
  Preprint 

* Corresponding author: thijs.defraeye@empa.ch (T.Defraeye) Empa, Swiss 
Federal Laboratories for Materials Science and Technology, Laboratory for 
Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. 
Gallen, Switzerland  

 

Digital twins are coming: Will we need them in supply chains of fresh 
horticultural produce? 

Thijs Defraeye 1,*, Chandrima Shrivastava 1,2, Tarl Berry 3, Pieter Verboven 4, Daniel Onwude 1, Seraina Schudel1,5, 
Andreas Bühlmann 5, Paul Cronje 3, René M. Rossi 1 

1 Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 
Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland 

2 University of Bern, Graduate School for Cellular and Biomedical Sciences, Mittelstrasse 43, 3012 Bern, Switzerland 

3 Citrus Research International, Department of Horticultural Sciences, Stellenbosch University, Stellenbosch 7602, South Africa 

4 MeBioS – Postharvest Group, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Heverlee, Belgium 

5 Agroscope, Plants and Plant Product Division, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland 

 

Background. Digital twins have advanced fast in various industries, but are just emerging in postharvest 
supply chains. A digital twin is a virtual representation of fresh horticultural produce. This twin is linked to 
the real-world product by sensors supplying data of the environmental conditions near the target fruit or 
vegetable. Statistical and data-driven twins quantify how fresh-produce quality loss occurs by grasping 
patterns in the data. Physics-based twins provide an augmented insight into the underlying physical, 
biochemical, microbiological and physiological processes, enabling to explain also why this quality loss 
occurs. 
Scope and Approach. We identify what the key advantages are of digital twins and how the fresh-produce 
supply chain can benefit from them in the future.  
Key Findings and Conclusions. A digital twin has a huge potential to help horticultural produce to tell its 
history as it drifts along throughout its postharvest life. The reason is that each shipment is subject to a 
unique and unpredictable set of temperature and gas atmosphere conditions from farm to consumer. 
Digital twins help to identify the resulting, largely uncharted, postharvest evolution of food quality. The 
benefit of digital twins particularly comes forward for perishable species and at low airflow rates. Digital 
twins provide actionable data for exporters, retailers, and consumers, such as the remaining shelf life for 
each shipment, on which logistics decisions and marketing strategies can be based. The twins also help 
diagnose and predict potential problems in supply chains that will reduce food quality and induce food loss. 
Twins can even suggest preventive shipment-tailored measures to reduce retail and household food losses.  

 
1. Introduction 

The fresh-produce supply chain plays a crucial role in supplying 
horticultural crops with acceptable quality and remaining shelf life to the 
consumer. The losses and waste of fresh fruits and vegetables from farm 
to consumer are still considerable and can amount to several tens of 
percent (Gustavsson, Cederberg, Sonesson, van Otterdijk, & Meybeck, 
2011). Reducing the loss of fresh horticultural produce is essential to 
mitigate food insecurity (FAO, IFAD, UNICEF, WFP, & WHO, 2018) 
and to reduce greenhouse-gas emissions in both high- and low-income 
countries (Hawken, 2017; Poore & Nemecek, 2018). Reducing food 
waste has been estimated to save about 90 Gigatons of CO2 equivalents 
between 2020-2050 (Hawken, 2017). To reduce such losses for fresh 
horticultural produce, we need to better preserve the quality of fresh 
produce after harvest to prevent quality changes due to physical (e.g., 
moisture loss), biochemical (e.g., browning reactions, vitamin 
degradation), physiological (e.g., ripening, senescence, respiration) and 
microbiological processes (e.g., growth of micro-organisms). When 
successful, we have more high-quality fresh produce available and less 
losses, leading to less food insecurity and a lower climate impact.  

The most commonly applied strategy to maintain the quality of fresh 
fruits and vegetables is to reduce the produce's temperature after harvest 
by refrigeration during storage and transport. The shelf life is typically 
extended with a factor of two to three per 10 ºC below ambient 
(Robertson, 2016; Thompson, 2004). The reason is the drastic reduction 
in the rate of postharvest degradation processes. A further solution is to 
alter the gas composition of the atmosphere surrounding the produce, in 
order to slow down the produce’s metabolism. This includes reducing the 
oxygen concentration and increasing the carbon dioxide concentration to 
the optimal level for long-term storage, scrubbing away ethylene, and 
establishing an optimal relative humidity, which is mostly close to 100% 
(Mahajan, Caleb, Singh, Watkins, & Geyer, 2014). Corresponding 
technologies include modified atmosphere packaging and controlled 
atmosphere storage, or even dynamic controlled atmosphere storage 
(Bessemans, Verboven, Verlinden, & Nicolaï, 2016; Joshi, Tiwari, 
Cullen, & Frias, 2019; Zhao et al., 2019). Another strategy is to coat the 
fruit to tailor the gaseous exchange, i.e., of O2, CO2, C2H4, and H20 
(Dhall, 2013). 



 
Keeping fresh produce cool and maintaining the right atmospheric 

conditions remain challenging tasks, especially for transcontinental 
transport. A key reason is that fresh produce passes through many cold-
chain facilities, where it is subjected to different unit operations, 
including de-greening, hot water treatment, waxing, fungicide 
application, sorting, packing, re-packing, precooling, refrigerated 
transport, cold storage, ripening treatment and storage at the retailer 
under ambient conditions in the stores. During transport, the fruit often 
moves through different climates with the cargo exposed to highly 
varying weather conditions along the route. Furthermore, various 
stakeholders and service providers are involved in these complex supply 
chains, which consecutively transfer the shipment and the associated 
responsibility from one to the next. As a result, each shipment is subjected 
to highly unpredictable environmental, logistical, but also socio-
economic boundary conditions. Examples include temperature 
excursions outside the targeted range, lack of proper refrigeration 
facilities, travel delays, human errors in thermal management or logistics, 
power outages, strikes, or extreme weather conditions. This situation 
leads to a unique temperature history and gas atmosphere for every single 
shipment from the farm to the consumer. As no two shipments are the 
same, the quality of the fresh produce received by the retailer, and the 
remaining shelf life for the consumer, is often highly variable. As a result 
of this variability, the risk of food loss and waste is still relatively high and 
unpredictable. 

The most common strategy to safeguard, troubleshoot, and 
eventually optimize postharvest supply chains to reduce food losses is to 
intensify in-transit monitoring of the environmental conditions to which 
the cargo is exposed. A reduced cost of sensors, wireless connectivity, and 
Internet of Things (IoT) are driving the increased monitoring in fresh-
produce supply chains (Pang, Chen, Han, & Zheng, 2015; Wang, Zhang, 
Gao, & Adhikari, 2018; Xiao, Fu, Zhang, Cheng, & Yang, 2019). The 
result is that large amounts of data are gathered in real time, which opens 
up new analysis approaches, for example by artificial intelligence and big 
data analytics (Coble, Mishra, Ferrell, & Griffin, 2018; Jagtap, Bhatt, 
Thik, & Rahimifard, 2019; Tiwari, Wee, & Daryanto, 2018; Wolfert, Ge, 
Verdouw, & Bogaardt, 2017; Zhou, Zhang, Liu, Qiu, & He, 2019). New 
steps are taken to use these sensor data to develop so-called digital twins 
of their products in various industries, including in aerospace, the 
automotive industry, building technology, healthcare, and recently also 
in postharvest technology. 

