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Abstract

Because solar generation adoption shows unprecedented growth, our power systems

may extensively rely on solar generation infrastructure as the primary source of mod-

ern and clean energy in just a few decades. Despite this growth, very few studies have

captured solar generation infrastructure’s behavior during natural disasters to under-

stand their real benefit for resilience. Here, we present an integrative methodology to

quantify solar generation during hurricanes. The methodology combines a hurricane

hazard model, solar irradiance quantification, solar panel vulnerability, and a model for

irradiance decay during hurricane conditions. We develop the irradiance decay model

through a mixed-effect regression on a dataset that merges historical Global Horizon-

tal Irradiance and the revised data of Atlantic hurricane activity. The methodology

is applied to 21 states in the Eastern U.S. for different extreme events. Our results

show that for events with return periods of up to 33 years, the loss in generation stems

from cloud conditions during hurricanes. However, less frequent events can cause solar

panel failure, especially in southern regions of the U.S., triggering complete loss of solar

generation. Given that solar generation is expected to grow significantly, these results

advocate for higher standards in the structural design of solar panels.

†Preprint submitted to Journal of Environmental Science and Technology
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Synopsis: New methodology to model solar generation during hurricanes shows

substantial regional variability in the resilience of modern power systems in the U.S..

Keywords: Disaster resilience; solar panels; distributed energy resources; hurri-

canes; climate change.

Introduction

Solar generation is becoming a pillar in modern power systems. Solar energy accounted for

nearly 40% of all the new electric generating capacity installed on the U.S. grid in 2019,

the highest share in its history.1 The rapid adoption of panels to harvest solar energy is

transforming the power system economics, environmental contributions to global warming,

and resilience.2 Research has already highlighted and projected solar energy’s long-term

environmental3,4 and economic5,6 benefits. However, there is significantly less understanding

of solar infrastructure’s disaster vulnerability and its actual impact on the power system’s

resilience, which often reveals its extensive vulnerabilities through massive outages during

natural disasters. For example, Hurricane Maria in 2017 left millions of people without

power in Puerto Rico,7 and so did the recent 2019-2020 wildfires in California.8,9

Current research has mainly focused on quantifying the resilience of traditional power

systems to natural disasters.10–14 These investigations have not accounted for the vulnera-

bility of solar energy infrastructure or generation decentralization, a fundamental paradigm

switch where users can generate energy locally, e.g., rooftop solar panels. Only a recent

investigation has proposed a framework to quantify the resilience of modern power systems

with rooftop solar panels,15,16 but exclusively for earthquake hazards. As hurricanes pose an

enormous threat to urban centers worldwide, this paper investigates modern power systems’

resilience with solar infrastructure during hurricanes.

Unlike earthquakes, hurricanes cause wind damage to solar infrastructure and only occur

in seasons when solar irradiance and generation are high. Additionally, hurricanes bring

environmental conditions that may drastically reduce solar irradiance, which has not been
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(a) 2005 (during hurricane Katrina) (b) 2006 (one year after hurricane Katrina)

Figure 1: Global horizontal irradiance decay during hurricanes with two snapshots at the
same time but in different years. Both plots show the spatial distribution of GHI on August
29th, at 3 pm UTC (or 10 am local time in Lousiana). (a) The plot shows GHI in 2005
during Hurricane Katrina, indicating the hurricane’s track, radius of maximum wind, radius
at a wind speed of 34 knots, and radius of the outermost closed isobar. (b) The plot shows
GHI in 2006 in the same region at the same time. Data retrieved from NREL.17

addressed by the existing literature. Figure 1 exemplifies the effect of hurricanes on the

spatial distribution of solar irradiance by showing Global Horizontal Irradiance (GHI) at 3pm

UCT (9 am local time) when Hurricane Katrina made landfall in Louisiana as a category 3

event in 2005 compared to the GHI distribution the year after. The comparison shows that

the hurricane reduced GHI even for sites that were hundreds of kilometers away from the

hurricane center.

To fill this research gap, we conduct an extensive data analysis on historical GHI during

the hurricane seasons from 2001 to 2017 by combining the hurricane Best Track Database18

with a GHI database from the National Renewable Energy Laboratory (NREL).17 The anal-

ysis identifies hurricane features that best predict the intensity and extent of GHI decay. We

fit different functional forms for GHI decay during hurricane conditions and highlight the

best predictive model.

