computational costs and 

development of more advanced computer languages, modern codes are still written with limited 

functionality. This is done to make it less costly to develop, easier to maintain, or simpler to 

validate. While these limitations were designed into the code for resource or functional 

efficiency, they also create challenges for evaluation. A large body of literature exists on 

operating computer code models, but little has been published on effective and appropriate 

methods to operate limited or legacy computer codes in a systematic way. We present methods 

that could be applied to interrogate these common and valuable computer codes, along with a 

decision framework to select a method that will function with a specific computer code.  

One largely unexplored approach that could be used to interrogate computer code models is 

design of experiments (DoE). These methods have long been used to characterize physical 

models and are prevalent in many fields, including scientific studies and industrial quality 

control. Instead of prescribing parameters and running physical experiments, the process of 

getting data from most computer models more closely resembles interrogation. In this context 

interrogation can be thought of as asking the code specific questions. In this paper we propose 

the application of factorial experiment designs to interrogate an existing model or code where 

other methods are not well suited. 

This paper is organized into four main sections. First, the challenge of utilizing codes that are 

not designed for multiple simulation use is described. Second, applicable methods and tools are 

collected and discussed. Third, the application of experimental design to interrogate an existing 



computer code model is presented. Finally, a case study applying a definitive screening design 

(DSD) method to the aerosol transport modeling code ARCON961 is provided.  

2 CURRENT CHALLENGES 

There are many challenges to interrogating an existing code. These challenges are often 

overlooked in the literature and left to the operator to solve. Challenges vary widely based on the 

characteristics of the code being used, the model contained in the code, and the use case. Seven 

challenges are discussed in this section and solutions are presented where possible. 

2.1 SYSTEM DESIGN AND OPACITY 
Experiment design is used to structure experimental observations of a system. The observations 

are often used to make an experimentally determined empirical model. These models are often 

called extrinsic because they are defined from the external behavior of the system and not the 

internal function. A mechanistic model is not based on observations, but instead employ an 

understanding of the underlying phenomena that defines the function of the model.  

Model opacity refers to the level of knowledge of the model contained in the computer code that 

is available, as described in Figure 1. An extrinsic model, mechanistic model, or a combination 

of the two, may be contained in a “opaque box” system2. Gray or clear box systems are where 

some or all of the internal function of the system is known, respectively. Open box codes provide 

access to the code and model directly and usually also provide a way to interface with the code. A 

spreadsheet-based model is a good example of open box. If the spreadsheet is later locked it 

would be an opaque box to a new operator.  

Figure 1: Hierarchy of code system knowledge and connectivity 

 
1 Atmospheric Relative Concentrations in Building Wakes (ARCON96) code is a US Nuclear Regulatory 
Commission (NRC) code typically used to calculate relative atmospheric concentrations at control room 
air intakes relative to plumes from hypothetical nuclear power plants accidental releases. As of this 
writing ARCON96 can be found at https://ramp.nrc-gateway.gov/content/arcon-overview  
2 Sometimes referred to as ‘black box’ and ‘white box’ systems 
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Connectivity to the model does not affect the function of the model directly but does limit the 

methods that can be used to interact with the code. The level of opacity is important for selecting 

the analysis strategy that is be best suited to the use case.  

2.2 STATISTICALLY VALID RESULTS AND UNCERTAINTY 
Computer models are often representative models for a real-world system. Even with 

calibration, verification, and validation a computer code rarely models a physical system 

perfectly because the input data to the system is necessarily a sample of the full data set. The 

data set used to design, test, and train the model is usually not included with the model. Further, 

only the most accurately documented models include variance and uncertainty quantification 

along with methods and formulas. 

Opaque and gray box systems make it impossible to know the ability of the model to accurately 

describe the original system because the internal function and data that was used to define that 

structure is unknown. When using and interrogating computer models it is important to 

understand that you are subject to the assumptions, conventions, bias, and uncertainty in the 

computer model.  

Model inputs are another source of uncertainty entering the system. When interrogating a 

model, it is common to use a range of input values regardless of the interrogation technique 

used. The input values should be selected carefully to ensure they are feasible values and are 

based on reasonable and logical assumptions. Selecting values that are too broad (i.e. beyond 

the range of the model) or too narrow can result in invalid responses. Not all codes have 

safeguards built in to avoid this situation, so it is prudent to be cautious. 

2.3 OPERATIONAL DESIGN 
The operational design of code operation must be considered when selecting statistical 

experimental design methods. The operational characteristics and both the ability and method 

of the operator to interface with the code is often overlooked. Codes that have a built-in 

simulation tool, or are easy to integrate with a separate simulation tool, have the lowest barrier 

to operator use. Uncertainty can be explored through extensive interrogation with methods 

discussed in Section 3.2. A single run code, one that is designed to provide a response in one 

operation, poses limitations. These codes are not easy to use in a batch or simulation manner. 

The operator interface design may require direct interaction that completely prevents use of a 

separate simulation tool. 

Many runs are needed even for the smallest experimental design. Single run codes require 

additional operator time to set up and run each iteration. Operator expertise can reduce the time 

needed for each run but is unlikely to match the time savings of a simulation tool. The barriers 

to simulation usually result in ‘normal’ operation as described in Section 3.1. However, these 

codes are usually good candidates for DoE methods, discussed in 3.4. 

