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Abstract

Void growth and morphology evolution in fcc bi-crystals are investigated using crystal plasticity
finite element method. For that purpose, representative volume element of bi-crystals with a
void at the grain boundary are considered in the analysis. Grain boundary is assumed initially
perpendicular/coaxial with the straight sides of the cell. Fully periodic boundary conditions
are prescribed in the representative volume element and macroscopic stress triaxiality and Lode
parameter are kept constant during the whole deformation process. Three different pairs of crystal
orientations characterized as hard-hard, soft-soft and soft-hard has been employed for modelling
the mechanical response of the bi-crystal. Simulations are performed to study the implications
of triaxiality, Lode parameter and crystallographic orientation on slip mechanism, hardening and
hence void evolution. The impact of void presence and its growth on the heterogeneity of lattice
rotation and resulting grain fragmentation in neighbouring areas is also analysed and discussed.

Keywords:
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1. Introduction

One of the common challenges to overcome when using advanced metals and alloys in en-
gineering applications is their insufficient ductility (Fourmeau et al., 2013; Basu et al., 2017).
Strengthening of materials is usually achieved by introduction of precipitates, second phase par-
ticles or new grain boundaries while at the same time these additions are possible sites of dam-
age/fracture initiation, cf. (Yerra et al., 2010). Predominant mechanisms of ductile failure in
polycrystaline metals are nucleation, growth and coalescence of micro-voids (small scale voids),
cf. (Benzerga and Besson, 2001). Accounting for these mechanisms in modelling, a family of
macroscopic approximations were proposed, namely prominent models like Gurson-types models
(Gurson, 1977; Tvergaard and Needleman, 1984), their extension in later works by taking into
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account many aspects such as void shape, size, volume fraction and distribution of voids, as well
as distinct features of the constitutive model of a virgin material such as strain and kinematic
hardening, viscoplasticity and plastic anisotropy. For respective contributions see extensive review
by Besson (2010). Such type of approach was also used to formulate the micro-scale Gurson-type
yield condition for single crystal (Han et al., 2013; Paux et al., 2015). In the case of Han et al.
(2013) such condition is the result of micromechanical analysis based on variational estimates due
to de Botton and Ponte Castañeda (1995). Note that, there are number of papers in which such
variational approach is directly applied to estimate the yield surface of single crystal with voids
(Mbiakop et al., 2015; Song and Castañeda, 2017).

On the micro-scale, two failure modes have been found to be operational in parallel: cleavage
and dimple fracture (Papaefthymiou et al., 2006). Studies of Kadkhodapour et al. (2011a,b); Lani
et al. (2007); Furnémont et al. (2007) have reported different types of damage mechanisms based
on their experimental work with the help of SEM and light optical microscopy. By experimental
observations, nucleation of voids is related to the fracture and decohesion of second phase parti-
cles or other precipitates. The next steps in understanding the failure process are intergranular
fracture along high angle boundary (HAB) and microvoid-induced transgranular fracture. For
example, such observations have been made for aluminium alloys AA7XXX subjected to the so-
lution treatment along the processing route, which resulted in partial recrystallization (Dorward
and Beerntsen, 1995; Deshpande et al., 1998). For such alloys it was observed that precipitates
are often grouped along HABs which promotes intergranular fracture along them. Importance
of HAB as a possible location of void growth has been also confirmed by molecular dynamics
simulations (Bringa et al., 2010). Additionally, as seen in Morere et al. (2000), concentration
of precipitates is also observed along subgrain boundaries, characterized by a low misorientation
angle, together with associated intersubgranular failure. It is also worth to note that the effect
of crystal orientation and the grain boundary was observed under shock loading conditions for
copper bi-crystal by Perez-Bergquist et al. (2011). They observed formation of voids both at the
grain boundary and within each crystal, with the number and shape of voids highly dependent on
the crystallographic orientation. Although this type of loading is beyond the scope of this paper,
these experiments confirm the role of crystal anisotropy and grain boundaries in the failure of
crystalline material.

Although there is quite a lot numerical studies of single crystals with voids, (O’Regan et al.,
1997; Potirniche et al., 2006; Yerra et al., 2010; Srivastava and Needleman, 2015a; Selvarajou et al.,
2019) very few numerical studies have been dedicated to the studies on void in bi-crystals. One
can mention earlier works by Liu et al. (2009) in which the fcc bi-crystal under uniaxial tension
was investigated to assess the effect of boundary inclination and the crystallographic orientation
and misorientation on the void growth and the plastic deformation distribution around the voids.
Liu et al. (2007, 2010) studied mechanisms of coalescence of voids located at adjacent grains in
bi-crystal unit cell using finite element calculations. Recently, Jeong et al. (2018) considered the
unit cells with a void inside a grain, at a grain boundary and at a triple junction. The effect of
crystal orientation on the flow strength and growth rate of the void was discussed under prescribed
boundary conditions for constant stress triaxialities. Even though studies mentioned above shed
light on the behaviour of void at boundary on bi-crystals, there are still open questions, like the
effect of neighbouring grain orientation on void shape, the effect of stress state on void growth or
void collapse behaviour among others.
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Appreciating the important role of a grain boundary on void behaviour, as noted by Deshpande
et al. (1998); Bringa et al. (2010); Morere et al. (2000), the main purpose of the current work is
to study the factors affecting void growth and morphology evolution in bi-crystals, such as stress
triaxiality and Lode parameter and the relative orientation between grains, focusing specifically
on voids originating in high angle grain boundaries. The response of bi-crystals containing a void
at the grain boundary are also compared with the response of a single crystal with a void.

The paper is constructed as follows, after this introductory section, the problem formulation
including crystal plasticity framework, representative volume element and prescribed boundary
conditions are presented in Section 2. In Section 3 results of FE simulations are compared from
single crystals with bi-crystals and from different bi-crystals RVEs. The paper is closed by con-
clusions. Details of implementation of user defined multi-point constraints (MPC) subroutine for
controlling stress state (stress triaxiality and Lode parameter) and periodic boundary conditions
(PBC) are included in the Appendix.

Table 1: Slip systems {m̃α, ñα} of the FCC crystal structure

α ñα m̃α α ñα m̃α

1 (111) [1̄01] 7 (1̄11) [01̄1]
2 (111) [01̄1] 8 (1̄11) [101]
3 (111) (11̄0] 9 (1̄11) [110]
4 (11̄1) [1̄01] 10 (111̄) [1̄10]
5 (11̄1) [011] 11 (111̄) [101]
6 (11̄1) [110] 12 (111̄) [011]

2. Problem formulation

Three dimensional finite element calculations are carried out to model the response of voids,
located at the grain boundary of a bi-crystal, under triaxial loading conditions using a unit cell
model. The unit cell is modelled as an fcc single crystal with the 12 potentially active slip
systems taken to be {111} 〈110〉 (Table 1). Finite element analyses are carried out using a rate
dependent crystal plasticity constitutive relation in the large deformation framework. Description
of the crystal plasticity model and material parameters used for calculations are given below. The
plastic parameters of the material analyzed in this work correspond to annealed OFHC copper
(Kalidindi et al., 1992).