Next, the paper proposes an integrative framework to quantify solar generation during
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hurricanes. We use synthetic storm data generated with statistical and physics-based tropi-

cal cyclone simulations for current atmospheric and oceanic environments.19,20 We utilize a

physics-based model to estimate the storms’ wind fields21 and couple the fields with recently

developed wind-based fragility functions for solar panels22,23 to estimate wind damage to

panels. Then, the integrative framework uses probabilistic models to transform estimates

of GHI during normal conditions17 to hurricane conditions. The transformation uses our

proposed model for GHI decay during hurricanes in multiple regions of the U.S. at different

times of the day and throughout the entire hurricane season. The integrative framework uses

an algorithm based on Monte Carlo simulation to quantify the time-series of solar generation.

Finally, we apply the framework to quantify power generation from solar panels in the

Eastern U.S.. We discuss the results as well as regional variations of the contributions of

solar panels to power generation resilience through different counties. With these novel

models and geographically-extensive case study, this paper lays the groundwork to quantify

the resilience of power systems with solar infrastructure to hurricanes.

Material and Methods

Collecting data for GHI during previous hurricanes

Hurricane conditions reduce solar irradiance intensity at the ground level over large geograph-

ical extents, limiting the ability of PV panels to harvest energy in communities. Figure 1

shows intense GHI decays during Hurricane Katrina in most regions within the radius (R34)

at a wind speed of 17 ms−1 (34 knots), which reached 262 km. In some regions, intense de-

cays extended to distances similar to the radii of the outermost closed isobar (ROCI), which

reached 556 km. While Figure 1 shows only a snapshot for one hurricane demonstrating

irradiance decays, we consistently observe the same trend in other hurricanes. In contrast

to cloudless conditions of clear skies, which are associated with maximum solar generation,

hurricanes cover extensive regions with different cloud structures from the eyewall to the
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rainbands.24 These clouds absorb and scatter light, reducing direct incident radiation and

generally leading to lower GHI and reduced solar panel generation.25,26 Clouds that have high

moisture density and vertical depth, i.e. optically thick clouds, can drastically reduce direct

incident radiation.27 Accordingly, hurricanes can significantly and rapidly lessen generation

through optically thick cloud structures such as large cumulonimbus. However, hurricanes

can also reduce generation significantly even with less optically thick cloud structures like

stratiform clouds because they can cover large geographical extents.

To systematically investigate the effect of hurricanes on irradiance, we coupled a large

dataset of GHI with historical hurricane data. We used the Physical Solar Model (PSM)

version 3 from the National Solar Radiation Database (NSRDB) published by the National

Renewable Energy Laboratory (NREL) to extract GHI with high spatial and temporal reso-

lution.17 The PSM combines satellite-derived atmospheric and land surface properties with

radiative transfer models to solve solar radiation through the Earth’s atmosphere. The PSM

provides solar irradiance at a 4-km horizontal resolution for 30-minute intervals from 1998

to 2017. The PSM enable us to observe the GHI behavior at different timesnaps for different

hurricanes since 1998 for multiple sites and under various hurricane conditions.

Hurricane dataset

We compiled hurricane data from the revised Atlantic hurricane database (HURDAT2).18

The data contain multiple hurricane features and span several decades; however, key spatial

information including hurricanes’ radii is only available since 1998. The hurricane data

include ROCI, the radius of maximum wind (RMW), radius at wind speeds of 17 ms−1 (R34,

34 knots) and 33 ms−1 (R64, 64 knots), hurricane category, and maximum wind speeds. The

hurricane data have a 3-hour temporal resolution, which is coarser than the PSM temporal

resolution; thus, we reduced the granularity of the GHI dataset from 30 minutes to 3 hours

and matched the hurricane recording times. After performing a preliminary assessment to

estimate the geographical extent impacted by the hurricane, we collected GHI records from
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the 4×4-km spatial grid within two times ROCI from the hurricane center, which reached

several hundreds of kilometers for massive storms.

We analyzed 22 landfalling hurricanes whose geneses were in the North American basin

and whose lifetime maximum intensity reached a category of at least 3 to filter out the dis-

proportionately large number of storms that do not reach high intensities. The 22 hurricanes

cover an extensive geographical region of our assessment (Figure S1). These hurricanes have

a wide variety of conditions, with maximum wind speeds up to 80 ms−1 (category 5), ROCI

from 200 km to above 800 km, RMW up to 250 km, and radii at circulating wind speeds

of 0 (R0) from 200 km to above 2000 km (Figure S2). HURDAT2 omitted R0, the shortest

distance where hurricane circulating wind effects dissipate entirely. 1 Thus, we estimated