In postharvest engineering, such a digital twin could be defined as a 
virtual representation of real horticultural produce. This digital shadow 

contains all essential elements to capture the relevant kinetics of the heat 
and mass transfer processes inside and around the produce and the 
associated food quality degradation processes. The twin is linked to the 
real horticultural produce in the postharvest supply chain by relying on 
sensor data of the measured environmental conditions in its direct 
proximity as an input, for example, the air temperature in the vicinity of 
the fruit. As such, this digital replica evolves and reacts hygrothermally 
and metabolically in a similar way as its physical counterpart – a real fruit 
or vegetable – but now in-silico and preferably in real time.  

Gartner predicted that by 2021, 50% of the large industrial 
companies would rely on digital twins, leading to an expected 10% gain 
in effectiveness (Gartner, 2019a, 2019b). However, the digital twin 
concept is still novel, and its full potential has not been exploited so far. 
In postharvest technology, digital twins are quasi nonexistent. It seems 
that in this field, not the same progress has been made in terms of the use 
of digital twins, compared to manufacturing or healthcare, for example. 
The knowledge of what fruit is exposed to during its postharvest life 
would help, for example, to optimize refrigeration processes on-the-go by 
applying optimal environmental conditions during shipments or by 
improving logistical decisions. This study discusses the advantages and 
potential of such digital twins for fresh-produce supply chains. We hint at 
the extent to which they could play a role in the digitalization of future 
postharvest supply chains.  

2. Digital Twins 

Definitions 
A digital twin of a certain product is defined as a virtual 

representation of its real-world counterpart, which (1) contains all 
essential elements, such as all geometrical components and material 
properties; (2) simulates accurately and realistically all relevant processes 
and their kinetics throughout the product’s life-cycle; and (3) is 
connected to the real-world product and processes by sensor data, which 
is preferably continuously updated in real-time. Other names are a digital 
shadow, digital mirror, virtual avatar, synchronized virtual prototype, or 
virtual phantom. In the horticultural supply chain, a digital twin of 
horticultural produce ideally would capture the shape, size, and structural 
components of the produce (e.g., skin, seed, pulp). It has been referred 
to as virtual fruit before the digital era. It also mimics, in-silico, the 
produce’s physical, biochemical, microbiological and physiological states 
as well as evolution throughout the cold chain, based on measured data 
of the environmental conditions (e.g., air temperature, relative humidity, 

Figure 1. Relevant processes occurring inside and around a fruit that need to be included in a mechanistic model to capture and 
predict food quality evolution, and list of relevant food quality attributes (part of figure of orange fruit: dreamstime.com). 



 
metabolic gas concentration). The typical processes that could be 
captured are illustrated in Figure 1. A representation of a digital-twin 
framework for fresh-produce cold chains is given in Figure 2. This twin 
is, for example, a single horticultural product, which is placed inside a 
pallet of fruit, where a sensor measures air temperature in the vicinity of 
the fruit. As such, every pallet could have its digital-twin fruit placed 
inside to record the thermal state of the fruit. These twins can then pick 
up the well-known variability in fruit cooling between different pallets, 
for example, between the back and the front of a refrigerated container 
(T. Defraeye et al., 2016). A digital twin for an entire pallet could also be 
made (Figure 2), which would be more computationally demanding. 
Here a sensor, or more sensors, could measure the air temperature at the 
airflow inlet in the pallet, for example. Due to the complexity and 
multitude of the processes at play in and around the fruit (Figure 1), 
environmental parameters other than the air temperature should be fed 
into the digital twin for increased accuracy, or to quantify certain quality 
attributes. 

To function, a digital twin requires three elements (highlighted in the 
bold red lines in Figure 2). 
- A digital master model of the object that contains the blueprint of 

the physical asset, its properties, and the processes involved. In our 
case, the physical asset is a horticultural product, such as a single 
fruit, or an ensemble of products, such as a pallet of fruit. 

- Sensors that monitor environmental parameters in real supply 
chains, for example, air temperature or relative humidity, but also 
oxygen concentrations or the ripening gas ethylene. 

- A connection of the digital master model to the physical asset by use 
of the sensor data. This link is a cornerstone for the digital twin and 
distinguishes it from standard computational models which are run 
separately from the real-world process. This connection is 

preferably done in real-time during operation, but can also be done 
offline, i.e., sequentially. 

The link of the digital master to the real world, via sensing, enables 
the digital twin to evolve and drift with its real-world counterpart during 
its postharvest life from palletization to the arrival at the retailer. This 
evolution is different for every individual “virtual” product. Thereby, the 
digital twin accounts for the unique boundary conditions that each 
product is exposed to. Thus, it responds realistically to real-life changes. 
For this reason, digital twins are especially valuable when each product 
has an unpredictable and unique life cycle. In that case, digital twins help 
physical assets, such as fruits, to tell their history. Apart from identifying 
present-day problems and recording this (hi)story by storing data, digital 
twins can also be used to predict the future evolution of a particular 
shipment. 

Classification in types 
The underlying master model of the digital twin can be of different 

types (Figure 3). The first type is a statistical model. A typical example in 
postharvest technology is an analytical model that uses measured air or 
fruit pulp temperature at a specific location to calculate food quality loss 
via a kinetic rate law, which was calibrated empirically with experimental 
data by a statistical model (Robertson, 2016; Schouten et al., 2018; Van 
Boekel, 2008; Wentao Wu & Defraeye, 2018). For such models, only an 
ordinary differential equation (ODE) or even a simpler analytical 
equation needs to be solved.  

A second type is a data-driven model. Here, artificial intelligence 
techniques, such as machine learning, are used for model development, 
calibration, verification, and validation. Machine learning models can be 
trained through (un-)supervised learning, among others. The training 
data would include, for example, the fresh-produce storage conditions 
and the resulting measured biological response of the fresh produce over 
time (Kuhn & Johnson, 2013; Liakos, Busato, Moshou, Pearson, & 

Figure 2. The framework of a physics-based (mechanistic) digital twin in a fresh-produce transport chain (image of orange fruit: 
dreamstime.com, other parts adapted from (T. Defraeye et al., 2019; W. Wu, Beretta, Cronje, Hellweg, & Defraeye, 2019)). 



 
Bochtis, 2018). One application uses such sensor data for the fresh 
produce cold chain to forecast the effects of the microclimate on the fruit 
quality evolution using a backpropagation neural network (J. Liu et al., 
2019). Another example is the use of data-driven models to reduce 
quality loss and to optimize transport logistics and maintenance (K. N. 
Kokkinos, Exadactylos, Vafidis, & Hatziioannou, 2018; K. Kokkinos & 
Samaras, 2018; Lu & Wang, 2016). Note that the predictive accuracy of 
machine learning strongly depends on the quality and quantity of the 
respective training data and the choice of specific features (Camacho, 
Collins, Powers, Costello, & Collins, 2018). Self-learning deep learning 
techniques with data augmentation may partially resolve some of these 
related issues (Zhou et al., 2019).  