2.1. Constitutive model for a single crystal

Description of kinematics follows the standard large strain deformation framework. The mul-
tiplicative decomposition is applied, according to which the deformation gradient F is the product
of an elastic part Fe and a plastic part Fp, namely:

F = FeFp. (1)
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Table 2: Material parameters for crystal plasticity model (Han et al., 2013; Kalidindi et al., 1992)

Parameter Notation Value

Reference shear rate γ̇0 (s−1) 0.001
Inverse of strain rate sensitivity p1 20

Initial critical resolved shear stress τ̂0 (MPa) 20
Initial strain hardening modulus h0 (MPa) 180

Saturated critical resolved shear stress τ̂s (MPa) 117
Strain hardening exponent p2 2.25
Self-hardening coefficient qαβ (α = β) 1

Latent hardening coefficient qαβ (α 6= β) 1.4
Elastic constants

c11 (GPa) 199
c12 (GPa) 136
c44 (GPa) 105

It is assumed that the plastic deformation occurs by dislocation glide on slip systems, therefore
the evolution of the plastic part follows the equation

Ḟp =

 NS∑
α=1

γ̇αM̃α

Fp , M̃α = m̃α ⊗ ñα (2)

M̃α being a Schmid tensor where the slip directions m̃α and planes ñα are specified in the interme-
diate configuration. It should be noted that the plastic deformation described by Eq.2 is volume
preserving, detFp = 1, since m̃α · ñα = 0. The current orientation of crystallographic directions
and planes can be found using the elastic part of the deformation gradient as follows

n(t)α = (FeT )−1ñα , m(t)α = Fem̃α . (3)

Because the face centred cubic (fcc) crystal structure is considered in the study, the dislocations
glide happens on the {111} planes in 〈110〉 directions. For the NS = 12 slip systems, the slip
planes and directions are listed in Table 1.

The shear rate γ̇α on a given slip system α is related the stress state by the phenomenological
visco-plastic type power law (Asaro and Needleman, 1985)

γ̇α = γ̇0

∣∣∣∣τατ̂α
∣∣∣∣p1 sign(τα). (4)

with the resolved shear stress
τα = T̃ · M̃α (5)

where the parameter γ̇0 is the reference shear rate, p1 is the inverse of the strain rate sensitivity
parameter and T̃ is the Mandel stress. When the elastic strains are small as compared to the
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inelastic ones, the Mandel stress can be approximated by the IInd Piola-Kirchhoff stress pushed
forward to the intermediate configuration S̃, namely:

T̃ = (FeTFe)︸ ︷︷ ︸
≈I

S̃ ≈ FpSFpT (6)

The stress tensor S̃ is calculated with help of the hyperelastic law assuming the Kirchhoff-type
function of free energy density per unit volume in the reference configuration

S̃ =
∂Ψ

∂Ee
= C ·Ee where Ee =

[
1

2

(
FeTFe − I

)]
(7)

with C the elastic IVth order stiffness tensor.
The critical resolved shear stress τ̂α, obeys the following evolution rule (Kalidindi et al., 1992)

˙̂τα = h0

NS∑
β=1

qαβ

(
1− τ̂β

τ̂s

)p2
|γ̇β| (8)

where h0 is the initial hardening rate, τ̂s the saturation resistance, p2 the hardening exponent and
qαβ the cross hardening coefficient matrix. The model parameters for elasticity and plasticity are
given in Table 2.

The constitutive equations mentioned above are implemented into a user subroutine UMAT in
ABAQUS/Standard (2019). The implementation of the crystal plasticity model follows the fully
implicit time integration procedure with the consistent material tangent operator presented by
Meissonnier et al. (2001).

2.2. Representative Volume Element and boundary conditions

In this section, representative unit cells used for studying the behaviour of a void in both single
crystal and bi-crystal cases are described briefly. For studying the void response in a single crystal,
the representative volume element consisting of a cubic cell with a initial spherical void at the
center as shown in figure 1 is considered and initial void volume fraction f0 = 0.0044 is used. The
initial void volume fraction is selected to be small, so that we can study the void shape changes
and its evolutions at large deformations. Void volume fraction is calculated as f0 = Vvoid/Vcell,
where Vcell is the initial volume of the cell and Vvoid is the initial volume of the void. The complete
matrix-void zone is discretized into 90000 C3D8R elements. For the bi-crystal case, representative
unit cell consists in a cube with a void inside divided into two equal parts, each half having half
spherical void with f0 = 0.0022, as shown in figure 4. Finite element mesh and number of elements
in the mesh are the same as for the single crystal case. Depending on the cases to be studied,
different crystallographic orientations are assigned to each half of the bi-crystal matrix and will
be discussed in detail in the next section.

Initially, unit cells are aligned such that the edges of the unit cell are parallel to the global
XYZ axes. In the case of the bi-crystal cell, interface (grain boundary) between the two halves
of the unit cell is perpendicular to the global X axis. The notation adopted here denotes each
orientation by the crystallographic directions, aligned with the main loading direction. The main
loading direction is parallel to the X axis and the secondary loading direction is parallel to Z
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or Y axis depending on the selected Lode parameter. Six crystallographic orientations are used
in this study. Orientations are given in terms of the Bunge Euler angles and crystallographic
planes parallel to each loading direction. Pole figures for the orientations considered are shown in
figure 1. For simplicity, each 6 orientations will be henceforth called O1 - O6 as shown in Table 3.

Macroscopic Cauchy stress σij components are related to the microscopic Cauchy stresses σ̄ij
through the relations:

σij = 1
Vcell

∫
Vcell

σ̄ij dVcell (9)

and the definition of macroscopic equivalent stress σeqv, triaxiality T and Lode parameter L are
given by:

σeqv =
√

3
2
σ′ijσ′ij; T = σh

σeqv
; L = 2σ2−σ1−σ3

σ1−σ3 (10)

with

σ′ij = σij − σhδij; σh = σii
3

(11)

and σ1, σ2 and σ3 the principal macroscopic true stress components. Following Srivastava and
Needleman (2015a), an equivalent strain is calculated based on the following numerical volume
average of local logarithmic strain ε̄ij, namely:

〈εij〉 =
1

Vmatrix

∫
Vmatrix

ε̄ijdVmatrix (12)

where Vmatrix denotes the volume of bi-crystal excluding the void. It must be stressed that, in
general, this volume averaged value 〈εij〉 is not equal to the macroscopic logarithmic strain as long
as deformation is non-uniform. The definition of the equivalent strain is then proposed as follows:

εeqv =

√
2

3
〈ε′ij〉 〈ε′ij〉 where 〈ε′ij〉 = 〈εij〉 − εhδij ; εh =

〈εii〉
3

(13)

This value is used only for the purpose of graphical presentation of results.
Proper boundary conditions are important for studying symmetric (O1, O2, O3) and non

symmetric (O4, O5, O6) crystallographic orientations, as crystals tend to come shear strain com-
ponents. If shear strain components are constrained, cells deformation behaviour is affected and
hence void growth. In order to avoid this effect in our RVEs, fully periodic boundary conditions
are applied to the cell in all three directions, thereby allowing crystal to deform freely without
constraints. The main idea of periodic boundary conditions is that the relative displacement be-
tween opposing nodes is the same, i.e., the nodal displacement of opposite nodes is coupled, but
still allowing global strain in this direction. Note that by prescribing periodic boundary condi-
tions we are analysing a unit cell which corresponds to the configuration representing a bi-crystal
laminate with voids periodically distributed along every second grain boundary. In addition, the
values of T and L are prescribed throughout the numerical simulations as constant values. This
is achieved by implementing a user defined multi point constraints subroutine in the framework of
ABAQUS/Standard (2019). Detailed description of periodic boundary conditions and multi point
constraints implementations in ABAQUS/Standard (2019) are given in Appendix A.
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In this work four values of stress triaxiality (T = 0, 1/3, 2/3, 1) and three values of Lode
parameter (L = 0, 1, −1) with fully periodic boundary conditions are considered. Some of the
combinations of triaxiality and Lode parameters analyzed corresponds to general loading scenarios
used in experiments and simple loading conditions, like T = 1/3, L = −1 (uniaxial tension),
T = 2/3, L = 1 (biaxial tension) and T = 0, L = 0 (pure shear stress). Since anisotropic
material model is assumed in each case orientation of principal stress axes is explicitly specified
with respect to material anisotropy axes. It should be underlined that in the considered examples
dependence of the void growth on the Lode parameter cannot be studied separately from the effect
of plastic anisotropy. Finally, as our material model is rate dependent, a value of ε̇eqv/γ̇0 in the
range (100− 150) is also assured in all the simulations performed in this work.

Table 3: Orientation of single crystal matrix for different RVEs in terms of Euler angles. The Euler angles
are defined with respect to global axis (X,Y,Z)

RVE Bunge Euler angles (◦) Crystallographic orientation on global

(φ1,Φ, φ2) coordinates X-Z

O1 (0,0,0) [100] -[001]
O2 (0,45,0) [100] -[011]
O3 (45,0,0) [110] -[001]
O4 (45,54.73,0) [11̄0] -[111]
O5 (0,45,54.73) [111] -[11̄0]
O6 (45,35.26,90) [11̄1] -[1̄12]

2.3. Single crystal without voids

Before studying the void response in single crystal and bi-crystal, we will first study the
response of single crystal without void for different loading conditions (Lode parameters L =
0, 1,−1) and the orientations given in Table 3 . Equivalent stress-strain curves are plotted for all
the Lode parameters and orientations considered (see figures 2). Definitions of equivalent stress
and strains are as given by equations 10 and 13.

Note that yielding of a single crystal without void is not affected by triaxiality parameter T
since resolved shear stress in Eq. 5 depends only on the deviatoric part of stress. This leads to
the conclusion that, in particular, an equivalent strain-stress curve for L = −1 (resp. L = 1) and
a selected orientation is the same for uniaxial tension (resp. uniaxial compression) and biaxial
compression (resp. biaxial tension). Additionally, due to the form of Eq. 4 and 5, the same
response in terms of equivalent stress and strain is obtained when we only change the sign of
stress. In particular, the same response is found for uniaxial tension (L = −1 and T = 1/3) and
uniaxial compression (L = 1 and T = −1/3) along the same crystallographic direction. However,
in view of the convention assumed in our calculations for direction of primary loading, for L = −1
(and T = 1/3) we have to do with uniaxial tension along crystallographic direction parallel to X
axis, while for L = 1 (and T = −1/3) with uniaxial compression along crystallographic direction
parallel to Z axis. Therefore, if the orientation is not symmetric with respect to this change,
like e.g. O4, O5 or O6, we may observe different responses for L = 1 and L = −1 in Fig. 2.
It can be said that in this case the effect of Lode parameter is only apparent, and in fact the
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Figure 1: Cell containing a initially spherical void at its center and pole figures representing the initial orientations
studied in this work.

observed difference is due to material anisotropy. Similar effects are observed when the quadratic
Hill criterion is used. Such effects were thoroughly discussed by Benzerga and Besson (2001).
Nevertheless in the present case also a direct effect of the Lode parameter is observed due to non-
linearity of the model. The best example to demonstrate such effect is orientation O1 for which
three principal directions of stress are equivalent from the point of view of crystal symmetry. In
this case as expected the same stress-strain curve is found for L = 1 and L = −1, however, the
response is different for L = 0. It is stressed that this difference is found only when p1 > 1 in Eq.
(4) and increases with increased non-linearity.

For Lode parameter L = −1, the value of equivalent stress is higher for O5 and O6 followed
by O4 and least for O1, O2, O3, as shown in figure 2(a). Similarly for Lode parameter L = 1, the
highest value of equivalent stress is for O4 followed by O5, O6 and least for O1, O2, O3 as shown
in figure 2(b). Finally, as shown in figure 2(c) for L = 0, the highest value of equivalent stress is
for O4, O5, O6 orientations and least for O1, O2, O3.

8



From this data, we categorized the crystal orientations into hard and soft orientations. For
a given Lode parameter, the orientation with higher values of equivalent stress are considered as
hard orientations and orientations with lower values of equivalent stress are considered as soft
orientations. In reference to classical crystal plasticity studies, it can be said that soft (resp.
hard) orientations are such which have high (resp. low) Schmid-like factor under given loading
conditions.

(a) L=-1 (b) L=1

(c) L=0

Figure 2: Equivalent stress - equivalent strain for single crystals without voids for different Lode parameters and
different crystal orientations.The presented curves are the same for all triaxiality values considered.

3. Results and Discussion

Analytical studies on the void growth in an anisotropic rigid-plastic matrix described by the
quadratic criterion performed by (Benzerga and Besson, 2001) for spherical voids, and continued
by (Keralavarma and Benzerga, 2010; Keralavarma et al., 2020) for ellipsoidal voids, revealed that
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this growth is governed by the formula

ḟ

f(1− f)
∼ 3

h

1

σ̃2
eq(N)

sinh

(
3

h

σm
σ1

)
(14)

in which σ̃eq(N) depends on the matrix plastic anisotropy, changing with the loading directions
N with respect to the main anisotropy axes, σm is the mean stress, σ1 the yield stress in the
selected direction, while h is the so-called net anisotropy invariant calculated as a single value for
a given material. Accordingly an exponential void growth is affected by the triaxiality T and h,
while stress direction N modifies mainly the proportionality coefficient through σ̃2

eq. In analogy
to this study Paux et al. (2015) proposed an approximate condition for the voided single crystal
described by the non-quadratic regularized Schmid law, bearing mathematical similarities with the
power-law rate-dependent model studied here. Authors have assessed the coefficient κ ∼ 1/h as
equal to 0.506 for the fcc crystals, so it can be assumed as constant here. Therefore, qualitatively,
mainly the dependencies on triaxiality and the plastic anisotropy are expected to be observed in
the present analysis. Nevertheless, as it will be shown, they are additionally modified by the fact
that the void is located at the bi-crystal boundary and not in the homogeneous matrix. At this
moment such additional dependencies can be analyzed only numerically.