R0 with a wind profile model that captures the radial structure of tropical cyclones.21

Key features for predicting GHI during hurricanes

To characterize GHI decay under different hurricane conditions, we define Ih as GHI during

a hurricane. Previous research shows that GHI has strong temporal and spatial variabil-

ity during normal conditions, i.e., no hurricane.15,28 We account for such variability and

characterize GHI deviations from normal conditions in the logarithm space as

δh = ln

(
Ih

Ī

)
(1)

where Ī represents the median of the GHI under normal conditions at the same location

and at the same time of the year as Ih. We used 20 years of GHI data to estimate Ī for all

the geographical extent covered by the hurricanes using a 3-hour temporal resolution. We

assume that at each time of the day, GHI has approximately the same distribution for a

given month. As a result, we used approximately 600 instead of 20 data points to estimate

the GHI medians. For example, to estimate GHI at 10 a.m. in June, we lumped the data of

1Notice that there is environmental wind at R0.
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its days from 1998 to 2017. We observe that for sites farther from the center of the hurricane,

the median of δh approaches zero, implying that the site is outside the area where hurricanes

reduce GHI, i.e., Ī = Ih.

We analyzed GHI during the 22 hurricanes to estimate the samples δ̂h and understand

GHI behavior during different hurricane conditions. Because our focus was only on times of

the day when communities can generate energy, we only included in our analysis daytime

data where and when Ī > 10 W-h/m2, which finally resulted in ∼28M data points. Figure

2 shows δ̂h as a function of distance from the site to the hurricane’s center and category.

(a) Distance to the center (b) Category (TS: Tropical storm)

Figure 2: Scatter plots showing relationship between GHI decay and key hurricane features.

δ̂h during different hurricanes have different color. For each hurricane, the plots show a

running mean for δ̂h using solid lines. The plots also show linear regressions in dotted lines
and their corresponding R2 values when the multi-hurricane data is lumped together. For
visual clarity, there are only 50k randomly sampled data points in each plot.

Figure 2a shows the relationship between distances to the hurricane center d and δ̂h. On

average, δ̂h has reduced values for small d and grows steadily up to a plateau close to 0 for d

values larger than 600 km. We fitted a line with d below 600 km to account mainly for the

sites with significant irradiance decays and found an R2 of 0.2 (correlation ρ = 0.45). We

observe that the fitted line is not able to represent the transition between small distances
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to the plateau for large d where hurricanes have little effect. The observed transition is

consistent with the spatial distribution of cloud optical thicknesses in hurricanes. Hurricane

eyewalls, which surround the hurricane eye typically at 10-50 km from the center,29 are

composed of optically thick clouds as a result of high moisture densities and large vertical

depths,30,31 thus significantly reducing direct incident radiation through high absorption

and reflection. Outside the eyewall, clouds’ optical thicknesses are high only in rainbands

and significantly lower in between them. Outside the regions with rainbands, a regular

combination of clear-sky and partially cloudy conditions arise, bringing GHI back to normal

levels.30–32 Figure 2a shows that this occurs beyond 600 km from the hurricane center.

Additionally, we find that high hurricane intensity exacerbates GHI decay. To focus on

sites with the largest hurricane decay and cover areas within hurricane eyewalls, we analyzed

sites located at 100km or less from the hurricane center. Figure 2b shows a decaying trend

between hurricane category C and averaged δ̂h values, indicating that more intense hurricanes

induce larger reductions in solar irradiance. A similar trend is observed between δ̂h and

maximum winds V (Figure S3a) because V has high colinearity with C as the latter variable

is an increasing step function of V . Thus, we see that the linear fit performs very similarly

with R2 of nearly 0.11 (ρ = -0.34) in both cases. Lower irradiance levels for higher hurricane

categories are also consistent with recent evidence on satellite-derived cloud microphysical

features during hurricanes.31 There are larger regions with higher cloud optical thicknesses

associated with large and thick cloud structures such as cumulonimbus during hurricane

maturity and intensification rather than during hurricane development or dissipation.

To capture hurricane size effect, we evaluated the relationship between different relevant

hurricane radii and both the intensity and geographical extent of GHI decay. To study

whether GHI decays are larger for bigger hurricanes, we analyzed the relationship between

δ̂h and ROCI, RMW, and R0, respectively. We observe that hurricane size does not intensify

GHI decay as linear fits have low R2 values of 0, 0.05, and 0.02, respectively (Figure S3).