There are exceptions, such as finite element analysis models, that take extensive computational 

time to run and therefore might only be run once. In this case, it is important to quantify and 

reduce uncertainty as much as possible in the experiment design prior to simulation. 



2.4 CODE ALTERATION 
Some codes are not designed in a way that allows multiple runs (i.e. ARCON96 in Section 5). It 

may not be possible to upgrade codes to operate for multiple iterations for a variety of reasons. 

For instance, the source code could be lost, programming skill needed are lost, insufficient time 

or budget, and other possible reasons. Third party codes often cannot be altered.  

Simulation tools can be very powerful, but they are only useful when the code can be operated 

for multiple iterations and is compatible with the simulation tool. Many existing codes were not 

intended to be run remotely (i.e. by another code) and do not provide API or file access which 

simulation codes can leverage.  

If the code is validated for function, that is it has been certified in some way the code functions 

and provides the expected response, then altering the code would likely void that validation. If 

the validation is important to the experiment, to certify the code is performing the function it 

was intended to perform, then altering the code is not an option.  

2.5 CONSTRAINED DESIGN REGIONS 
Constrained design regions exist when factors are limited in combinations or ranges. They can 

exist for categorical or continuous factors. Mixtures are a common example where a formulation 

contains proportions of ingredients up to 100%, but some may only be possible a limited range. 

Physical systems such as pressure vessels that can operate in a limited range of temperature and 

pressure combinations provide another example.  

Care must be taken to only interrogate the model with feasible factor parameters. Two general 

methods exist to accomplish this need. Input factor scenarios can be carefully selected to avoid 

constrained design regions or techniques can be used to adapt analysis methods to address a 

constrained design region. Techniques vary by the analysis method used and should be 

considered prior to interrogation if a constrained design region exists. 

2.6 NEW USE CASES 
New use cases provide an opportunity to extend the value of an existing code without creating a 

new computer code. In some situations, the existing code is applicable but cannot be used as-is 

and a new operational method must be developed. Even if a modeler with the necessary 

experience is available, it may take significant time to design an operational method. One 

example of a new use case will be illustrated in the case study in Section 5 of this paper.  

2.7 REPLACEMENT VALUE 
The value of overcoming these challenges should be weighed against the option of replacing the 

existing computer code model with a more capable computer code. Computer codes require 

significant time and resources to develop. However, there are often co-benefits associated with 

developing a new computer code which make the investment worthwhile, including simplified 

maintenance, the ability to add features, and uncertainty/sensitivity analysis capabilities. It may 

not be justifiable to develop a new code, such as when the existing code is used infrequently, 

there is a short deadline for a project, or no development funding exists. Replacement of gray 

and opaque box computer code models may not be possible due to insufficient understanding of 

the underlying foundation. When code verification and validation is necessary there will be 

additional development time and cost.  



3 METHODS AND TOOLS  

Selection of an interrogation method must consider the characteristics of the computer code and 

specific challenges, such as those discussed in Section 2. To explore an existing model or code 

there are five main options.  

1. Normal operation 

2. Scenario Analysis 

3. Simulation tools  

4. Design of Experiments 

5. Reduced-form models  

Development of an analysis plan requires understanding of the computer model, characteristics 

and limitations of analysis design options, and the resources available. The goal of the analysis 

plan should be clearly understood prior to selecting a method that will achieve that goal. This is 

especially a concern when multiple methods are sufficient to analyze the computer code but may 

not result in the deisred goal. Goals commonly include determining model response in a 

specified range of inputs, but can also be to understand the processes and functions of the 

computer code model. The decision tool in Figure 2 is provided to guide the selection process. 

Further discussion of the analysis options is provided in the subsequent sections.  



 

Figure 2: Decision framework for computer code analysis strategies 



The following options assume a few points: The modeler has the skills necessary to operate the 

model. The methods described herein are to enable augmented use of the existing model. Factor 

levels can be set independently of the level of any other factor. Models can be deterministic or 

stochastic, but the input factors are able to be manipulated in a controlled way. It is assumed 

that the computer model being interrogated is a valid model or it would not be considered for 

further use. 

3.1 NORMAL OPERATION 
Normal operation is the usual practice, but often limits model operation to an original use case. 

While normal operation is common, in many cases it does not involve exploring the code in a 

statistical manner. Many operators simply use best assumption input values and run the code 

one time, avoiding any sensitivity or uncertainty analysis. This is especially true when 

uncertainty tools are not built into the model.  

Using the model in normal operation avoids the need to invest in learning new skills required 

for the other options. Under normal operation cases the input factors should be well known. 

Fully exploring the model in normal operation requires a brute force approach to complete 

many runs, which is inefficient and often not feasible. If normal operation is selected as the 

appropriate strategy for the experiment, the analysis plan should include a detailed workflow 

checklist, quality assurance, and data management plan. The purpose is to reduce errors that 

will be difficult to detect later and to potentially reduce time needed by streamlining the process.  

3.2 SCENARIO ANALYSIS 
Scenario analysis is often called ‘what-if’ analysis and calculates a model response to understand 

one possible situation or scenario. This approach is used to make analysis more tractable when 

the model is too complex for full interrogation of the design region, or when understanding of 

specific scenarios is needed and the remainder of the design region is not of interest. For 

example, in risk analysis this approach is commonly used when there are expected modes of 

failure in a system which can be used as the basis for scenarios. The number of runs needed is 

defined by the number of scenarios the operator choses to explore.  