A third type is physics-based models, which are also called 
mechanistic models. Here, multiphysics modeling and simulation are 
performed to capture all relevant physical, biochemical, microbiological, 
and physiological processes, for example, those illustrated in Figure 1. 
Such simulations rely on CAD geometries of the fruit, material property 
data, and initial and boundary conditions for the physical model. In 
addition, such simulations also require an appropriate mathematical 
formulation of the relevant underlying biological processes that affect 
fruit quality attributes, such as biochemical reactions involved in the 
respiration metabolism. Finite element or finite volume methods are 
typically used to solve the required partial differential equations. Such 
physics-based process parameters in the computational domain are 
calculated at a very high resolution in space and time.  

Theoretical model formulations are less suitable for digital twins 
(Figure 3), and therefore are not considered further. An example of such 
a model is an analytical calculation of the cooling of a spherical product. 
The reason is that such models are only derived for very simple, often 
constant, boundary conditions and geometries. 

Of these three types, however, only physics-based, mechanistic 
digital twins explicitly solve for the multitude of processes that actually 
drive food quality loss, to a certain degree of complexity. Even a highly-

sophisticated, data-driven digital twin that is trained by machine learning 
on a large dataset still remains empirically-driven to some extent, using a 
black box to relate input and output. Here, statistics on previously 
measured supply chains are used to train the model, and subsequently to 
predict how a future physical asset or shipment will (re)act (Gogou, 
Katsaros, Derens, Alvarez, & Taoukis, 2015; Sanaeifar, Bakhshipour, & 
de la Guardia, 2016). Deep learning models have a unique advantage over 
other approaches since they can capture and identify details in a product’s 
response that are either currently not well understood, are too complex 
to model with physics-based modeling, or are too computationally 
expensive to include in physics-based model approaches. Although such 
models can predict how the processes occur, by grasping the patterns in 
the data, they do not enable us to explain exactly why these processes 
happen. Data‐driven models are therefore challenged as every single 
shipment can evolve to being an outlier with its own intricacies. For that 
specific case, the algorithm might not be trained for, or it would require a 
huge amount of relevant datasets to train the model also for such outliers. 
The logic behind these models is thus effectively a “black box” and may 
require specialized diagnostic approaches to properly evaluate further, 
which are still in the process of being developed (S. Liu, Wang, Liu, & 
Zhu, 2017). This causality between process drivers and the reason why 
changes in fruit quality occur throughout the supply chain is inherently 
included in physics-based digital twins since the process drivers are 
modeled explicitly. This strategy implies that the impacts of several  
process drivers on the physical, biochemical, microbiological, and 
physiological quality changes, are known, which is not always the case. As 
every shipment can be a one‐of-a‐kind outlier, this physics‐based strategy 
is likely more suitable to provide an individualized solution for every 
shipment. Physics-based digital twins are the main focus of this work. 
Nevertheless, data-driven models can complement physics-based models 
as they could unveil the most relevant processes to be included in physics-
based models, by analysis of patterns in the large amounts of data. Data-
driven models could also pinpoint the key couplings between different 

Figure 3. Digital twins in a broad perspective of digitalization. 



 
physical, biochemical, microbiological and physiological processes for 
the specific postharvest supply chain that is under investigation, which 
are maybe not yet included in a physics-based model from the start. 

A physics-based digital twin uses a mimetic approach to mirror the 
behavior of the physical asset in the digital world as accurately as possible, 
based on measured sensor data. Such mimicking is achieved by 
accounting for the same geometry and material properties as the real food 
product and letting it obey the same laws of physics. Such a deterministic 
approach does not introduce statistical uncertainty or biological 
variability in the temperature history, for example. Due to this intrinsic 
variability, multiple fruits respond differently in lab experiments or field 
trials even when placed in similar environmental conditions. This 
variability complicates data analysis and interpretation. However, each 
virtual fruit can be created exactly the same as the others, by which these 
physics-based models can accurately quantify very small differences, for 
example, in cooling rates between different solutions. In addition to data 
that can be monitored experimentally on horticultural produce, physics-
based models also provide complementary information, such as surface 
heat or moisture fluxes, and volume-averaged fruit temperatures. These 
quantities are challenging to measure in commercial supply chains. 
Furthermore, virtual sensors can be defined, even in points that are 
experimentally difficult to reach. Such virtual sensor data is helpful for 
defining critical control points when using digital twins for Hazard 
Analysis and Critical Control Points (HACCP) (Shih & Wang, 2016; 
Zhang, Wang, Yan, Glamuzina, & Zhang, 2019).  

Use of digital twins in various technological fields 
Digital twins have emerged in different fields (Sanderse & Weippl, 

2018). These twins typically support the design of products and 
processes, their manufacturing process, and operation during their life 
cycle, including inspection, repair, and maintenance. Thereby, digital 
twins are used to providing insight into products and processes that are 
complementary to measured data. Peer-reviewed literature on digital 
twins is rather limited, which is why we also refer to recent projects or 
online sources below. 

In aerospace engineering and related fields, such as product 
manufacturing, digital twins are built for engines, pumps, and turbines, 
among others. As a precursor to the digital twin, in 1970 NASA already 
applied a mirroring concept with Apollo 13 to get the crew back safely. 
NASA now uses the digital twin concept for its manned and unmanned 
aircraft (Glaessgen, Branch, Stargel, & Sciences, 2012). Nowadays, 
digital twins of entire production plants are being developed (Seebo, 
2019; Uhlemann, Schock, Lehmann, Freiberger, & Steinhilper, 2017). 
These twins are constructed for each product on the production line, or 
for different components of a product, which are also connected 
afterward in the real and virtual world. In building technology, digital 
twins of buildings have been proposed, via Building Information 
Modeling (BIM), to create cognitive buildings (Siemens, 2018). In the 
automotive industry, digital twins of cars are used for timing the 
maintenance of parts (e.g., oil replacement, (Schleich, Anwer, Mathieu, 
& Wartzack, 2017)). Maintenance is triggered by the car’s history, 
instead of being based on mileage. As such, a high degree of 
individualization is incorporated in maintenance, optimizing resources.  

A largely unexplored potential of digital twins lies in healthcare 
(Newman, 2019). Every human or human organ, and therefore, every 
corresponding digital twin, is different and evolves differently throughout 
the patient’s lifetime. As such, this digital technology trend has 
tremendous potential. A digital twin is particularly powerful if patient-
specific anatomical features or physiology can be incorporated. An 
example is when a CAD geometry of a specific organ is obtained from X-
ray computed tomography or MRI for a specific patient (van Houten, 
2018), and is then used to build the digital model. As an alternative, 
generic anatomical models of certain organs can be used that have been 
obtained from a large population of patients. Since testing of medical 
treatments is often expensive and hazardous, with irreversible side 
effects, the use of digital twins is very appealing to evaluate “what if” 

scenarios. This digital alternative also enables in-silico trials to be run on 
a large population of virtual patients before the actual clinical trials. In 
addition, such digital twins could become a building block for 
personalized medicine, for example, by incorporating it in theranostics, 
where by means of diagnostic tests or sensing, digital twins can propose 
personalized therapy. 