To study how hurricane size correlates with the geographical extent of GHI decay, we
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analyzed the relationship between GHI and distance to the storm’s center normalized by the

hurricane size. We normalized d by four hurricane size metrics, ROCI, RMW, R0, and R34,

where R34 is the radius at which the maximum wind speed is 34 knots, the minimum speed

for the event to be categorized as a tropical storm. We split the data by hurricane category

because C showed predictive power for hurricane decay intensification (Figure 2).

When the distance is normalized by ROCI and R34, we generally observe better fitting

performance than for the absolute distance, with improved performance for higher hurricane

categories (Figure S4 and S7). We estimated that a linear fit between R = d/ROCI and δ̂h

has an R2 of 0.38 for category 5, almost twice the value found for absolute distance (Figure

2a). For R = d/R34, R2 values show comparably good fitting performance to using ROCI as

normalizing distance (Table S1). The slopes of linear fits are steeper for higher categories,

further demonstrating that the intensity of the hurricane intensifies GHI decay (Figure S4

and S7). As discussed earlier, this feature of GHI decay is driven by optically thicker cloud

structures occurring during hurricane maturity and intensification. Distances normalized by

RMW and R0 give lower performance, which, however, still illustrate how the effect of the

hurricane on irradiance dissipates for large enough values of d (Figure S5 and S6).

The analysis also shows that the regions with GHI decay easily extend beyond RMW

and R34 as they only define hurricanes’ inner-core circulation (Table S1). In contrast, it also

shows that the regions with significant GHI decay do not reach R0 but are close to being

bounded by ROCI. Thus, these observation suggests that the outer structure and radial

extent of circulation bounded by ROCI is coupled with the cloud structures absorbing and

reflecting light during hurricanes.

Probabilistic model for GHI during hurricanes

To leverage well-established mixed-effects regression models,33 we assume that ln(Ih) is

Gaussian, i.e., Ih is lognormaly distributed, during daytime, when generation is not negligi-

ble, i.e., Ih > 0. Thus
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ln(Ih) = ln
(
Ih
)

+ εh (2)

where Ih is the GHI median, and εh is a Gaussian random variable with zero mean that

accounts for the variability of GHI during hurricanes in the logarithmic space. We also

assume that hurricanes reduce median GHI from normal conditions to Ih such that in the

logarithmic space

ln(Ih) = ln(Ī) + f(R,C) + εh (3)

where Ī is the median GHI during normal conditions, and f(R,C) is a reduction factor

that is function of the normalized distance to the hurricane’s center R and the hurricane

category C. f uses both R and C because they demonstrated to have good predictive power

for GHI decay in the previous section. Using the expression in Equation 1, then

δh = f(R,C) + εh (4)

Using Equation 4 and the samples of δh from our dataset, we conducted a mixed-effect

regression analysis to test multiple functional forms f(R,C) and formulate a predictive model

for irradiance decay during hurricanes.

Functional Forms for f : We tested four different functional forms for f(R,C). These

functional forms are shown in Equation 5. All of them include a logarithmic growth as a

function of R followed by a plateau when f(R,C) reaches 0. The functional forms include a

short-distance correction factor b and a scale factor c that further calibrate the influence of

R on the irradiance decay. The short-distance correction factor is added to the value of R

so that the logarithmic function approaches the observed values rather than −∞ when the

site is close to the center of the hurricane, i.e., R → 0. The scale factor further normalizes

R to define where the plateau is reached.

While all of the functional forms include a slope that varies with the hurricane category

10



(a1C+a2), they vary in their complexity, differing in the representation of the short-distance

correction factor b and the scale factor c. In the functional form f1 in Equation 5a, b and

c remain constant for all hurricane categories. In the functional form f2 in Equation 5b, b

varies with category but c remains constant, and in the functional form f3 in Equation 5c, b

is constant and c varies with hurricane category. In the functional form f4 in Equation 5d,

both b and c vary with hurricane category.

f1(R,C) =
{ (a2C + a1)× ln

(
R+b
c

)
if R + b < c

0 if R + b ≥ c
(5a)

f2(R,C) =
{ (a2C + a1)× ln

(R+(b2C+b1)
c

)
if R + (b2C + b1) < c

0 if R + (b2C + b1) ≥ c
(5b)

f3(R,C) =
{ (a2C + a1)× ln

(
R+b

c2C+c1

)
if R + b < c2C + c1

0 if R + b ≥ c2C + c1

(5c)

f4(R,C) =
{ (a2C + a1)× ln

(R+(b2C+b1)
c2C+c1

)
if R + (b2C + b1) < c2C + c1

0 if R + (b2C + b1) ≥ c2C + c1

(5d)

Mixed-Effects Regression for GHI decay: We used a mixed-effects regression to

capture the main observed features of irradiance decay during hurricanes. Unlike other

methods like fixed-effects regression, this regression allows us to explicitly decompose the

random variable εh in Equation 4 into two independent factors,33 one factor accounting

for the variability between different time steps represented by the random variable ηh and

another accounting for the spatial variability at a fixed time represented by the random

variable εh.