Scenario analysis is similar to normal operation in many ways. The code is usually operated in 

the normal manner and inputs are varied. The analysis plan for a scenario analysis generally 

includes sets of inputs selected determined to be best estimates of specific scenarios. Sensitivity 

analysis is occasionally employed and usually uses a OFAT method. Many DoE methods are also 

capable of scenario sensitivity analysis if the input boundary values are properly defined. Several 

of these DoE methods have the advantage of being able to detect factor interaction and higher-

order effects. 

3.3 SIMULATION 
Simulation3 allows for semi-automated iteration and interrogation of a computer model across 

the defined range of inputs. A simulation tool can be used to iterate a model hundreds or 

thousands of times if needed. These tools often provide a more extensive suite of modeling tools 

for uncertainty quantification. Consequently, it is desirable to fill the experimental region with 

 
3 Simulation is commonly referred to as batch processing in industry applications. Batch processing may 
also refer to a mixture of simulation and scenario analysis 



points as efficiently as possible (i.e. space-filling designs) so that each run provides additional 

information and captures variability between input factors and the response. This is a desirable 

feature if the experimenter does not know the form of the model that is required and believes 

that interesting phenomena are likely to be found in different regions of the experimental space. 

From an experimental design perspective, space-filling designs are often appropriate for 

deterministic computer models because interrogation points are spread systematically 

throughout the region of experimentation [2]. Space-filling designs generally do not contain any 

replicate runs. For a deterministic computer model this is desirable because a single run of the 

computer model at an interrogation point provides all of the information about the response at 

that point. Methods for space-filling designs include Latin Hypercube design [4], [5], spherical 

packing maximin design [6], Bayesian probabilistic sensitivity [7], and Gaussian process [3].  

Simulation can also be a useful interrogation strategy for codes that contain stochastic models 

which do not return the same response with each run. A Monte Carlo simulation is a common 

design choice for interrogating stochastic models. In a Monte Carlo model pseudo-random 

values are used for interrogation points instead of a structured space-filling design. Replicate 

runs can be useful in a stochastic model where a different response can occur with the same 

inputs. Monte Carlo models do not usually limit replicate runs but the occurrence of replication 

is usually by chance. Some tools provide options to intentionally replicate runs.  

Simulation tools can be used in some cases to interface directly with existing models. Some can 

be used to ‘control’ existing codes by direct control of input text files or calling commands. 

When this option is available it can be a powerful way to interrogate a model. Significant effort is 

usually required to set up a simulation tool to interface with a code, even if that code is open 

box. If the computer code is a closed system, it may not be possible to use a simulation tool. The 

time required to develop the interface, expertise of both the computer code being interrogate 

and the simulation tool, and limitation to the computer code model platforms that specialized 

simulation tools can interface should be considered. If a suitable tool is available, the investment 

may be a net benefit compared to alternative methods. While there are some open simulation 

tools, the majority are complex commercial products.  

3.4 DESIGN OF EXPERIMENTS 
Design of Experiments (DoE) methods are used to interrogate a system or model is a systematic 

and statistically valid way. Many examples exist in the literature including full factorial [8], 

fractional factorial [9], split-plot [10], Plackett‐Burman [11], Box‐Behnken [12], optimal 

designs (D‐criterion) [13], definitive screening design (DSD) [14], [15], augmented DSD [16]. 

Experiment designs can be selected to meet the needs or characteristics of the model. These 

characteristics may include factor interactions, nonlinearity, and constrained design regions. 

Tools exist to assist in experiment design using a range of methods.  

Separation of control and noise factors is usually an important consideration in experimental 

design to enable reduction of variance. This is especially important for quality control in 

manufacturing. To address this, techniques such as randomization, blocking, and replication are 

often employed. Defined computer codes using deterministic models are expected to 

consistently provide the same results for a set vector of inputs without noise. Therefore, the 

extra consideration and techniques used to isolate and characterize the effect of systemic 

variance or noise is unnecessary with deterministic computer codes. Epistemic variance may 

still exist if the model contains stochastic factors.  



The one factor at a time (OFAT) method involves selection of a baseline for each factor and then 

successively varying each factor over its range with the other factors held constant at the 

baseline level. OFAT is analogous to sensitivity analysis used in many other fields and is very 

common for modelers to perform when testing model output. Factorial designs can provide 

more information or evaluate more factors with less or equal computational cost than OFAT 

experiments, making them more efficient [1]. Factorial designs are able to detect interaction 

effects, where changing the level of one factor changes the output effect caused by a second 

factor, something OFAT cannot detect [1].    

Experimental design methods often offer significant reduction in the number of runs needed 

compared to other approaches. It is attractive to limit the number of runs needed when each run 

is expensive in terms of resources; cost, time, limited opportunities to test. In the case of 

computer codes, the expense is usually in run setup or computation time. DSDs are inexpensive 

to field requiring only a minimum of 2m+1 runs where m represents the number of factors [14].  

Reducing workload and expense is beneficial even when the model that is being interrogated is 

readily available and open.  

Screening designs are a family of experiment design methods that are used to identify the main 

effects (ME) of a system. A testing framework is used to ensure the set of possible factor 

combinations is explored in a sophisticated manner. Levels for each factor, often two or three 

levels per factor depending on the design, are selected for analysis. A particular design may be 

more appropriately matched to the application needed or desired results.  