In this section results from different numerical simulations are presented. We will focus on the
joint effect of stress state (T, L) and matrix crystallographic orientations (i.e. material anisotropy)
on void volume fraction evolution and void morphology. We will compare results from single
crystals with bi-crystals and results from different bi-crystal RVEs. In this work results of single
crystal are used as reference values to compare with bi-crystals. Calculations of single crystals
with voids are performed for four different crystallographic orientations O1, O2, O4, O6, 3 Lode
parameters (L = −1, 0, 1) and 4 values of triaxialities (T = 0, 1/3, 2/3, 1). Based on the
previous studies on the void growth in fcc single crystals Srivastava and Needleman (2015b), at
this low and moderate triaxiality level, porosity growth is expected to be rather slow, void shape
change significant and Lode parameter to have an important influence on void behavior in this
respect. It should be added that for the advanced regime of the considered processes the changing
shape of a void and a unit cell may additionally affect the dependencies observed in the calculations
(Keralavarma and Benzerga, 2010).

3.1. Void growth in a bi-crystal

For studying the effect of grain orientation on the void growth in bi-crystals, three different
representative volume elements (RVE) representing three different microstructures are created.
The difference between each RVE are the crystallographic orientation assigned to the matrix of
each half cell. Different orientations are assigned for half cell 1 and half cell 2, such that three
different bi-crystal RVEs are formed. The orientations sets for the simulations of bi-crystals are
selected from the cell calculations of single crystals without voids for different Lode parameters.
By using the hard and soft orientations data, three different RVEs of bi-crystals representing;
1.soft-soft; 2. hard-hard; 3. soft-hard are created.

Orientations used for soft-soft RVE are O1 and O2 for half cell 1 and half cell 2, respectively.
Similarly for hard-hard RVE, orientations used are O6 and O4 for half cell 1 and half cell 2, respec-
tively. For soft-hard case, the orientations considered are O1 and O4 for half cell 1 and half cell 2.
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It can be verified that for all three cases the grain boundary between two halves of bi-crystal is a
high angle boundary. The misorientation angle and misorientation axis specified by the common
crystallographic direction of two orientations is for soft-hard 56.6◦ and 〈0.590,−0.769, 0.245〉, for
hard-hard is 35.6◦ and 〈0.598, 0.800, 0.046〉, while for soft-soft is 45◦ and 〈100〉. Note that for
soft-soft bi-crystal the grain boundary is a twist boundary for which its unit normal is coaxial
with misorientation axis. In the remaining two cases these two vectors are inclined with respect
to each other.

For bi-crystals without voids, figs. 3(a) and 3(b) represent equivalent stress- equivalent strain
curves for soft-hard orientation when different Lode parameter values (L = −1 and L = 1) are
prescribed in the whole cell. Green lines represent stress-strain relations for (soft) half cell 1
and red lines represent stress strain relation for (hard) half cell 2. Blue lines represent stress
-strain curves when the whole bi-crystal is considered. The presented curves are the same for
any triaxiality value. For comparison purposes, equivalent strain is calculated in all the cases
considering the volume of the whole cell. Note that due to imposed periodic boundary condition
analyzed bicrystal without a void represent the behaviour of the laminate with alternating layers
with O1 (soft) and O4 (hard) crystallographic orientation. Thus the predicted stress and strain
fields within each half cell are uniform, however, considerably different from each other and from
the overall behaviour. For L = 1, fig. 3(c) presents stress-strain curves for soft-soft orientation.
For L = −1, fig. 3(d) shows stress-strain relations for the hard-hard case. For L = −1 and L = 0,
for the soft-soft bi-crystal case, stress-strain curves overlaps for both half cells and the full cell.
For L = 1 and L = 0, stress-strain curves for hard-hard bi-crystal are similar as for L = −1 .
These last cases are not shown in the document for the sake of brevity.

For bi-crystals with a void, figure 4 shows FE mesh and the 3 RVEs used in the present study
with their respective initial pole figures. The projection of misorientation axis is also marked in
the pole figure.

The initial void volume fraction of each half cell is f0 = 0.0022. Void volume fraction is
calculated as f = Vvoid/Vcell, where Vcell is the volume of the whole cell and Vvoid is the volume of
the void in the half cell. Calculating the void volume fraction for symmetric orientations O1, O2,
O3 is straight forward, as the cell faces remain straight and the current volume of the cell is simply
given by (Ux + Dx) · (Uy + Dy) · (Uz + Dz), where Dx, Dy, Dz are the initial lengths of the cell in
X,Y,Z direction respectively and Ux, Uy, Uz are the displacement applied at each direction. For
non symmetric orientations, the initially straight sides of the unit cell along which fully periodic
conditions are applied becomes curved. Since the cell faces are not straight it is not direct to
calculate the current volumes of the half cells and the void. To face this problem, the following
approach has been adopted in this work: The 3D (X,Y,Z) coordinates of all the nodes on the
surface of the void (initially spherical) is extracted from the finite element calculations for all the
time steps. By using these coordinates, void volume fraction of each half cell is calculated at each
time increment with the help of convex hull algorithms (convex hull of a given set of points is the
smallest convex polygon that contains all the points).