δh = f(R,C) + ηh + εh (6)

Through this explicit decomposition, we properly represent the high GHI temporal and
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temporal variability structrure as extensively discussed in previous research.15,28 The mixed-

effects regression has both fixed and random components.33 With the fixed effect component,

we capture how hurricanes decrease (the logarithm of) median GHI with the factor f(R,C)

(Equation 5). With the random component of the regression, we capture spatial uncertainty

at a time step with a within-time random effect εh and uncertainty across time steps with a

between-time step random effect ηh. The regression assumes that ηh and εh are independent.

Similar techniques and independence assumptions have been used to model natural disaster

intensities with radiating decay. For example, random effect regressions and similar inde-

pendence assumptions are extensively used to assess ground shaking that propagates from

an earthquake epicenter to a large geographical extent.34,35

We lumped all hurricane data to fit the parameters of f(R,C). Notice that for a fixed

time t, an observation of δh at site j (δht,j) is the sum of a realization of ηh and εht,j. As ηht

only captures temporal uncertainty, at a fixed time t, it takes the same value for all sites. εht,j

captures spatial uncertainty, thus at fixed time t, it varies for each specific site j. Similarly,

while C varies at each time step t, R also varies for each site j. Thus, for each observation

δht,j = f(Rt,j, Ct) + ηht + εht,j (7)

As described previously, we estimated δht,j for around ∼28 M observations corresponding

to multiple time steps and sites of GHI recordings during the 22 hurricanes in the NREL

dataset. We preprocessed the data by removing sites at long distances from the hurricane

center, where hurricanes did not have significant effect on GHI. We then balanced the ob-

servations across the hurricane categories and distances from the center to the sites (see

Supporting Information). Following these constraints, we used ∼ 0.75 M data points for the

analysis.

We estimated the model parameters using maximum likelihood estimation (MLE) for the

non-linear mixed-effects regression with a Matlab package. The package uses an expectation-

maximization algorithm to solve for the parameters of the fixed component in Equation 5
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while accounting for the unobserved component of the regression in Equation 4.36 We fitted

the parameters for the four models considering the four previously analyzed normalization

radii, ROCI, RMW, R0, R34.

Modeling solar generation during hurricanes

We propose an integrative algorithm that couples our proposed GHI decay model with syn-

thetic hurricane simulations and a fragility function for rooftop solar panels. We used a

synthetic dataset wtih 5018 physically possible landfalling storms in the U.S. generated from

a statistical-deterministic tropical cyclone (TC) model.19 The model accounts for current

climate conditions according to the National Centers for Environmental Prediction (NCEP)

reanalysis. As a result, the 5018 synthetic storms roughly correspond to 1485 years of simu-

lation. The model consists of three parts: a random seeding genesis model, a beta-advection

TC motion model, and a dynamical TC model that captures how environmental factors influ-

ence the intensity axisymmetric TCs. The model outputs TC locations, maximum sustained

winds and radii of maximum winds in 2-hour intervals.

Additionally, at each time step, we estimate R0 based on both the radius of maximum

wind and maximum wind using a TC wind field profile model that connects the inner storm

structure to the outer structure.21 We estimate ROCI using the expression ROCI = 0.18×

R0 + 226 (km), which was obtained conducting a regression on the historic hurricane data.

Wind fields are estimated by combining axisymmetric winds circulating counterclockwise

from the TC wind profile model21 and the background wind field.37 Previously, this synthetic

storm model has been extended to quantify TC surge20 and TC rainfall,38 demonstrating

its versatility for multiple hurricane hazard assessments. Here, we extend the applicability

of the TC model to quantify solar generation during hurricanes.
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Fragility function of solar panels

We used a fragility function developed according to current structural design standards for

solar panels.22 The wind measure in the fragility function was transformed from 3-second

gust to 1-minute sustained wind speeds to make it compatible with the synthetic hurricane

data using an empirical formula.39 Hurricanes of category 3, starting at maximum wind

speeds of 50 ms−1 (3-second gusts of 60 ms−1), can induce failure with a likelihood higher

than 50% (Figure S10).