3.5 REDUCED FORM MODEL 
Reduced form models have also been referred to as surrogate models [17] or metamodels [1]. 

Reduced form models are used when the existing model is too resource intensive to operate in a 

simulation manner and DoE methods will not provide a sufficient understanding of the model 

response. Despite a body of literature on other applications, reduced-form models of computer 

codes have significant limitations for limited and legacy computer codes and should be 

considered as a last resort. This is especially true for validated codes that cannot be readily 

replaced by a surrogate model.  

A reduced form model involves making a new but simpler metamodel that attempts to provides 

the same results. To create a reduced-form model, an input dataset paired with output response 

is needed. Another analysis is used to generate computer model responses and a metamodel is 

developed from the model response. Factor combinations in the input dataset should be 

carefully selected to ensure the reduced-form model covers the needed design region of the 

original model. Methods such as fractional factorial design can be used, but OFAT is often used 

because the modeler does not have experience with DoE methods.  

It is assumed that the computer code being interrogated is a valid model or it would not be 

considered for further use. Despite this assumption, the computer model is still a representation 

of the actual system and therefore does not perfectly describe the actual system. Extrapolating a 

reduced form model from the originally computer code model further removes the response 

from the actual system. Without a complete understanding of the inner working of the code (i.e. 

opaque box) it is difficult to build a reduced form model that is representative of the computer 

code model. If the model is well understood, and a reduced form model is only being considered 

to allow for simulation operation, it may be a better choice to build a new computer model. 



A reduced-form model generally needs follow up experiments or validation using existing data. 

The reduced form model is ideally trained from the same data that the original model was 

trained on. However, it is not common for the initial training data to be provided with the 

original model. Many runs (1,000-100,000) may be needed to sufficiently train and test the 

reduced-form model. The need for this many runs of the computer code to test and train is self-

defeating if goal were to create a less resource intensive model for simulation. To verify and 

validate the reduced form model, a new test data set would be required. Without this step there 

the variance between the computer code model and the reduced form model can be determine 

but there is no way to know how well the reduced form model describes the original system.  

4 APPLICATION OF FACTORIAL DESIGNS 

The state of knowledge can be advanced through a sequence of staged experiments: screening, 

effect estimation, optimization, and mechanistic model. Factorial designs are well suited to 

screening and effect estimation, and some are useful for optimization. Creating a new 

mechanistic model is beyond the capabilities of a factorial experiment that is being applied to a 

surrogate model (i.e. computer code model instead of physical system). Building a mechanistic 

model requires deep understanding of the system operation and phenomena along with data to 

test and validate, similar to a reduced form model.  

Factorial designs are usually employed in a design of experiments program aimed at collecting 

new data. Their most common use is in the earliest stages of experimentation when a large 

number of potentially important factors may affect a response of interest, and when the goal is 

to identify the generally fewer highly influential factors. Screening designs allow for a significant 

reduction in the number of runs needed compared to a simulation approach. Reducing the 

number of runs may offer significant saving in time and cost.  

Factorial designs are useful for interrogating legacy or complex computer codes in multiple 

ways. They allow the codes to be used in a ‘non-intrusive’ manner, not affecting the code or the 

results directly. This is especially important for codes that either cannot be modified, cannot be 

used with third party simulation tools, or are opaque box third party codes that are not allowed 

to be changed.  

As the number of factors m (input factors) increases the number of runs required increases to a 

point which make full factorial designs sometimes impractical and inefficient. The sparsity 

principle states that most of the variability in a system or process output is due to a small 

number of inputs. Effect sparsity indicates that the number of active effects compared with 

active factors is relatively small. For example, for a problem with seven factors (input factors) 

each at two possible values, a full 27 design requires 128 runs, but sparsity of effects means only 

a subset of the 7 factors and 21 two-way interactions (7 choose 2 combinations) are likely 

significant. As such, only a fraction of the complete 128 runs are required to obtain estimates on 

significant effects. Following this logic, reduced run designs have been developed to be more 

efficient in terms of design size. 

The heredity principle is commonly used when considering model selection, which can be strong 

or weak. Strong heredity implies that if a model includes a two-factor interaction, then its 

constituent main effects are included in the model. Robustness to assumptions of model 

heredity and sparsity is not uniform across all factorial designs [18].  



Several advantages are associated with DSD compared to most factorial designs [14]. Main 

effects are completely independent of two-factor interactions. Two-factor interactions may be 

correlated but are not completely confounded by other two-factor interactions. Nonlinearity can 

be detected, and the responsible factors can be identified. Unlike most designs, quadratic effects 

are estimable, and the responsible factors can be identified. Augmented DSD can be used to 

include categorical factors [16]. If a classical response surface design is used with a subset of 

model factors, usually to reduce the number of runs needed, there is a risk of missing other 

important factors. Conversely, if a screening experiment is used to avoid missing important 

factors, interactions and quadratic effects will be missed. The DSD approach can be used for 

simultaneous screening and response surface exploration using quantitative factors with three 

levels. Using one of these designs with six or more three-level factors allows fitting the full 

quadratic model involving any subset of three three-level factors. 

After a screening design is selected, factors need to be identified and feasible and reasonable 

levels need to be selected. Screening designs often use two levels for each factor, a high (+) and 

low (-) value. The “+” or “-“ representation is a DoE shorthand notation, and its key benefit is 

illustrating many combinations of many levels of many factors. Some screening designs use 

three or more levels for each factor to allow for estimation of factor interactions and quadratic 

effects. Once the screen and levels are selected the factors should be entered into the code and 

run as specified by the screening design, as depicted in Table 1. Eleven factors are identified. 