3.1.1. Void growth in a soft-soft bi-crystal.

First we will present some results related to soft-soft bi-crystal RVE. This RVE has O1 ori-
entation for half cell 1 and O2 orientation for half cell 2. Evolution of void volume fraction f
with respect to the equivalent strain εeqv for Lode parameter L = −1 is shown in figure 5(a) for
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(a) Soft-hard bi-crystal, L=-1 (b) Soft-hard bi-crystal, L=1

(c) Soft-soft bi-crystal, L=1 (d) Hard-hard bi-crystal, L=-1

Figure 3: Equivalent stress - equivalent strain in half cell 1, half cell 2 and the whole bi-crystal without void for
soft-hard, soft-soft and hard-hard orientation for different Lode parameters. The presented curves are the same
when any value of triaxiality is prescribed in the whole cell.

different triaxialities (T ). Continuous lines represent void volume fraction evolution in half cell
1 and dotted lines in half cell 2 and different colours represents different triaxiality values. For
triaxility T = 1, T = 2/3 and T = 1/3, we can see that void volume fraction f increases with εeqv
in both half cell 1 and half cell 2, whereas for triaxiality T = 0, void volume fraction decreases
below f0 in both half cell 1 and half cell 2. This behaviour of void volume decreasing below f0 was
also observed for porous single crystal by Srivastava and Needleman (2015a). In the case of low
triaxialities, simulations are terminated when the outer surface of the voids comes in contact with
each other. In general void grows faster at moderate triaxialities (T = 1, 2/3) compared to low
triaxialities (T = 1/3, 0), this trend has been previously observed by Srivastava and Needleman
(2015a); Yerra et al. (2010); Srivastava and Needleman (2013) for porous single crystals. Com-
paring void volume fraction evolution between the two half cells, we observe that difference in
void volume evolution between two half cells is hardly noticeable. This results from the fact that
for this case direction X of major stress σ1 6= σ2 = σ3 coincides with the same crystallographic

12



Figure 4: Different bi-crystal RVEs and respective pole figures representing the orientations used for studying the
effect of matrix orientation on the void behaviour. Blue colour represents orientations in half cell 1, green colour
represents orientation in half cell 2 and red colour represents the projection of misorientation axis

.

direction [001] in both half cells.
As seen from figure 5(b), for Lode parameter L = 1, void grows slower than for L = −1 (note

that the vertical axis of both figures has different scale). We can see differences in void growth
behaviour of half cell 1 and half cell 2 for all triaxialities considered. In this case direction Z of
a minor stress σ3 6= σ1 = σ2 varies between both half cells (see Table 1). As seen in Fig. 3(c)
the stress response in two half cells is then different, so the level of equivalent stress in half cell
1 is lower than in half cell 2. Following relation (14), void grows faster in half cell 1 (continuous
lines) compared with void growth in half cell 2 (dotted lines) at moderate triaxialities (T = 1, 2/3).
However, at low triaxialities (T = 0, 1/3) void volume in half cell 1 decreases faster as compared to
void in half cell 2. To find a source of such behviour the local triaxialities have been calculated for
the Cauchy stress averaged over each half cell separately. It has been found that the local triaxility
in half cell 1 for case T=0 is negative and equal to −0.2, while for half cell 2 it is higher and equal
to 0.23. Similarly, respective values for the case T=1/3 are 0.22 and 0.44, correspondingly. For
the remaining cases local triaxialities per half cell are approximately equal to the macroscopic
ones. All the values are collected in the table B.6

For Lode parameter L = 0, the behaviour of the void in both half cell 1 and half cell 2 are
similar to the case of Lode parameter L = 1, hence plot of f − εeqv is not presented. Among the
Lode parameters considered, void growth rate is in general higher for Lode parameter L = −1,
followed by L = 0 and L = 1.
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(a) L=-1 (b) L=1

Figure 5: Void volume evolution at different stress triaxialities and Lode parameters for the soft-soft bi-crystal.
Matrix orientation of half cell 1 is O1 and half cell 2 is O2.

(a) L=-1 (b) L=1

Figure 6: Void volume evolution at different stress triaxialities and Lode parameters for the hard-hard bi-crystal.
Matrix orientation of half cell 1 is O6 and half cell 2 is O4.

3.1.2. Void growth in a hard-hard bi-crystal.

For hard-hard bi-crystal RVE, half cell 1 has orientation O6 and half cell 2 has orientation O4.
Similarly to previous comparison, void volume fraction evolution for different Lode parameters
and triaxialities are plotted in figures 6.

For Lode parameter L = −1, void growth in half cell 1 is quite similar to void growth in half
cell 2 for triaxiality (T = 0, 1/3, 1). For triaxiality T = 2/3, we observe a different void growth
behaviour in both half cells. Void in half cell 1 grows faster compared with void in half cell 2.
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For Lode parameter L = 1, we can see distinction in void growth between half cell 1 and half
cell 2 at moderate triaxialities (T = 1, 2/3), as void in half cell 2 grows faster than void in half
cell 1. For the remaining triaxialities (T = 0, 1/3), there is no significant difference in the void
growth in two half cells. Similarly to the soft-soft bicrystal, when calculating local triaxilities per
each half cell it has been found that the local triaxilities in half cell 2 are higher than in half cell
1.

For L = 0, the difference in void growth in half cell 1 and half cell 2 is small. Void in half cell
1 grows faster than void in half cell 2. Plots are not presented for L = 0 for brevity. As in the
case of soft-soft bi-crystal RVE, void growth rate is higher for Lode parameter L = −1, followed
by L = 0 and finally by L = 1.

3.1.3. Void growth in a soft-hard bi-crystal.

For soft-hard bi-crystals, half cell 1 has orientation O1 (soft) and half cell 2 has orientation
O4 (hard). Evolution of f versus εeqv for half cell 1 and half cell 2 for different values of T and
L are given in figures 7. The way results are presented in figures 7 are different as in previous
sections to clearly show the changes occurring at low triaxialities (T = 0, 1/3), as the amount of
void growth is small compared to moderate triaxialities (T = 1, 2/3).

For T = 0, as we can see from figure 7(a), void volume fraction in both half cell 1 and half cell
2 decreases below the initial void volume fraction f0. For half cell 1, void volume fraction increases
slightly in the early stages of deformation, but starts dropping as deformation progresses, whereas
void volume fraction f in half cell 2 drops faster than f in half cell 1 for all Lode parameters.
Among the 3 Lode parameters considered, void volume fraction drops faster for L = 1, followed
by L = 0 and least for L = −1 in both half cells.

Considering T = 1/3, as shown in figure 7(b), at L = −1, we can see that the volume of the
void in half cell 1 increases, whereas in half cell 2, void volume fraction grows slightly up until
εeqv = 0.2, but later on the void volume fraction decreases. For L = 0, void volume fraction in
half cell 1 increases up to εeqv = 0.3, but for εeqv greater than 0.3 it starts decreasing, and during
the final stages of deformation, void volume decreases below the initial value f0 = 0.0022. For
void in half cell 2 even though we see a slight increase in f until εeqv = 0.2, at higher εeqv void
volume starts decreasing below f0. For L = 1, void in half cell 1 and void in half cell 2 behaves
similarly to the case of L = 0.

The behaviour of the void in half cell 1 is similar for both triaxialities T = 2/3, 1, as shown in
figures 7(c) and 7(d) as we observe void growth. For void in half cell 2, we observe void growth
for T = 1 and L = −1, 0, 1, but for T = 2/3 void growth is very small and gradually during the
course of deformation, we observe void growth saturation (i.e. no change in f) for L = 0 and
L = −1. For T = 2/3, 1, void in half cell 1 grows faster than void in half cell 2 irrespective of
Lode parameters. In general void grows faster for L = −1, followed by L = 0 and L = 1.