Digital twins are used in healthcare, among others, in surgery, to train 
surgeons in a completely new way. To this end, interactive virtual 
simulations of the mechanical tissue feedback are enabled, namely the 
tissue response during incisions (e.g., (Dequidt et al., 2013; EU Cordis, 
2019)). Digital twins are also applied for aerosol pulmonary drug 
treatment and therapy (Feng, Chen, & Zhao, 2018; Feng, Zhao, et al., 
2018). For the treatment of aneurysms, digital twins aid neurosurgeons 
to better design, size, and insert the implant during this invasive 
treatment by an implant that is tailored to a specific patient (Sim&Cure, 
2019). Digital twins are also applied for a personalized analysis of MRI 
safety for patients with implants, hyperthermic oncology, or focused 
ultrasound for tumor ablation ((Sim4Life simulation platform, (ZMT, 
2019)), where sensor feedback is integrated. In many healthcare 
applications, digital twins are defined in a broader way since they do not 
all have a real-time connection to sensor data. Instead, their connection 
to the real world, or the real patient, comes from using patient-specific 
data, for example, organ morphologies from X-ray CT.  

Digital twins are expected to play a key role in personalized precision 
medicine, where these in-silico methods strongly complement in-vitro 
and in-vivo experimental work. In this context, the increased use of 
sequencing of the individual's genomes can lead to the development of 
customized pharmaceutical products based on the patient’s specific 
genetic condition (Heggie, 2019). A current hurdle is ensuring 
verification and validation of the mechanistic models to obtain 
acceptance by regulatory bodies, but some guidelines are already in place 
for physics-based modeling (FDA, 2016). Digital twins might also raise 
ethical issues, among others concerning data security of the patient or 
negative discrimination between patients with and without digital avatars 
(Bruynseels, Sio, & Hoven, 2018).  

Key enablers 
The concept of digital twins is not new and around for several 

decades. However, the strong growth of such twins in different industries 
is driven by recent key enablers: 
- The increased amount of measurement points, including spatial 

resolution, due to a reduced cost of the sensors and sensor 
miniaturization. 

- The speed with which large amounts of sensor data can be gathered 
remotely and transferred in real-time within a network, due to 
enhanced connectivity (e.g., IoT, cloud) and wireless data transfer 
capabilities (e.g., Bluetooth, LoRa, 5G). 

- Reduced costs for computing power, data communication 
hardware, and data storage, which are essential to operate the digital 
twins, due to cheap cloud services. 

- More open data has become available (e.g., (ESA, 2020; Godan, 
2020) and increased attention is being paid to developing data 
standards. 

- Recent developments have been made in simulation software and 
the required computer hardware. For physics-based twins, complex 
3D finite element models with thousands of degrees of freedom can 
now be run in real-time and embedded in easy-to-use executables. 
For data-driven twins, recent developments in machine learning 
techniques or artificial intelligence enable efficient processing and 
interpretation of the large quantities of data being gathered 
throughout fresh-produce supply chains (Bousqaoui, Achchab, & 
Tikito, 2018; Liakos et al., 2018). 

- New apps have emerged on smartphone and tablet platforms as low-
level, extremely user-friendly interfaces for end-users. 



 
3. Digital twins in fresh-produce supply chains 

Potential 
Digital twins have a unique potential in postharvest supply chains of 

horticultural produce for multiple reasons. First, each shipment is subject 
to a unique history of the temperature and gas atmosphere from farm to 
consumer due to highly unpredictable environmental, logistical, and 
socio-economic conditions. As such, there is no “one-size-fits-all” 
approach to maximize shelf life. As a result, future cold chains should 
ideally enable interventions to be performed “on-the-go”, depending on 
the quality evolution of the fresh produce in that specific shipment. With 
the current remote monitoring capabilities on refrigerated containers 
(CP, 2020; Maersk, 2020), for example, in-transit interventions of the 
delivery air temperature and ventilation settings will become possible in 
the near future. However, tailoring such interventions by the 
stakeholders to each shipment requires detailed, real-time information 
on the relevant environmental conditions within the cargo (H2O, CO2, 
O2, C2H4) and also the physical, biochemical, microbiological and 
physiological quality state of the cargo. Here digital twins can help to 
facilitate decision-making as they drift along with each particular 
shipment. In addition, they would be an ideal tool for diagnosing future 
problems and predicting how to control the cooling process and 
atmospheric conditions to prevent excessive quality loss throughout the 
supply chain.  

Second, sensors for real-time, wireless monitoring of environmental 
conditions and associated cloud-based software platforms for data access 
are already commercially available and used for fresh-produce supply 
chains (Table 1). Since this cornerstone for digital twins is already in 
place, the main developmental step lies in the model setup and 
establishing the link with the sensor data. 

Third, the timescales in the global fresh-produce cold chains are 
quite large. Fruits and vegetables often are transported from farm to fork 
over days or more often weeks. This is possible since the processes that 
drive produce quality loss are quite slow. These processes include 
cooling, moisture loss, temperature-dependent biochemical reactions, or 
ripening, among others. As such, this time frame gives the opportunity 
for complex mechanistic models to be run with finite-elements in real-
time on standard computational hardware.  

Fourth, the most critical locations for cooling and associated quality 
loss are situated in places that are difficult to access in commercial cold 
chains with standard point-probe sensors. A typical example is the center 
of a pallet of fruit or the core of a specific fruit, which often cools down 
the slowest. Also, respiratory hot spots often occur deep inside the cargo. 
Digital twins enable us to monitor fruit at these locations remotely, 
instead of inspecting its real-world counterpart in commercial cold 
chains. 

The current state of the art 
The current state of the art of physics-based digital twins in fresh-

produce supply chains is discussed. However, their essential 
components, namely sensors and physics-based models, are analyzed 
first. 

Sensors. An essential cornerstone of digital twins in fresh-produce 
supply chains is the monitoring of the air temperature and relative 
humidity since these data links the twin to the real-world processes. 
Other environmental parameters are also of interest, such as ethylene 
levels or oxygen and carbon dioxide concentrations, i.e. metabolic gasses 
(Wang et al., 2018). Such sensors are still often more expensive and larger 
that standard temperature or relative humidity sensors (Janssen et al., 
2014), which complicates their commercial use. Several types of 
(hygro)thermal sensors are commercially available, and often cheap and 
disposable. A selection is shown in Table 1. This field evolves to wireless 
sensors, as enabled by recent developments in wireless data 
communication (RFID, Bluetooth, LoRa) and electronics (EU-Catrene, 
2012; Kuswandi & Moradi, 2019; Laniel & Émond, 2010; Laniel, 
Émond, & Altunbas, 2011; Pang et al., 2015; Xiao et al., 2019; Zou, Chen, 

Uysal, & Zheng, 2014). These developments enable realistic monitoring 
in each pallet in a single shipment, or even in multiple cartons in a pallet. 
These sensor data can be already used to make in-transit decisions on 
cold-chain logistics (Chaudhuri, Dukovska-Popovska, Subramanian, 
Chan, & Bai, 2018; East, 2011; Gaukler, Ketzenberg, & Salin, 2017; 
Hertog, Uysal, Verlinden, & Nicolaï, 2014; Jedermann, Nicometo, Uysal, 
& Lang, 2014; Lütjen, Dittmer, & Veigt, 2013). 