Twelve runs of the code are performed where each run sets the factor value at its high (+) or low 

(-) value. For example, the first run of the code sets factors A, C, G, H, I, and K at the “high” 

values of the factor, and it sets factors B, D, E, F, and J at the “low” values of the factor. Contrast 

this to the 12th run of the code in which all values for factors A, B, C … K are set at the “low” 

value of each factor. 

Level selections should be guided by the specific experimental design. Normally three levels for 

a factor are selected as lower bound, midpoint, and upper bound. When there is more insight 

into the model operation (clear or gray box) alternate levels might produce more useful results. 

When a factor has a default or normal value that is close to center it can be beneficial to use that 

value instead in a low, normal, high configuration. For example, if the voltage in a system has a 

lower bound of 10V and high bound of 14V, the center would be 12V. If the system usually 

operates at 12.6V, which is greater than the midpoint of the range, it can be beneficial to use 

12.6V in the analysis. Doing so allows the response to be directly usable by the operator as a 

‘normal’ condition without additional analysis. However, some factorial designs require use of a 

center value for statistical validity.  



Table 1: An example 12-run Plackett-Burman Design for 11 factors. Input factors are alternated low (-) or high (+) in a 
systematic manner.  

 Factors (m) 

A B C D E F G H I J K 

R
u

n
 

1 + - + - - - + + + - + 

2 + + - + - - - + + + - 

3 - + + - + - - - + + + 

4 + - + + - + - - - + + 

5 + + - + + - + - - - + 

6 + + + - + + - + - - - 

7 - + + + - + + - + - - 

8 - - + + + - + + - + - 

9 - - - + + + - + + - + 

10 + - - - + + + - + + - 

11 - + - - - + + + - + + 

12 - - - - - - - - - - - 

 

Of keen interest in using DoE on codes is to select a design which incorporates as many key 

factors as possible. Although high statistical power is always required when stating that a factor 

indeed has a statistically significant effect on the response, Santos et. al. noted that statistical 

power does not prove a coefficient for a factor is properly estimated by the model generated by 

DoE [19]. Therefore, it is more important to select a design to match the factor than to have a 

high power. When using a DSD, if additional statistical power is desired beyond the minimum 

number of runs additional dummy factors can be added and then extra columns removed. 

Blocking is a DoE technique used to control for variability from known and controllable factors 

[1]. Batches of raw material that may control some variation is an example of a controllable 

factor. Blocking is not necessary with a computer code model that is not stochastic and is 

therefore expected to provide reproducible consistent results. 

Results can be used to explore intermediate values that were not used in the factor parameters. 

Experimental plans must be modified if a previously unknown but highly influential factor is 

discovered, the chosen range for one or more factors is infeasible, or factors cannot be varied 

independently. A screening experiment may not be able to lead directly to the desired state of 

knowledge. In these situations, the sequential experimentation strategy is sometimes 

abandoned in favor of a single design or set of experiments. The case study in section 5 provides 

an example of this situation.  



5 CASE STUDY: ARCON96 

ARCON96 is a computer code used to calculate atmospheric relative concentrations (X/Q)4 in 

building wakes [20]. The primary use of ARCON96 is in support of control room habitability 

calculations for nuclear power plants. The code is designed to input site parameters along with a 

year of continuous weather data for that same site. ARCON96 uses the weather data to calculate 

probabilistic X/Q atmospheric concentration values for that site and situation. A complex 

evidence-based model is behind that calculation. Documentation is available on the basic 

operation and inputs without underlying model flow diagrams, data, or a full set of equations 

making this a gray box code.  

The case study analysis plan and code characteristics exemplify many of the challenges 

discussed in this paper. ARCON96 is a legacy code with operational capabilities that were 

limited by design. The internal operation of the code and model is known to some extent, which 

makes this a gray box code (Section 2.1). The documentation indicates that the model does 

statistical analysis of input factors based on physical experiment data. Quantification of the 

uncertainty and variance between the physical data and the model is not provided (Section 2.2). 

The code operation is limited in function and ability to interface with other codes (Section 2.3). 

Code alteration is not possible due to the code not being available (Section 2.4). Further, the 

code is validated and widely used for nuclear facility regulation and licensing. Alteration of the 

code would require re-validation. A constrained design region may exist (Section 2.5). Finally, a 

new use case for ARCON96 is presented to address the changing needs of nuclear facility 

licensing without need to alter the code or develop a new computer code (Section 2.6). Following 

the analysis method selection framework (Figure 2) an experiment design was selected for this 

case study, specifically a DSD design.  

5.1 ALTERNATIVE USE CASE 
The purpose of this case study is to use the already validated and unmodified code for an 

alternative use case: calculating X/Q values for many locations relative to the dispersion source. 

The X/Q values are a necessary component for defining the Low Population Zone and Exclusion 

Area Boundary for nuclear power plant siting. Typically, this process is completed with a 

different computer code called PAVAN. However, limitations in PAVAN do not allow for 

calculation near building wakes or near-field (very close) to the dispersion source. The 

ARCON96 code is designed to operate with these constraints, but not to consider a range of 

distances between the source and receptor. Therefore, an experiment must be designed to 

interrogate the ARCON96 model in a way that provides the needed response for this alternative 

use case. Analysis of the full design region and internal operation of ARCON96 is beyond the 

analysis plan for the presented use case and left for future work. 