Algorithm to estimate cumulative solar generation during hurri-

canes

We based our assessment on Monte Carlo simulation. The algorithm analyzes H realizations

of hurricanes and estimates solar generation for each site j (out of N sites of interest)

during multiple time steps t. First, the panel damage state s is represented by a Bernoulli

distribution. s takes the value of 1 if the hurricane causes solar panel failure due to extreme

wind conditions or 0 otherwise. Thus

s ∼ Bernoulli(p) (8a)

p = Φ

(
ln(maxt(wt,j))− ln(w̄)

β

)
(8b)

where Φ(.) is the standard normal cumulative distribution function, maxt(wt,j) is the

maximum wind that the solar panel at site j experiences during the hurricane, and w̄ and

β equal 58 ms−1 (3-second maximum wind) and 0.3, respectively (Figure S8). Then, for

a site j, a realization s̃j is sampled from Equation 9. Next, we explicitly model the panel

failure time because this key variable will account for the energy that the panel will be

able to generate before becoming nonfunctional. If there is panel failure, i.e., s̃j = 1, we
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model failure time τ with the probability density function gτ (t). To account for higher

likelihoods of failure when winds are more intense, we consider that gτ (t) is proportional to

the time-varying failure likelihood due to different wind conditions at the site throughout the

hurricane. Thus, gτ (t) ∝ pt,j, where pt,j can be estimated from Equation 8b. Accordingly, at

site j, a realization τ̃j is sampled from gτ (t) if s̃j = 1, or it is assigned∞ if s̃j = 0, i.e., when

the hurricane does not cause panel failure. At each time step t, the panel’s time-varying

functionality status x̃t,j is estimated as

x̃t,j =
{ 0 if t > τ̃j

1 if t ≤ τ̃j

(9)

After assessing solar panel functionality, the algorithm samples GHI realizations. Fol-

lowing Equations 3 and 6,

Ih = Ī × ef(R,C)+εh (10)

In the logarithmic space, εh accounts for spatiotemporal variability in GHI during hurri-

canes. Under our initial assumption that hurricanes only modify the GHI logarithmic mean,

εh remains the same as normal-conditions ε. Thus

Ih = Ī × ef(R,C)+ε (11)

Following the lognormality assumption for GHI under normal conditions, Ih can be esti-

mated by transforming GHI during normal conditions to GHI during hurricane conditions

Ih = I × ef(R,C) (12)

Based on the assumption that hurricanes only modify the GHI logarithm mean, Equation

12 enables us to leverage well-defined GHI normal condition statistics throughout the entire

U.S.17 with a clean and simple formula to find decayed GHI during hurricanes. For each site
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j and time t, a realization of GHI during normal conditions (Ĩt,j) is sampled and adjusted

to hurricane conditions using f(Rt,j, Ct) as

Ĩht,j = Ĩt,j × ef(Rt,j ,Ct) (13)

Next, the power q̃t,j generated at time t and site j is estimated per area of installed solar

panel A with efficiency E, the ratio between the amount of electricity the panel produces

and the amount of solar energy it absorbs from the sun. Thus

q̃t,j = Ĩht,j × x̃t,j × A× E (14)

Finally, the cumulative energy Q̃t,j generated is updated by adding the product between

q̃t,j and dt, the interval between time steps.

Q̃t,j = Q̃t−1,j + q̃t,j × dt (15)

Results

Best-Fitted functions for GHI decay

We conducted mixed-effect regressions for all 16 combinations of functional forms and nor-

malizing radii. We report all fitted parameters in the Supplementary Information. Addi-

tionally, we estimated the Akaike information criterion (AIC)40 to evaluate the regressions’

relative statistical performance. The model with f4 and R = d/ROCI exhibits the best

performance. We find that the selection of the functional form f did not modify the regres-

sion statistical performance to the degree of the selection of the normalizing radius. The

performance of ROCI is followed by R34, and ROCI and R34 performed significantly better

than RMW and R0 (see Supplementary Information).

Figure 3 shows the best fit, that is, f4 and R = d/ROCI, for different categories. The
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plot shows how GHI decays during hurricanes, with stronger effects closer to the hurricane

center and for higher hurricane categories. These observations are consistent with the pres-

ence of optically thick cloud structures close to the hurricane center and during hurricane

maturity and intensification as noted previously. The regression also shows that the decay

consistently extends up to sites that are ∼1.3 times ROCI from the hurricane center, con-

firming the observation that the cloud structures and radial extent of hurricane circulation

defined by ROCI are strongly coupled with the hurricane mechanism for high light absorp-

tion and reflection. Because this threshold (∼ 1.3) does not change significantly for different

categories, hurricanes with low categories can cover more extensive regions with clouds that

reduce GHI than hurricanes with high categories as long as they have larger ROCI. However,

the level of the decay will be smaller for lower categories.