The difference in the behaviour of the void in both half cells are significant. For moderate
triaxialities, the effect of Lode parameter is more prominent for void in half cell 1 (soft) compared
to void in half cell 2 (hard). For all triaxialities and Lode parameters values considered, f always
grows faster (or shrinks slower) in half cell 1 (soft orientation) compared with half cell 2 (hard
orientation).This general trend is following the formula (14) since the level of equivalent stress is
much higher in the half cell 2 than in half cell 1, as seen in Figs. 3(a),3(b). Additionally, when
calculating the average triaxialities per each half cell we have found almost two times higher values
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in half cell 1 (soft) than in half cell 2 (hard). The values are included in Table B.5.

(a) T=0 (b) T=1/3

(c) T=2/3 (d) T=1

Figure 7: Void volume evolution at different stress triaxialities and Lode parameters for the soft-hard bi-crystal.
Matrix orientation of half cell 1 is O1 and in half cell 2 is O4.

3.2. Deformed Void shape in a bi-crystal

In this section, we will present results on the influence of matrix orientation and stress state
on void shapes and accumulated shear distribution γ =

∑
α

∫ t
0
|γ̇α| dt on void shape evolution in

different bi-crystal RVEs.
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(a) T=0

(b) T=1

Figure 8: Deformed void shape and distribution of accumulated shear γ for soft-hard bi-crystal at stress triaxiality
T = 0, 1 and equivalent strain εeqv = 0.45 for L = 0, 1,−1.

3.2.1. Deformed void shape in a soft-hard bi-crystal

For soft-hard bi-crystal, at triaxiality T = 0, figure 8(a) shows the cross section of the deformed
cell in two different planes (XY and XZ) at εeqv = 0.45 and the contours showing distribution
of the accumulated shear γ for Lode parameters L = 0, 1,−1. As can be clearly seen from the
plots, the distribution of γ and void shape in half cell 1 and half cell 2 are different for all the
Lode parameters considered. For L = 0, the deformed cross-section of the cell along XY plane
shows the void evolving into an ellipsoid on both half cells with the major axis of ellipsoid along
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X axis (direction of the maximum applied stress). Looking at deformed cross section along XZ
plane, we see the void in half cell 2 flattening into an elliptical crack like shape, with its major
axis along X axis and the crack like surface arising from collapsing of void located away from the
grain boundary, whereas void shape in half cell 1 is an oblate ellipsoid. The accumulated shear
values are higher in half cell 2 compared with half cell 1 and the highest values of the accumulated
shear is observed near the collapsed void surface in half cell 2, with a maximum value of 4.71.

From the deformed cell cross-section along XY axis, for L = 1, we see the void shape in both
half cell 1 and half cell 2 to be circular at εeqv = 0.45. As in the case of L = 0, the void in
half cell 2 collapses into a crack in XZ plane, with its tip along X axis and away from the grain
boundary, whereas for void in half cell 1, the void evolves into an oblate ellipsoid. The value of
the accumulated shear is higher in half cell 2 as compared to half cell 1 with a maximum value of
3.24.

For L = −1, the void shape in both half cell 1 and half cell 2 are very similar, and void evolves
into an ellipsoid with the major axis along X. At εeqv = 0.45, we do not see void collapsing, but at
higher strains void tend to collapse in both half cell 1 and half cell 2. Unlike L = 0, 1, for L = −1,
void tends to collapse along Y axis and void radius evolves in the order Rx > Rz > Ry. Similar
to the cases of L = 0, 1, the values of accumulated shear is higher in half cell 2. For the 3 Lode
parameters analysed, the values of accumulated shear is higher for L = −1, followed by L = 0
and least by L = 1.

Similar analysis has been performed for T = 1 at Lode parameters L = 0, 1,−1 as shown in
figure 8(b). As we discuss previously from figure 7(d), at T = 1 void growth is observed for all
Lode parameters and the shape of the voids in both half cell 1 and half cell 2 are ellipsoid in all the
cases, but there is a clear difference in the amount of growth within each half cell, as well as the
void growth along each principal loading direction. Void radius is different along each direction
and can be characterized as follows: for εeqv = 0.45 and for L = 0, void radius is of the order
Rx > Ry > Rz and for L = 1, order is Rx = Ry > Rz, finally L = −1 void radius is of order
Rx > Rz > Ry. Accumulated shear values are higher in half cell 2 compared to half cell 1 and the
value of the accumulated shear is higher for L = −1, followed by L = 0 and least in L = 1.

3.2.2. Deformed void shape in a hard-hard bi-crystal

In this section we will study void shape and accumulated shear distribution γ in the hard-hard
bi-crystal, where the matrix orientation for half cell 1 is O6 and for half cell 2 is O4. Figure 9
shows the cross section of the deformed cell in XY and XZ planes, for L = 0, 1,−1 and T = 0
when εeqv = 0.45. For a hard-hard bi-crystal, we observe that the whole cell is deforming in such
a way that it bends around the grain boundary. Such behaviour is understood when observing
deformation of a respective bicrystal without a void for which in addition to axial deformation also
shearing in opposite directions in two half cells is found. This shearing in XZ plane is also seen in
Fig. 9. This is because of the anisotropic nature of the cell and the incompatibility between both
half cells when hard-hard crystals comes in contact. This deformation behaviour of the cell has a
huge influence on the way the void shape evolves. For L = 0, void shows elliptical shape with the
major axis along X axis of the cell on both XY and XZ plane. Void shape is not symmetric along
X axis of the cell and void radius along Z axis is higher in the upper part of the cell compared to
the lower part along the grain boundary. The trend for void collapsing is clearly evident from the
shape of the void. Void tends to collapse in half cell 2 faster than in half cell 1.
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Figure 9: Deformed void shape and distribution of accumulated shear γ for a hard-hard bi-crystal at stress triaxiality
T = 0 and equivalent strain εeqv = 0.45 for L = 0, 1,−1

Similarly, for L = 1 and along XY plane, we observe void shape being circular and along XZ
plane void shape is irregular and it is unsymmetrical along X axis. Similar to the case of L = 0,
void radius on the upper part of the cell in Z axis is higher than void radius in the lower part
of the cell and void growth is observed along X and Y axis, whereas void collapse along Z axis.
Finally for L = −1, void shape is elliptical in both half cells and in both XY and XZ planes. Void
radius evolution is of the order Rx > Rz > Ry and void tend to collapse along Y axis.

The location of the maximum value of accumulated shear is close to the void in half cell 2 for
all 3 Lode parameters considered, and away from void we observe a homogeneous distribution of
accumulated shear and similar values in both half cell 1 and half cell 2. At εeqv = 0.45 and T = 0,
the maximum γ is found in L = 1 and has the value 4.42.