The model contained in ARCON96 is designed to use empirical and representative weather data 

to calculate probabilistic X/Q values for a point-to-point dispersion (e.g. source to control room 

 
4 The X/Q is defined to be the relative atmospheric concentration at a receptor location per unit release 
rate of the material at a release location upwind of the receptor. For material given in terms of Ci, for 
example, the X/Q has units of Ci/m3 per Ci/s. This is normally condensed to s/m3 with the units 
associated with the material (Ci, g, mg, etc.) canceling and, therefore, being completely arbitrary. 



intake). The model inside ARCON96 can be leveraged to compute X/Q values for a range of 

distances, weather patterns, and other site characteristics. 

5.2 OPERATION  
ARCON96 is designed for single run operation. Input factors are considered fixed, rather than 

random effects. Stochastic inputs are not used and outputs are deterministic and repeatable 

based on the inputs. ARCON96 was developed in 1996 and does not reflect contemporary 

software engineering. A user interface exists but is not operable with a modern 64-bit operating 

system, therefore operation is performed through the command line. Input consists of complex 

text files with very specific format, and therefore error prone and labor intensive. Direct text file 

manipulation for inputs and output makes it easy to overlook a small detail and overwrite prior 

runs. This is not a large concern for the normal use case of one run, but risk of error and effort is 

much higher is a large number of runs are needed. Experience from this case study suggests an 

experienced operator could create approximately one input file every 5-7 minutes. Once set up, 

ARCON96 completes an iteration of the code in less than a minute. An additional 3 minutes is 

needed to manually copy results from the output files and place them into an appropriate 

analysis tool, for a total of approximately 9-11 minutes per run.  

Attempting to create a reduced form model (i.e. replacing the code with a representative model) 

that approximates ARCON96 would be a major undertaking. The ARCON96 code is managed 

under strict regulatory guidelines and not available for augmentation. The potential is further 

limited by the lack of access to the full experimental data sets used to build the original model. 

In this circumstance the largest barrier to augmenting or replacing the existing model is 

regulatory acceptability. ARCON96 is a validated code that has been accepted for regulatory use. 

Using the code in an unaltered state allows the operator to avoid the significant delay and, 

depending on the situation, significant cost for validation of a new model. DoE methods enable 

the use of ARCON96 in an unaltered state while significantly reducing the number of runs and 

therefore time and cost needed. 

5.3 EXPERIMENT DESIGN 
This case study utilizes DSD to interrogate the ARCON96 code. Factor parameters are defined to 

match the previously described use case and described in detail in the SI [21]. Simplifying 

assumptions are used in some cases to give bounding values, such as defining the weather files 

so that the wind always blows at the receptor. A constrained design region has been avoided 

through an understanding of use case and proper and feasible parameter selection.  

Normal operation of ARCON96 uses weather data (stability class, wind speed, wind direction) 

for a specific site. This data includes natural variation that inhibits the ability of the experiment 

design to find the impact on system response from these factors. If significant factor interactions 

are present the weather variation may skew their estimated effects as well. To avoid that conflict, 

these factors are controlled as inputs. Although a full year of a single stability class, wind speed, 

and wind direction aimed directly at a receptor is unrealistic, it allows for control of the model to 

the extent needed for the experimental design. The response is expected to result in conservative 

values (higher) for all runs.  

  



Table 2: Experiment design and results for ARCON96 model interrogation study 

  Factor Response (s/m3) 

 
 

A B C D E F G H 
Χ/Q  

0-2 hours 
Χ/Q  

2-8 hours 
Χ/Q  

8-24 hours 

R
u

n
 

1 0 - + + - + + + 8.28E-05 8.28E-05 5.28E-05 

2 0 + - - + - - - 5.22E-03 5.22E-03 3.33E-03 

3 - 0 - + + + + - 2.50E-05 2.50E-05 1.60E-05 

4 + 0 + - - - - + 1.09E-02 1.09E-02 5.87E-03 

5 - - 0 + + - - + 4.35E-05 4.35E-05 2.77E-05 

6 + + 0 - - + + - 7.55E-03 7.55E-03 4.06E-03 

7 + - + 0 + + - - 3.96E-04 3.96E-04 2.13E-04 

8 - + - 0 - - + + 6.89E-05 6.89E-05 4.39E-05 

9 - - + - 0 - + - 7.55E-03 7.55E-03 4.82E-03 

10 + + - + 0 + - + 5.73E-05 5.73E-05 3.65E-05 

11 + - - - + 0 + + 9.96E-03 9.96E-03 5.35E-03 

12 - + + + - 0 - - 1.20E-05 1.20E-05 7.64E-06 

13 - + + - + + 0 + 1.31E-03 1.31E-03 8.37E-04 

14 + - - + - - 0 - 9.96E-05 9.96E-05 6.35E-05 

15 + + + + + - + 0 4.77E-05 4.77E-05 3.04E-05 

16 - - - - - + - 0 5.73E-03 5.73E-03 3.08E-03 

17 0 0 0 0 0 0 0 0 4.77E-04 4.77E-04 3.04E-04 

 

DSD use three levels, usually low, middle, and high values, to provide estimates of main effects 

as well as two-factor interactions and quadratic effects while remaining unbiased by second-

order effects. Only one more than twice as many runs as there are factors (2m+1) are required 

and confounding of any pair of second-order effects is avoided. Designs having six factors or 

more allow for estimation of the full quadratic model in any three factors. The resulting design 

includes 8 factors with 3 levels each. A full factorial design with three levels would require 

38=6,561 runs. If more than three levels are needed per factor the number of runs needed 

increases rapidly. The DSD described in Table 2 reduces the number of needed runs to 17.  