However, most of these sensors measure the temperature of the air, 
and not the fruit pulp temperature, for example (Thijs Defraeye, Cronjé, 
Berry, et al., 2015; Jedermann et al., 2014). The fruit pulp temperature 
lags behind on instantaneous fluctuations in the supply air temperature, 
due to the thermal inertia of the fruit. Pulp temperature is a more reliable 
metric for the assessment of fruit quality evolution, thus shelf life. The 
reason is that it better reflects the current thermal state of the fruit and 
the stored heat that needs to be removed. Therefore, fruit pulp 
temperatures, and not air temperatures, are preferred for monitoring in 
commercial postharvest operations. A typical example is found in forced-
air precooling, where the pulp temperature is monitored to evaluate to 
what extent the field heat is removed from the fruit. Another example is 
refrigerated container transport, where pulp temperatures need to be 
used to verify compliance with cold phytosanitary protocols to ensure 
pest mortality (PPECB, 2016a, 2016b; Thompson, 2008; USDA-APHIS, 
2017).  

Since point probes need to be placed inside the fruit, these sensors 
are often installed in easily accessible places (e.g., at the pallet edge). 
Thereby, pulp measurements are typically not performed in the middle 
of a pallet or carton in a commercial setting, although these are actually 
the most critical locations for hot spots and high-quality loss due to 
reduced ventilation (Thijs Defraeye, Verboven, Opara, Nicolai, & 
Cronjé, 2015; W. Wu, Häller, Cronje, & Defraeye, 2018). An alternative 
solution to measure fruit pulp temperatures is a recently proposed 
artificial-fruit-sensing device (T. Defraeye, 2017; T. Defraeye et al., 
2017). This fruit simulator (Figure 4a) was engineered specifically to 
match the thermal response of real fruit as closely as possible by a 
biomimetic approach. Essentially, it can be considered a biophysical, 
“real-world” twin of a fruit. This novel sensor system provides a more 
standardized way of measuring fruit pulp temperatures in a commercial 
setting. The device can be packed directly with the fresh produce. This 
device is also user-friendly and enables monitoring of locations deep 
inside the pallet while following the cargo from farm to retailer. Similar 
sensor systems with the same advantages have been developed to 
monitor airspeed (Geyer et al., 2018) and fruit respiration (Keshri et al., 
2019) in such stacks of produce.  

A main drawback of the current sensor solutions is that they only 
provide point measurements. As a result, extreme temperature values at 
other locations in the fresh produce can be missed, and extrapolations 
need to be made to obtain the volume-averaged temperature of the entire 
fruit or the temperature at the fruit surface. Unfortunately, these are 
exactly the data needed to assess overall fruit quality evolution or thermal 
damage (chilling injury) or to quantify the amount of heat stored in the 
product, or ensemble of products. It is exactly here that the digital twin 
would provide information that is complementary to experimental data.  

Nevertheless, it remains important that the sensor data which is fed 
into the digital twin is representative of the cargo. This implies that the 
sensor is placed at an appropriate location inside the cargo. Often these 
locations are prescribed by governmental regulations or sensor 
placement guidelines. These locations are often easily accessible places 
(e.g., near the container door), rather than being representative for the 
worst location inside the cargo, for example deep inside the pallets. We 
need to keep in mind that if a digital twin takes its real-time input data 
from such sensors, it will thereby also not be representative for the most 
critical location inside the cargo. 

 



 

Table 1. Selected commercially-used sensors for cold-chain monitoring. 

 

Digital master models. Another cornerstone of the digital twin is the 
numerical model that captures the process dynamics and kinetics. This 
model is statistical, data-driven, or physics-based (section 2.2). 
Concerning physics-based modeling in postharvest food engineering, 
mainly computational fluid dynamics modeling has been applied, 
particularly for cooling processes (Ambaw et al., 2013; Laguerre, Hoang, 
& Flick, 2013; Norton, Tiwari, & Sun, 2013). The aims were, among 
others, to improve ventilated packaging design (Pathare, Opara, 
Vigneault, Delele, & Al-Said, 2012; W. Wu & Defraeye, 2018), to 
optimize cooling facilities and their operation (Ambaw et al., 2013), to 
evaluate new cooling protocols (Thijs Defraeye, Cronjé, Verboven, 
Opara, & Nicolai, 2015; Ma, Wang, Peng, & Song, 2018; W. Wu & 

Defraeye, 2018), or to identify trade-offs between the cooling process 
and environmental impact (W. Wu et al., 2019). In addition to point 
measurements, such as fruit pulp temperature, the advantage of physics-
based modeling is that it provides integrated quantities, for example, 
averaged fruit pulp temperature, but also extreme values (min-max) and 
thermal gradients within the produce (Figure 4b). Furthermore, the 
finite-volume or finite-element software enables us to visualize the results 
in a clear way. Typical examples are simulation graphics, which highlight 
the physical processes at play (Figure 4b) and identify critical locations 
in the cargo, such as hot spots. This visual information is instrumental in 
communicating these insights into all types of stakeholders in the cold 
chain. 

Sensor name Type Company Data storage & readout  Power supply, 

reusable device 

Measured quantity & Sensor technology 

iButton® Thermochron 
DS1922L 

Maxim 
Integrated 

8 192 data points -
Wired, serial 1-Wire® 
protocol 

Battery, reusable Temp. (-40 °C to +85 °C, ±0.5 °C) 

iButton® Hygrochron 
DS1923 

Maxim 
Integrated 

8 192 data points -
Wired, serial 1-Wire® 
protocol 

battery, reusable Temp. (-20 °C to +85 °C, ±0.5 °C) 
RH (0-100%) 

HiTag2® XSense® BT9 
International 

104 data points -Wireless 
RF 

battery, reusable Temp. (-12 °C to +50 °C, ±0.5 °C) ) 
Relative humidity (30-95%, ±5 °C) ) 

TempTale TT4 with 
external probe 

Sensitech 16 000 data points - 
Wired, USB reader  

battery, reusable Temp. (-30 °C to +70 °C, ±0.55 °C) ) 

TempTale Direct Sensitech 8 000 data points - 
Wired, USB reader  

battery, single-
use 

Temp. (-30 °C to +70 °C, ±0.5 °C) ) 

TempTale  TempTale® 
GEO Eagle  

Sensitec 8 000 data points - GSM 
data logger (cloud 
storage) 

battery, single-
use 

Temp. (-20 °C to +55 °C, ±0.5 °C) 
Digital light sensor 

Ecolog TN2, with 
NTC probe 

Elpro-Buchs 
AG 

64 000 data points -  
Wired, USB reader 

battery, reusable Temp. (-50 °C to +140 °C, ±0.2°C) of air 
and fruit pulp) 

FlashLink®  Model 20902, 
with external 
probe 

Deltatrak 3 823 data points -
Wired, USB reader 

battery, reusable Temp. (-40 °C to +85 °C, ±0.5°C) of air 
and fruit pulp) 

FlashLink® Model 40902, 
with external 
probe 

Deltatrak 40 000 data points -
Wireless, Bluetooth Low 
Energy 

battery, reusable Temp. (-20 °C to +60 °C, ±0.25°C) of air 
and fruit pulp) 