For T = 1 (results not shown here) and all Lode parameters considered, we observe elliptical
void shapes in both XY and XZ planes. Void shape is similar in both half cells and the accumulated
shear distribution is similar to the case T = 0.
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3.3. Effect of neighbouring grain orientation

(a) soft-hard, soft-soft and single crystal with orientation O1

(b) soft-hard, hard-hard and single crystal with orientation 04

Figure 10: soft-hard, soft-soft, hard-hard bi-crystal and single crystal RVEs used for studying the effect of neigh-
bouring grain orientation on the void behaviour. Blue colour represents orientations in half cell 1 and green colour
represents orientation in half cell 2.

In this section, three different comparisons are made to study the effect of neighbouring grain
orientation on void growth, 1. a matrix with hard orientation neighbour, 2. a matrix with soft
orientation neighbour, and 3. neighbour grain with the same orientation (i.e., single crystal). For
that end, first we will compare void evolution in half cell 1 of the soft-hard bi-crystal and soft-soft
bi-crystal. As shown in figure 10(a), soft-hard bi-crystal and soft-soft bi-crystal has the same
orientation for half cell 1 i.e., O1, but orientation of half cell 2 in soft-soft bi-crystal and soft-hard
bi-crystal is different. Second, we will show results of void evolution in half cell 2 of hard-hard
bi-crystal and soft-hard bi-crystal. For hard-hard bi-crystal and soft-hard bi-crystal orientation of
half cell 2 is the same (i.e., O4 orientation), but orientation of half cell 1 in hard-hard bi-crystal
and in soft-hard bi-crystal is different (see figure.10(b)).

Similarly, void behaviour is compared between half cell in a bi-crystal and half cell in a single
crystal. The orientation of the single crystal is the same as half cell in the bi-crystal. For the case
of the soft-hard bi-crystal, void in half cell 1 is compared with void in single crystal with the same
orientation, i.e., O1, whereas for void in half cell 2 comparison is made with void in single crystal
with the same orientation i.e., O4. By comparing the void behaviour in these cases, we can better
understand the effect of neighbouring grain orientation on void behaviour and its morphology.
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3.3.1. Void growth in soft-hard, soft-soft bi-crystals and single crystal

(a) L=-1 (b) L=1

(c) L=-1 (d) L=1

Figure 11: Comparison of void volume fraction-equivalent strain evolution for half cell 1 in soft-hard, soft-soft bi-
crystals and in a single crystal with the same orientation as half cell 1 at different stress triaxialities T = 0, 1/3, 2/3, 1
and Lode parameters L = 1, −1.

In the case of soft-hard bi-crystal, soft-soft bi-crystal and single crystal, we will compare the
effect of hard, soft and identical neighbouring matrix, respectively, on the void evolution in a soft
matrix (half cell 1 is always O1 orientation). Figures 11 show void volume fraction-equivalent
strain at different triaxialities and Lode parameters L = −1, 1. Figures 11(c) and 11(b) shows
void volume evolution in half cell 1 for soft-soft and soft-hard bi-crystals. Figures 11(a) and 11(d)
show void evolution in half cell 1 of soft-hard bi-crystal and of a single crystal. Single crystal
calculations are performed for the full cell, but for comparison with bi-crystals, only half of the
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cell is taken into account.
For Lode parameter L = −1, void in half cell 1 of soft-hard bi-crystal (continuous lines)

grows faster than in soft-soft bi-crystal (dotted lines) for triaxialities T = 1, 2/3 as shown in
figure 11(c). For triaxiality T = 1/3, void volume fraction in soft-hard bi-crystal increases slowly,
whereas for soft-soft bi-crystal, void stops growing (i.e. void volume saturates after initial growth).
For triaxiality T = 0, void volume fraction in both bi-crystals drop below f0 from the beginning,
and void in soft-soft bi-crystal drops faster than in soft-hard bi-crystal.

For L = 1 and T = 1, 2/3, as we can see from figure 11(b), void in half cell 1 of soft-hard
bi-crystal grows faster than void of soft-soft bi-crystal and the difference in void volume evolution
between both bi-crystals is smaller compared to L = −1. For T = 1/3, the amount of void growth
in both bi-crystals is very less and void volume fraction in soft-hard bi-crystal is higher than in
soft-soft bi-crystal. For T = 0, void volume in both bi-crystals drops below the initial volume f0,
dropping faster in soft-soft bi-crystal than in soft-hard bi-crystal.

Void evolution in half cell 1 for soft-hard bi-crystal and single crystal is presented in fig-
ures 11(a), 11(d). For L = −1 and for all triaxialities considered, void growth in half cell 1 in a
soft-hard bi-crystal is higher than void growth in a single crystal. Interestingly, for L = −1, if we
compare the void volume evolution of single crystal with half cell 1 of soft-soft bi-crystal shown
previously in figure 11(c), we observe that the response of the void is the same for both cases at
all triaxialities considered. This is explained by the same reason as almost the same response in
two half cells seen in Fig. 5(a).

For L = 1 and T = 1 we observe that void growth in half cell 1 of soft-hard bi-crystal is
much higher than void growth in a single crystal. For T = 2/3, 1/3, void growth in half cell 1 of
soft-hard bi-crystal is higher than the single crystal case, but the difference in value of f is not as
big as for T = 1. For T = 0, void volume fraction decreases below f0 for both cases and void in
half cell 1 of soft-hard bi-crystal drops slightly faster than void in single crystal. For L = 1 void
behaviour in half cell 1 of soft-soft bi-crystal is closer to the void behaviour of the single crystal
case.

The observed variation in the void growth for O1 orientation placed in these 3 different config-
urations for a given Lode parameter can be correlated with the hierarchy of an average triaxiality
in the corresponding half cell 1 demonstrated in Table B5 and B6. Note that for a single crystal
case its value is equal to the imposed triaxility.
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3.3.2. Void growth in soft-hard, hard-hard bi-crystals and single crystal

(a) L=-1 (b) L=1

(c) L=-1 (d) L=1

Figure 12: Comparison of void volume evolution-equivalent strain for half cell 2 in soft-hard, hard-hard bi-crystals
and and single crystal with the same orientation as half cell 2 at different stress triaxialities T = 0, 1, 1/3, 2/3 and
Lode parameters L = 1,−1.

In this section, the behaviour of the void in half cell 2 of a soft-hard bi-crystal is compared
with the behaviour of the void in half cell 2 of hard-hard bi-crystal and single crystal with O4
orientation. The effect of a softer, harder and identical neighbouring matrix on the evolution of a
void located in a hard matrix (half cell 2 is always O4 orientation) is compared and discussed.