Extrapolating the estimated time to complete a run in the prior section, a full factorial design 

would take 985-1200 hours and DSD would take roughly 2.5 hours. This assumes an 

experienced operator and no errors. When a large number of runs are required (e.g. full 

factorial) simulation may be used to automate the process and reduce labor time. The structure 

of input and output text files is compatible with some simulation tools. However, the relatively 

low time needed for the DSD indicates setup of a simulation tool for this use is not resource 

efficient; it would take longer to set up the simulation than would be saved by eliminating the 

operator. 

Blocking techniques are possible with a DSD but are not needed for this experiment. The 

ARCON96 model provides deterministic and repeatable results without the kind of variation 

where a blocking technique would be required.  



5.4 RESULTS 
System response is provided for three separate time intervals shown in Table 2. Values for 0-2 

hours and 2-8 hours are the identical. This indicates that the experimental system response is 

invariable for these time periods across a wide range of factors. It should not be assumed 

however that the model itself is invariable without an explicit understanding of the model (i.e. 

clear or open box). The response may be very different if one of the factors that was fixed for this 

use case is altered.  

A forward stepwise regression approach is recommended for analysis of DSD experiment 

responses [14]. Results of the stepwise regression for the 8-24 hour time period were calculated 

using the R programming language and the Design and Analysis of Experiments with R (daewr) 

package [22], and are shown in Table 3.  

Table 3: Stepwise regression results for experimental model for 8-24 hour time period based on runs 1-17 

Factor Estimate Std. Error t value Pr (>|t|) 

(Intercept) 3.18E-04 5.31E-05 5.988 3.91E-03 

A 4.85E-04 1.66E-05 29.26 8.12E-06 

E -2.41E-04 1.66E-05 -14.536 1.30E-04 

A:E 1.67E-04 2.70E-05 6.175 3.49E-03 

B -3.76E-04 1.66E-05 -22.67 2.24E-05 

G 1.29E-04 1.66E-05 7.791 1.46E-03 

B:G -1.37E-04 2.12E-05 -6.488 2.91E-03 

D -1.94E-03 1.66E-05 -116.815 3.22E-08 

D:G -3.97E-04 2.08E-05 -19.105 4.42E-05 

B2 -1.56E-03 5.35E-05 -29.143 8.25E-06 

G2 1.33E-03 4.71E-05 28.259 9.33E-06 

D2 1.85E-03 5.85E-05 31.638 5.95E-06 

F -4.21E-04 1.66E-05 -25.378 1.43E-05  

Residual standard error: 6.203e-05 on 4 degrees of freedom 

Multiple R-squared:  0.9998 Adjusted R-squared:  0.9992 

F-statistic:  1681 on 12 and 4 DF  p-value: 8.249e-07 

 

Suppose a simple OFAT sensitivity analysis was used to evaluate the model in a normal 

operation manner. The results would have suggested the Χ/Q could be minimized by increasing 

receptor height (factor E). However, this method would not have discovered the positive 

interaction effects with stability class (factor A).  

Similarly, distance to the receptor (factor D) is an order of magnitude larger in absolute terms, 

exhibits a second-order response, and interacts with several other factors. The alternative use 

case presented here is to determine the Χ/Q values for a range of distances. ARCON96 is 

designed to evaluate Χ/Q values for a single factor configuration. The finding of factor 

interaction and non-linear higher order effects is important to the alternative use case. This 

example results clearly illustrates how a simple OFAT approach would not have provided 

sufficient insight into the model response cause by interaction of factors and higher-order 

effects. 



5.5 ADDITIONAL RUNS TO ADDRESS CHALLENGES 
Additional runs can be used to further explore the model response. Stability classes represent 

binned ranges of temperature differentials and are identified A through G. The alpha input is 

not continuous, although the underlying values built into the model is numeric. Therefore, the 

regression is valid but not useful for modeling, as a categorical value cannot be used to calculate 

a result from a regression model. A surrogate value (e.g. 1-7) also cannot be used because it may 

not match the underlying values in the opaque box model. Therefore, the best that can be 

achieved is to verify the results using additional runs (run 18 & 19) as shown in Table 4. The 

additional responses values confirm the results in Table 3, indicating that stability class G (i.e. 

extremely stable) atmospheric conditions result in higher concentrations at the receptor. That 

result is in line with intuition. If the air is stable it is less likely that particles will be scattered 

and more likely that they will flow directly forward to the receptor. Now that the result is 

verified it can be used at least to bound the max and min combinations, which satisfies the 

needs of this use case.  

Table 4: Additional runs 18 & 19 to check direction and magnitude of response due to stability class (factor A). Runs 
20 & 21 used as upper and lower bounds.  