FlashLink® Model 40420-
40451 

Deltatrak 3 823 data points - 
Wired, USB reader 

battery, single-
use 

Temp. (-40 °C to +50 °C, ±0.5°C) ) 

MOST device MOST device Most Mobile 
and Sensory 
Technology 

1 440 data points - GSM 
data logger (cloud 
storage) 

battery, reusable Temp. (-20 °C to +55 °C, ±0.3°C) ) 
RH (0-100%, ±2% from 0 to 90%, ±3% 
from 90 to 100%)) 
Digital shock sensor (3-axis G-sensor) 
Digital light sensor 

tempmate® Tempmate.®GS imec 
Messtechnik 

15 600 data points - 
GSM data logger (cloud 
storage) 

battery, reusable Temp. (-30 °C to +70 °C, ±0.2°C) 
RH (0-100%, ±1%) - Capacitive RH 
sensor§ 

Digital shock sensor (3-axis G-sensor, 
±16G) 

Real Time 
Trackers 

GO Real-Time 
2G/3G 
Tracker 

Emerson 14 400 data points - 
GSM data logger (cloud 
storage) 

battery, single-
use 

Temp. (-20 °C to +70 °C, ±0.25°C) 

Real Time 
Trackers 
 

GO Real-Time 
Flex Tracker 

Emerson 2 000 data points - GSM 
data logger (cloud 
storage) 

battery, reusable Temp. (-20 °C to +70 °C, ±0.25°C) of air 
and fruit pulp) 
RH (0-100%, ±2%) - Capacitive RH 
sensor§ 

Digital light sensor 
Real Time 
Trackers 
 

GO Real-Time 
CO2 Tracker  
 

Emerson 2 000 data points - GSM 
data logger (cloud 
storage) 

battery, reusable Temp. (-20 °C to +70 °C, ±0.25°C) of air 
and fruit pulp) 
Carbon dioxide (0-60%) 



 
Concerning the potential use of statistical models by digital twins, a 

temperature-dependent kinetic rate law of a food quality attribute would 
typically be the first step (Robertson, 2016; Schouten et al., 2018). Such 
quality attributes could be, for example, changes in firmness, soluble 
solids content, or vitamin content. After calibration with experimental 
data, quality loss, and the impact of temperature can be solved with a 
simple ODE. As a next step, the fruit-specific data can be further detailed 
to the cultivar level, and other drivers for decay processes could be 
included, such as relative humidity or light.  

Concerning data-driven models, the training of machine learning 
models for use in digital twins first requires a dataset listing all features 
and labels relevant to fruit quality evolution, as the quality of the training 
data determines the quality of the overall model. Within the scope of 
machine learning, the features refer to the parameters influencing fruit 
quality such as temperature and/or gas concentration (J. Liu et al., 2019), 
whereas the labels refer to the resulting changes in quality over time (Li, 
Chu, Fu, Feng, & Mu, 2019; Liakos et al., 2018). Data would thus have 
to be generated ideally within laboratory conditions so that each 
respective parameter could be monitored continuously throughout the 
life span of the fruit. As another approach, complex and computationally 
expensive physics-based models could also be used to generate large 
datasets, which could then be used to train less computationally 
expensive machine learning models. Machine learning models could also 
make use of reinforcement training, whereby the model is continually 
trained and improved using data collected from the digital twin and 
potential quality reports generated after the fruit has arrived at the 
distributors or final destination (Shalev-Shwartz & Ben-David, 2014).  

Different model types can also be combined (Laguerre et al., 2013) 
into hybrid digital twins. A typical example is a physics-based model, 
where the temperature data is used in an empirically-calibrated, kinetic 
rate-law model to predict food quality evolution. Another example is a 
mechanistic model that calculates food cooling but accounts for 
biological variability in material properties or fruit geometry within the 
species (or cultivar) by using statistical models (Laguerre et al., 2013). 
Such hybrid models could range from an uncertainty propagation 
analysis to Monte Carlo simulation, which has been used in various 
domains (e.g. (Thijs Defraeye, Blocken, & Carmeliet, 2013; Gwanpua et 
al., 2015)). 

Digital twins. In order to have a true digital twin, the models above 
need to be linked with the real-world cold chain process via sensor data, 
either in real-time or in an offline manner, so a-posteriori. In postharvest 
technology, R&D on digital twins is almost nonexistent, to the 

knowledge of the authors. A first step has recently been taken and applied 
for the mango cold chain (T. Defraeye et al., 2019). Here, a mechanistic, 
finite element model for cooling of mango fruit was developed and 
validated. This model also included the evolution of the temperature-
dependent quality attributes, such as firmness, soluble solids content, and 
vitamin content. By linking this mechanistic model to air temperature 
sensor data that were measured during actual mango cold chains, the 
digital twin was created of a virtual fruit in the vicinity of that temperature 
sensor. This link was not yet made in real-time, but offline, so a-
posteriori. With the digital twins, the differences in fruit quality evolution 
were quantified for multiple maritime and airfreight transport pathways. 
For each supply chain, the digital twin helped to pinpoint where 
temperature-dependent fruit quality loss occurred and to understand the 
drivers for these losses. Compared to air temperature data, digital twins 
were found to provide a particular added value for very perishable 
products and storage at low airflow rates.  

Promising applications 
Some of the most promising applications for digital twins in 

postharvest cold chains, in view of the authors, are discussed. 

Cold-chain operations. Digital twins strongly enrich current real-
time monitoring capabilities using sensors (Table 1). In addition to air 
temperature and relative humidity, they can be used to predict fruit pulp 
temperature, the corresponding quality attribute loss of the entire fruit, 
for example, the moisture loss resulting in a reduction of salable weight. 
In addition, the risk of thermal damage at both high and low 
temperatures, such as chilling injury, or even mechanical damage due to 
bruising, as registered by accelerometer sensors, can be quantified. This 
capability implies that the digital twin is enriched with relevant 
submodels for these processes and the corresponding quality attributes. 
This augmented insight helps to analyze remotely better how the fresh 
produce in every single shipment responds throughout the cold chain. As 
such, potential problems can be diagnosed at an early stage, and 
preventive measures can be taken proactively to mitigate the problem.  

One such measure is to improve the triggering of alarms in the cold 
chain. As a next step, digital twins could be used for real-time control of 
cold chain processes during shipment. As mentioned, refrigerated 
container companies already have hardware and software capabilities in 
place for the stakeholder to control the cooling processes. However, to 
our best knowledge, reliable physics-based algorithms are not yet in place 
for the stakeholder to tailor the control based on the cargo’s history and 
current state. The additional insight brought by digital twins could 

Figure 4. Biophysical twin (a) and digital twin (b) for a mango fruit (adjusted from (T. Defraeye et al., 2019)).  



 
thereby help to steer better cold chain processes by the stakeholder or 
even by the refrigerated container software itself autonomously. Future 
interventions could be driven by the predictive power of the digital twins. 
This implies that digital twins can be used to probe into the future by 
forecasting the food quality evolution under the assumptions of the 
expected cold chain and operating conditions. Thereby, digital twins 
could act similar to a weather forecasting model (Rasheed, San, & 
Kvamsdal, 2019), for example, when combined with model-predictive 
control algorithms. In that way, manual control by the stakeholders or 
autonomous control by the refrigerated container software can have even 
more impact in reducing food quality loss.  