Figure 3: Fitted f4 as function of R = d/ROCI that tracks GHI decay during hurricanes.
This fit has the best AIC performance out of the 16 combinations of normalizing radii and
functional forms tested.

Solar generation in the East Coast of the U.S. during hurricanes

We use our integrative framework to estimate the distribution of cumulative solar generation

during hurricanes in 1217 counties of 21 states with high hurricane risk in the East Coast of

the U.S.. The 5018 synthetic hurricanes described previously were included in the assessment

(H = 5018). We used the counties’ centroids as sites of interest (N = 1217) and conducted
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the analysis for unitary area of installed solar panel (A = 1) and for an efficiency of 19%

(E = 0.19), representative of the efficiency of commercial rooftop systems such as LG solar

panels.

We assessed cumulative solar energy generation for four days during a hurricane emer-

gency using time steps of 2 hours. In Figure 4, we show a subset of cumulative generations

Q̂t,j for four coastal counties exposed to high hurricane hazard, Galveston (TX), Miami (FL),

New Hanover (NC), and New York (NY). Each curve depicts how much energy a stakeholder

will harvest since a hurricane hits land. Thus, for t = 0 at landfall, we set Q̃0,j to 0 for all

sites j. The gray curves show the simulations of cumulative electricity generation per square

meter of installed solar panel due to different GHI levels during the hurricane season, GHI

decay as a result of hurricane cloud conditions, and the potential failure of solar panels due

to wind damage. For reference, the plots include in dashed and dotted lines cumulative

solar generation from median GHI conditions during normal summer and winter seasons,

respectively. The curves are wavy as GHI varies at different times of the day, i.e., the curves

are flat at nights. Additionally, we evaluated the extreme hurricane conditions that led to

low electricity generation in these counties and characterized them through return periods.

While return periods are commonly estimated as a function of hurricane intensity,41 in this

application, we estimate return periods as function of cumulative solar generation, our metric

for resilience. For a certain generation level, we estimated its return period as the division

between the number of equivalent years of hurricane simulation (1485) and simulated events

with same or worse generations. These estimated return periods represent the average time

between storms under which cumulative solar generation is below specific values. Storms

that cause lower generation will have longer return periods.

Counties are more frequently affected by storms whose induced GHI decays are not

intense and which do not cause major panel damage. Most simulations show that cumulative

generations for these very frequent events (with return periods shorter than 3 years) are

spread around the summer median (gray curves shown in Figure 4). Events with longer
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return periods (above 3 years) are often driven by stronger storms. For example, reductions

in generation with 10-year return periods are caused by hurricanes that reach a category of

at least 3 in 14% of counties. Yet, reductions with 1000-year return periods are caused by at

least category-3 hurricanes in 42% of counties. These less frequent events will significantly

affect cities’ abilities to harvest solar power through both strong GHI decays due to optically

thick clouds absorbing and reflecting light and extreme winds leading to solar panel damage

and failure. Note that cloud conditions of category-5 hurricanes drastically reduce the median

GHI by 74%, i.e., f4 = −0.34, even at distant sites 0.5ROCI away from the hurricane center

(Figure 3). Few realizations with failed solar panels stand out as cumulative generation is

flat after failure (Figure 4).

Figure 4 also demonstrates how different geographical locations have different risks of

reduced solar generation. The results indicate that in New York City, NY, an event with

a 1000-year return period will not lead to solar panel failure, but due to hurricane clouds,

generation would be similar to the one during the winter. In contrast, in New Hanover, NC,

an event with a 1000-year (or 333-year) return period will lead to complete loss of generation

triggered by solar panel failure almost as soon as the hurricane makes landfall. Miami-Dade,

FL, and Galveston, TX, face higher risk as even an event with a 100-year return period can

reduce their solar generation capacity to negligible levels.