  Factor Response (s/m3) 

 
 

A B C D E F G H 
Χ/Q  

0-2 hours 
Χ/Q  

2-8 hours 
Χ/Q  

8-24 hours 

R
u

n
s
 18 - 0 0 0 0 0 0 0 1.58E-04 1.58E-04 1.01E-04 

19 + 0 0 0 0 0 0 0 8.28E-04 8.28E-04 5.28E-04 

20 + - - - - - + - 1.20E-02 1.20E-02 7.64E-03 

21 - + + + + + - + 1.20E-05 1.20E-05 6.44E-06 

 

Upper and lower estimate scenarios (run 20 & 21) were based on the sign of each factor in Table 

3. The runs result in higher and lower responses as expected. It is important to note that the 

responses were very similar to runs 4 & 12 respectively which have very different scenario 

design. This finding adds further support to the complexity of the system that has already been 

shown through the stepwise regression analysis. 

At this point there is sufficient understanding of the model for operators that have weather data 

for a specific site or only need very conservative results. If a regression model is needed as a tool 

to estimate the response, then multiple experiments are needed. 

5.6 ESTIMATION EXPERIMENT SETS 
Completing additional experiments is dependent on operator needs and outside the scope of this 

paper. Instead of providing the direct results a roadmap is presented for future use.  

If site weather is available only one additional experiment is needed. If real data is not available, 

it may be possible to create representative data files based on nearby weather stations or 

regional averages. The weather file removes two factors from input. The resulting 6 factor DSD 

design (Table 6) will provide a predictive model using 13 runs. Knowledge of the site surface 

roughness and building area can further limit the number of factors to 4, requiring only 9 runs.  

 



 

If the weather data approach is not possible then a different approach is needed to avoid the 

obstacle presented by the stability class factor. In the case where only conservative results are 

needed then stability class can be fixed as ‘G’ in all input files and a 7 factor DSD (Table 5) can 

be used.  

Multiple experiments can be used to create models for each stability class if needed, at a cost of 

15 runs per stability class. Time to complete multiple experiments may be reduced in the case of 

ARCON96 because the text input files could be copied and reused with only the stability class 

and output file name requiring alteration. Once these models are created and runs completed, 

they will not need to be re-run unless factor levels fall outside of the range used in the DSD. 

5.7 DISCUSSION 
Using the ARCON96 model for an alternative use case is possible but requires careful planning. 

The DSD approach provides reliable results using a significantly reduced number of runs. 

Additional runs can be used either for confirmation or deeper understanding of the model.  

The DSD analysis provides insight into the complex inner working of the ARCON96 model that 

are not provided in the documentation and are not apparent during model use. When ARCON96 

is used for the originally designed use case the majority of factors are fixed in value and 

therefore limit concern that results that are not representative of the true response. The major 

exception is weather data (e.g. stability class, wind speed, wind direction) which vary throughout 

the year. This data is usually provided directly to the model which removes these factors as user 

inputs altogether.  

Techniques can be used to address categorical factors with continuous response as is the case 

with stability class. However, the presented technique limits the use of the stepwise regression 

Table 5: DSD Design for 7 factors. 

  Factor 

 
 

A B C D E F G 

R
u

n
 

1 0 + - + - + - 

2 0 - + - + - + 

3 - 0 + - + + - 

4 + 0 - + - - + 

5 + - 0 + + + + 

6 - + 0 - - - - 

7 + - - 0 + - - 

8 - + + 0 - + + 

9 - - + + 0 - - 

10 + + - - 0 + + 

11 - + - + + 0 + 

12 + - + - - 0 - 

13 + + + + + - 0 

14 - - - - - + 0 

15 0 0 0 0 0 0 0 
 

Table 6: DSD design for 6 factors 

  Factor 

 
 

A B C D E F 

R
u

n
 

1 0 + - - - - 

2 0 - + + + + 

3 + 0 - + + - 

4 - 0 + - - + 

5 - - 0 + - - 

6 + + 0 - + + 

7 - + + 0 + - 

8 + - - 0 - + 

9 + - + - 0 - 

10 - + - + 0 + 

11 + + + + - 0 

12 - - - - + 0 

13 0 0 0 0 0 0 

 



results. Now that the ARCON96 is better understood, the stability class factor can either be fixed 

to represent a conservative scenario or replaced with real weather data relevant to the site. 

Obviously, the former can provide a stepwise regression model that can be used for prediction 

and the later provides a more realistic response for a single location. 

6 CONCLUSIONS 

Interrogation of computer codes is a complex process and multiple methods exist. Defaulting to 

normal operation or one factor at a time analysis can provide insufficient understanding of the 

model. Selections of a method is based on operational characteristics, resources, time, and the 

required outcome. A decision framework was developed to guide analysis method selection 

based on code characteristics and challenges which may be present. 

Application of experiment designs to computer code interrogation provides several benefits. 

DoE can be used to effectively replace normal operation and provide enhanced results. More 

complete understanding of the model response can be achieved with a systematic design. 

Typically, experimental designs are used to limit the number of experiment runs required to 

interrogate a model and estimate main effects, factor interaction, and higher order effects. This 

approach is useful for legacy or complex codes, particularly ones that are not upgradeable for a 

variety of reasons. In some situations, the code can be extended to new use cases without 

changing the code. This is also important for validated codes that cannot be altered.  

A novel application of experimental design to interrogate an existing model or computer code 

was presented in the form of a case study using the code ARCON96. This code was designed 

more than 20 years ago. When the experiment design is carefully designed it enables use of an 

existing code for alternative use cases. While operation of the code has several limitations, the 

underlying complex model is still valuable. Many of these limitations were addressed and 

overcome successfully through experimental design techniques, while maintaining the integrity 

of code validation.  
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