Furthermore, digital twins could supply regulatory bodies (e.g., 
plant-quarantine or invasive-species inspection services) with additional 
data to guide their decisions, and can better protect importers as well as 
exporters against claims of inappropriate handling of the shipment. 

Product and process design. Digital twins could be used to evaluate 
new (pre)cooling protocols, ventilated packaging designs or cooling 
facility design, based on actual monitored sensor data of the 
environmental conditions. Since a large parametric design space can be 
explored swiftly in a virtual environment, human resources, hardware 
costs, and time can be saved. 

Food traceability. Recent efforts in blockchain technology aim to 
mitigate the lack of traceability in several postharvest supply chains 
(Kamilaris, Fonts, & Prenafeta-Boldύ, 2019). A typical example is the 
IBM Food Trust initiative (IBM, 2019). Large retailers like Walmart 
support this initiative and are planning to impose this technology on their 
suppliers (Forbes, 2019). Here, the digital twin has the unique 
opportunity to help tell the fruit’s biological history and record this 
throughout its postharvest journey. Digital twins would not only enhance 
cargo traceability but also would identify hygrothermal mishandling and 
malpractice. In turn, blockchain technology has an elegant way of storing 
the digital twin’s data throughout its life cycle in a digital thread, which is 
safe and accessible to all stakeholders. The ledgers of populations of 
digital twins can, in turn, be used by computational statistics or machine 
learning techniques to identify current bottlenecks, and thereby enhance 
supply chain efficiency. 

Supply chain logistics. Digital twins can be used to supply different 
stakeholders in the supply chain with actionable data that is derived from 
physics-based modeling and simulation. Metrics of integrated quantities 
could be extracted directly from the pulp temperature, for example. A 
typical example is that instead of an air temperature-time curve, a digital 
twin could quantify the current level of certain quality attributes or 
predict the remaining shelf-life days. Such metrics are more convenient 
for stakeholders in the supply chain than the raw sensor data, which is 
currently provided to the stakeholders. Similar metrics were obtained, for 
example, by time-temperature indicators (Ndraha, Hsiao, Vlajic, Yang, & 
Lin, 2018). Software applications for shelf-life prediction based on 
temperature data are already available, but focus mainly on growth and 
inactivation of microorganisms and do not directly account for thermal 
gradients within the product.  

In a recent study (T. Defraeye et al., 2019), a digital twin was used to 
quantify the remaining quality for different maritime mango cold chains. 
The physics-based model used air temperature data (Figure 5a) to 
predict the average fruit temperature of mature-green mangoes (Figure 
5b) and the resulting fruit quality evolution (Figure 5c). As a logical next 
step, the shelf life days are calculated in the current paper for each of the 
shipments. This shelf life was calculated here by how long the fruits could 
be stored at 20 °C, before their quality reduced below the predefined 
quality threshold, making the fruit unacceptable (Tijskens, 2000). Since 
a mechanistic model was used, the shelf-life calculation was done using 
the average pulp temperature instead of air temperature or a single point 
value in the fruit pulp. These results are reported in Figure 5d and show 
that the remaining shelf life days strongly vary, namely from 3.4 to 6.6 
days, due to the unique thermal history and length of each shipment. This 

work was the first step. Future work should focus on quantifying multiple 
quality attributes at the same time, in order to combine them in a 
complete shelf-life expectancy. 

The capability of digital twins to predict the remaining shelf life days 
based on the produce's physical, biochemical, microbiological or 
physiological states response has a huge potential in fresh-produce supply 
chains to drive new concepts forward: 
- Best-before date. Each shipment or pallet of horticultural produce 

can be labeled, via the digital twin, with a best-before date. This date 
can help consumers better plan the purchasing of household 
supplies to reduce food waste. Such concepts can be confusing for 
consumers, as they are mixed with a use-by date (or expiry date) 
(The Guardian, 2018). A best-before date reflects only the food 
quality and not food safety. As such, a best-before date does not 
imply any guarantee that the product is free from any substances 
that could compromise a person's health, for example, by inducing 
food-borne illnesses. However, quality is highly subjective, since 
fruit would be spoiled for one consumer but still edible for others. 
Therefore, absolute shelf life is difficult to establish reliably. 
However, a relative quality rating would help guide the consumers' 
choices, similar to the EU energy label (European Commission, 
1994).  

- Fruit categories. In addition to the normal produce, retailers often 
sell high-quality fresh produce with superior ripeness and sensory 
traits. Similarly, retailers could use the remaining shelf-life days to 
grade and sell their horticultural produce in different quality 
categories or to plan discount programs more efficiently. 
Consumers could be offered the choice to pay more for fruit with a 
longer shelf life, based on their household storage preferences. 
Especially with the increasing number of customers shopping 
online for food commodities, such a food quality rating will benefit 
the consumer since the product cannot be evaluated hands-on 
anymore in the store.   

- A guaranteed shelf life. Similar to flowers, a concept could be to 
introduce a 3-day or 5-day shelf-life guarantee for horticultural 
produce. 

- Internal logistics. Improved shelf-life estimations on a pallet level 
would enable retailers to optimize the logistical chain to avoid fresh-
produce loss. Digital twins can be integrated perfectly in new 
concepts of intelligent logistics, such as first-expired-first-out 
(FEFO) as an alternative for the current first-in-first-out strategy 
(FIFO) (Hertog et al., 2014; Jedermann et al., 2014; Lütjen et al., 
2013). 

 
Retailers and consumers would largely benefit from this actionable 

data, which the digital twins provide for each shipment. The added value 
of using physics-based digital twins is that they provide average fruit pulp 
temperatures in addition to only point values and enable a concurrent 
evaluation of multiple other temperature-dependent quality attributes. 
The additional benefit of such advanced monitoring of quality evolution 
of fresh produce, and the associated logistical impact, could enable the 
harvesting of fruit at a more mature state, with higher sensory quality and 
value. 

Food safety. Digital twins can be used for Hazard Analysis and 
Critical Control Points (HACCP, (Shih & Wang, 2016)) as they could 
be used for more elaborate monitoring of control points and to establish 
corrective actions. In that way, digital twins could also assist in process 
analytical technology (PAT) and Quality by Design (van den Berg, 
Lyndgaard, Sørensen, & Engelsen, 2013). Although this concept was 
originally developed to design, analyze, and control pharmaceutical 
manufacturing processes, it is promising for use in fresh-produce supply 
chains as well. Digital twins can be used here to assist the feedback 
control and to do even model-predictive control to help increase shelf life 
and to decrease produce variability. For other agricultural products 



 
where food safety is critical,  such as meat (Fang, Zhao, Warner, & 
Johnson, 2017), digital twins could play an even more critical role. 