To comprehensively visualize the spatial distribution of risk of losing solar generation,

Figure 5 shows cumulative solar generation at day 4 after landfall for multiple return periods

as a percentage of the median generation during the summer. The plot shows that solar

generation during an event with a 3-year return period will be reduced by around 25% on

average for the counties in the analysis, with slightly higher reductions in Mid-Atlantic and

the northern region of the South Atlantic. For example, the average reductions in New

Jersey and South Carolina were 27% and 26%, respectively. Average reductions for events

with 10-year and 33-year, 100-year, 333-year, and 1000-year return periods were 40%, 50%,

59%, 72%, and 82%, respectively. While events with return periods of 33 years and lower
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are thoroughly controlled by GHI decay during cloud conditions, as noted earlier, events

with 100-year return period can bring generation to 0 due to solar panel failure, especially

in counties in the southern states, e.g., Texas, Louisiana, and Florida. Events with 333-year

return periods lead to panel failures in counties that are even a hundred kilometers away

from the coastline. Events with 1000-year return periods will expand the regions with panel

failures triggering complete reduction of solar generation in almost entire states, e.g., 100% in

Florida and 96% in Louisiana. These results show that northern and southern states undergo

significant reductions in solar generation even for less frequent events (31% in Florida versus

40% in New Jersey for 10-year return period). However, rarer events will disproportionately

exacerbate the generation reduction in the southern states as solar infrastructure fails at

higher rates.

Discussion

This paper has proposed the first framework to evaluate solar generation during hurricanes

at a regional scale. The framework integrates four key pieces: hurricane hazard analysis,

solar irradiance modeling, solar panel vulnerability, and a newly presented model to assess

irradiance decay as a result of hurricane cloud conditions. This framework aims to be the

foundation for assessing the vulnerability of modern power systems with solar generation

infrastructure to hurricanes and a tool to test strategies and policies to increase their re-

silience.

The integrative framework has been presented through a proposed algorithm to model the

time-series of solar generation during hurricanes. While the algorithm is a key contribution

from this article, our scope also includes the development of a model to capture irradiance

decay during hurricanes, a crucial piece of the framework, which to the authors’ knowledge,

has not been developed before. The irradiance decay model is based on an extensive as-

sessment of GHI under 22 landfalling storms in the North American basin, which reached a
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category of at least 3 during their lifetime. The dataset conclusively shows that hurricanes

reduce the GHI throughout their tracks. We confirmed that the distance from a site to the

hurricane and its category are key predictors of the irradiance decay. We argue that the

mechanism driving the decay is the formation of optically thick clouds in the eyewall, which

often become thicker during hurricane intensification. These optically thick clouds, with high

moisture density and vertical depth, reduce direct incident radiation by light absorption and

reflection.

We fitted four functional forms that vary in complexity to represent irradiance decay using

a mixed-effects regression. Multiple category-dependent features controlling the intensity

and shape of decay were tested, and the best functional form was selected using AIC to

demonstrate its suitable statistical performance. ROCI is shown to be an effective size

metric for normalizing the distance in the functional forms of irradiance decay.

Finally, we described the algorithm to quantify solar generation during hurricanes. We

apply the algorithm to 1217 counties belonging to 21 states in the Eastern region of the U.S..

We use cumulative generation at day four since landfall as a metric to measure resilience.

Our results show that generation during most storms with return periods shorter than three

years will be distributed as normal conditions during summer. In contrast, events with

return period of 10 years and 33 years will reduce generation significantly, by 37% and 48%,

on average, respectively. Optically thick clouds that reflect and absorb light are the drivers

of such reductions. Rarer events (with return periods of 333 and 1000 years) will reduce

generation to a higher degree. While in the northern states, these extreme events will reduce

generation due to optically thick clouds, in the southern states, they will likely trigger solar

panel structural failure due to strong winds. As a result, southern regions face a higher risk

of losing power generation, as northern regions can still generate at a reduced level if the

panel has not failed. Solar generation is expected to become a pillar for our future power

systems. Thus, our results show that for communities to rely on this pillar to deliver critical

power during extreme events, higher standards for solar panel structural design are required.
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(a) Galveston, TX (b) Miami-Dade, FL

(c) New Hanover, NC (d) New York, NY

Figure 4: Simulations of cumulative generation from solar panels in four different counties
through different hurricane conditions for four days. Only 50 out of the 5018 simulations
are included in the plot for visual clarity. For reference, the cumulative of median solar
generation during normal conditions (without hurricanes) in the months of January and
July are shown.
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(a) 3 years (b) 10 years (c) 33 years

(d) 100 years (e) 333 years (f) 1000 years

Figure 5: Cumulative generation from solar panels for different levels of hurricane conditions
at day four since landfall as a percentage of the median cumulative generation during the
summer (July). Different levels of cumulative generations are characterized by different
return periods, i.e., average time between storms that cause same or lower generation.
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