Future developments 
Existing digital twins in postharvest technology (T. Defraeye et al., 

2019) should be enriched to incorporate more physical, biochemical, 
microbiological, or physiological processes that are affecting the fresh-
produce quality (Figure 1). A typical example is including the evaporative 
mass loss in the digital twin, which affects the salable weight and, 
therefore, the fruit’s market value due to cartons being underweight, or 
the fruit appearance, and occurrence of shriveling at the surface. Also, 
thermal damage incidence due to too low temperatures, so chilling injury 
or freeze damage, should be included for species such as mango or citrus 
fruit. Apart from heat conduction in the produce, respiration-driven 
processes, such as gas transport, could also be included. This would be 
able to predict, for example, anaerobic conditions during (dynamic) 
controlled atmosphere storage (Delele et al., 2019; Ho, Verboven, 
Verlinden, Schenk, & Nicolaï, 2013). The possibility of linking aspects 
relevant to postharvest pathology and the incidence and severity of decay 
in fruit would be a further key step for digital twins (Ho, Rogge, 
Verboven, Verlinden, & Nicolaï, 2015). The close response of pathogens 
with decay development on temperature would add a critical aspect to 
supplying shelf-life predictions. So although the first steps have been 
made in building up digital master models for digital twins, there is still a 
multitude of processes to be included to have a complete digital twin 
model. However, information on the complete set of quality attributes is 

not always relevant for every stakeholder or cold chain to guide decision 
making. Information on only a few key quality attributes often suffices. 

An additional next step is to include a real-time coupling of sensor 
data with the digital twin. This real-time link enables the stakeholders to 
inspect the shipment in the supply chain at all times and take dynamically 
corrective measures, in contrast to a-posteriori insight into where the 
damage occurred. In this context, prediction of the future state of the 
produce by model-predictive control could help digital twins to foresee 
problems and proactively react to mitigate them. By adding intelligence, 
these twins could be made to “think” and thereby let a refrigerated 
container, for example, to act autonomously to optimize the shelf life and 
food losses of the entire shipment. 

Currently, only environmental conditions induce differences in the 
drift between twins in postharvest technology. The geometrical model is 
still generic, and only one geometry is used for each twin, despite the 
biological variability found between individual fruits. In med-tech, on the 
other hand, customized models of organs or the complete body are made 
for every single patient, based on non-destructive imaging (e.g., X-ray, 
MRI). The large volumes and low value of the fruit make such an 
approach unfeasible in fresh-produce supply chains. Nevertheless, the 
biological variability can be accounted for by constructing the generic 
geometrical model, based on a population of data for a species or even a 
cultivar (Danckaers et al., 2017; Rogge, Defraeye, Van Dael, Verboven, 
& Nicolaï, 2017). This approach was already applied for biophysical and 
digital twins of fruit (T. Defraeye et al., 2019, 2017). Another approach 
would be to incorporate the biological variability in the deterministic 
model by incorporating statistics on the input parameters. A Monte-
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Figure 5. (a) Air temperature as a function of time, as measured by a sensor in the mango fruit packaging for different maritime 
shipments; (b) corresponding fruit temperature (volume averaged) calculated by the digital twin; (c) quality evolution 

(calculated from volume-averaged pulp temperature of the digital twin) as a function of time for mature-green mango fruit 
transported by ship; (d) remaining shelf life of mangoes in each shipment, when kept at 20 °C. The dots represent the end of each 

chain (Figures a-c are adjusted from (T. Defraeye et al., 2019)). 



 
Carlo approach could be combined with physics-based modeling (e.g., 
(Thijs Defraeye et al., 2013)), for example, to incorporate the impact of 
statistical variability on the size, shape, thermal properties, and initial 
maturity, among others, on the resulting fruit cooling and shelf life. This 
approach was already used to assess the comprehensive effects of 
biological variability in fruit size, respiration rate, and gas diffusion 
properties at risk for developing internal disorders during long-term 
controlled atmosphere storage (Ho et al., 2015). 

The data from the digital twins can, in turn, be used further as input 
for meta-models, for example, machine learning methods (Figure 3). As 
such, one can analyze and interpret the behavior of entire populations of 
digital twins in the supply chains, where each twin drifts through the 
supply chain in a unique way. 

Outlook 
Digital twins are a logical next step for postharvest technology to 

connect the worlds of sensing – in actual supply chains – with that of 
numerical modeling – in the virtual cold chain. Digital twins can calculate 
in real-time the currently still uncharted evolution of fresh-produce 
quality attributes. They can also deliver advanced forecasts of the 
remaining shelf life throughout the cold chain of every single shipment. 
In the future, we could even target to build digital twins of fruit and 
vegetables at the preharvest stage already. Thereby, fresh produce can be 
followed in-silico during their entire lifecycle from growth, to ripening 
and senescence. For fruit, this enables supply chain optimization 
strategies from flower to fork, instead of from farm to fork. 

Compared to statistical or data-driven models, physics-based 
(mechanistic) models provide a unique added value when used as the 
twin’s digital master model. Apart from quantifying how cooling 
processes and quality loss will evolve, physics-based models can help 
explain why processes happen exactly. This causality is possible since the 
process drivers are modeled explicitly to a specific degree of complexity. 
This augmented insight is particularly relevant for cold chains where the 
timescales of the cooling process and the evolution of the quality 
attributes are close together. An example is a very perishable species that 
are stored low airspeeds flowing through the ventilated packaging. Data-
driven or statistical digital twins, however, can be essential to help 
identify the most relevant physical, biochemical, microbiological and 
physiological processes at play, and the couplings between these 
processes. Such identification can be used in-turn to enrich the physics-
based digital twins in a more targeted way.  

A realistic risk of the current hype created around digital twins 
(Gartner, 2019a, 2019b) is that many oversimplified or un-validated 
twins emerge. This problem is likely to occur since the digital master 
model, which is embedded in the digital twin, can be just a simple 
empirical model. An example would be an empirically-calibrated kinetic 
rate law that uses sensor data of the supply air temperature to predict the 
remaining shelf life. For the multiple stakeholders in the supply chain, the 
digital twin will be a black box that outputs a few metrics, by which the 
model’s complexity and precision remain hidden for the user. Therefore, 
it is essential that the underlying model that drives the digital twin is 
rigorously built up and validated. Such verification and validation should 
be performed according to best practice. For physics-based modeling and 
simulation, several best-practice guidelines are available in various 
research fields (Casey & Wintergerste, 2000; FDA, 2016; Franke, J., 
Hellsten, A., Schlünzen, H., & Carissimo, 2007).  As such, the 
trustworthiness of this black box needs to be guaranteed to provide 
accurate, meaningful metrics and actionable data that can be reliably 
used. 

The next step beyond the digital twin itself will be its integration into 
cyber-physical systems. Here, the further fusion of the physical (real) and 
virtual objects is targeted, including the merging of physical and virtual 
sensor data (Tao, Qi, Wang, & Nee, 2019). Digital twins calculate, for 
example, integrated quantities in space and time, by which even reliable 
remaining shelf-life days could be extracted, which complements point 
measurements from sensors (Figure 5). Such cyber-physical systems 

enable a much more complete assessment of the fresh produce's quality 
evolution. The potential of physics-based digital twins in this respect is 
very large since all sensor hardware and software platforms are already in 
place to enable real-time sensor data acquisition and transfer during the 
entire postharvest trip. The widespread application of the physics-based 
digital twins in postharvest supply chains might thereby be only a small 
step away. 
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