Figures 12(a) and 12(b) show void volume fraction evolution with equivalent strain for voids
of half cell 2 in a soft-hard (continuous lines) and in a hard-hard bi-crystal (dotted lines). For
Lode parameter L = −1, void volume fraction in half cell 2 of a hard-hard bi-crystal grows faster
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than half cell 2 in a soft-hard bi-crystal for triaxialities T = 1, 2/3, 1/3. The difference in void
volume fraction evolution of both bi-crystals is less remarkable for T = 1/3 than for T = 2/3, 1.
For T=0, void volume fraction for both bi-crystals drop below initial void volume fraction f0 and
void volume fraction of half cell 2 in soft-hard bi-crystal drops faster than half cell 2 in hard-hard
bi-crystal. As we can see from the figure, void grows faster when the half cell has hard neighbour
compared to soft neighbour.

Figure 13: Cross section showing deformed void shape and accumulated shear γ for a (soft) single crystal, a (hard)
single crystal, soft-hard bi-crystal, soft-soft bi-crystal and hard-hard bi-crystal for T = 0, L = 1 and εeqv = 0.45.
The soft orientation in half cell 1 is always O1 and the hard orientation in half cell 2 is always O4 for configurations
containing soft or hard component, respectively (see figure 10(a) and 10(b)).

Figure 12(b) shows void volume fraction evolution for Lode parameter L = 1. For T = 1, void
volume fraction in both bi-crystals initially increases at the same rate, but at εeqv > 0.15 void
volume in a hard-hard bi-crystal increases faster than in a soft-hard bi-crystal. For T = 2/3, we
observe contrasting void behaviour in both bi-crystals: as f of a hard-hard bi-crystal gradually
increases at constant rate, f of a soft-hard bi-crystal start decreasing below initial void volume
fraction f0. For T = 1/3 and T = 0, void volume fraction decreases in both bi-crystals below
initial void volume fraction f0, dropping faster in half cell 2 of a soft-hard bi-crystal than in a
hard-hard bi-crystal.

Similarly, figures 12(c) and 12(d) show comparisons of half cell 2 void evolution for soft-hard
bi-crystal (continuous lines) and for a single crystal with the same orientation as half cell 2 (dotted
lines). Single crystal calculations are performed considering the full cell, but for comparison with

24



bi-crystals, only the behaviour of half cell is considered. For L = −1 and comparing soft-hard
bi-crystal with a (hard) single crystal, we observe that, at T = 1, 2/3, void growth in the single
crystal is higher than in the soft-hard bi-crystal. At T = 1/3, 0, void evolution f in the soft-hard
bi-crystal is very similar to the single crystal case. For L = 1 and at T = 1, void growth in the
single crystal is higher than in the soft-hard bi-crystal. For T = 2/3, we observe void growing in
different way compared to other cases, as void volume fraction in both soft-hard bi-crystal and
single crystal increases initially, but starts decreasing during final stages of deformation and void
in single crystal drops faster than in soft-hard bi-crystal. For T = 1/3, 0 void volume decreases
below initial void volume fraction for both cases and void volume fraction in single crystal drops
faster than void in soft-hard bi-crystal.

Overall, for L = −1 , 1 and at T = 1, void growth is higher in a hard-hard bi-crystal, followed
by a (hard) single crystal and finally by a soft-hard bi-crystal. For T = 1 and L = −1, void
evolution growing faster for orientation O4 than orientation O1 were also found by Ling et al.
(2016) for a voided single crystal. At T = 2/3, f is higher in a hard-hard bi-crystal and the void
behaviour of a soft-hard and a (hard) single crystal has similar trend. At T = 1/3, 0, void volume
fraction decreases faster in a single crystal, followed by a soft-hard bi-crystal and finally by a
hard-hard bi-crystal. The tendency for void collapse is higher in the single crystal case. For all
triaxialities tested, the behaviour of the hard-hard bi-crystal is in general closer to the response
of the single crystal case.

The calculated average triaxialities per each half cell included in Table B4 and B5 conform
with the exposed tendencies. An additional role in shaping the void evolution is played by the
specific deformation of a unit cell in the case of the hard-hard bi-crystal as demonstrated in the
next section.
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3.4. Effect of neighbouring grain orientation on the deformed void shape.

Figure 14: Distribution of misorientation angle with respect to the initial orientation for soft-hard bi-crystal for
T = 0, L = 1 and equivalent strain 0.45, Pole figures 111 at the bottom present the spread of the current crystal
orientations for each Gauss point in the cell (pole figure on the left is a density plot, pole figure on the right –
discrete point plot.

It is clearly evident from the results presented in the previous section that void growth is
affected by neighbouring grain orientation and, depending on the Lode parameter and triaxiality
values, the behaviour of the void is either closer to a single crystal or its respective bi-crystal
counterpart. In this section, the effect of neighbouring grain orientation on the void shape is
presented and discussed. As in the previous section, the cases that are going to be compared are:

1. Void in half cell 1 in a soft-hard bi-crystal, void in half cell 1 in a soft-soft bi-crystal and in
a single crystal with the same orientation as half cell 1 (O1).

2. Void in half cell 2 in a soft-hard bi-crystal, void in half cell 2 in a hard-hard bi-crystal and
in a single crystal with the same orientation as half cell 2 (O4).

As noted by Srivastava and Needleman (2013, 2015a), changes in void shape in a initially
spherical void are more significant at low triaxialities than at moderate or high triaxiality values.
We now focus on studying the influence of neighbouring grain orientation on the deformed void

26



shape. We choose to present only one case here, i.e., triaxiality value T = 0 and L = 1 as a
representative example. Deformed void shapes are compared in different RVEs at εeq = 0.45.

Fig. 13 shows the deformed void shape in single crystals with O1 and O4 orientation respec-
tively, soft-soft, soft-hard and hard-hard bi-crystals. By comparing deformed void shape in half
cell 1(left-half) in a soft-hard bi-crystal and in a single crystal with O1 orientation, we observe
that void in half cell 1 is ellipsoidal in both RVEs at both XY and XZ planes, with void radius
in order Rx ≈ Ry > Rz. In the soft-soft bi-crystal case, we observe that void within half cell 1 is
also ellipsoidal but the order of void radius is Rx > Ry > Rz. In a soft-hard bi-crystal void shape
in half cell 2 (right-half) is quite similar to the void shape in a single crystal with O4 orientation
in both XY and XZ planes. As we see from figure 13 for the aforementioned RVEs, void tends to
collapse into a ”crack like” shape along X direction, and void radius for both RVEs are in order
Rx ≈ Ry > Rz. For a hard-hard bi-crystal, void evolves into irregular shape before collapsing
along XZ plane, but void collapse occurs at rate slower than for single crystal. By comparing
accumulated shear in half cell 1 among soft-hard, soft-soft and single crystal RVE, the maximum
value of accumulated shear is observed in single crystal with O1 orientation (soft orientation) in
the vicinity of the void in XZ plane. Similarly comparing accumulated shear in half cell 2 among
soft-hard, hard-hard and single crystal RVE, the maximum value of γ is obtained in single crystal
with O4 orientation (hard orientation) in XZ plane. Overall, for T = 0, L = 1 and at εeq = 0.45,
γ values are higher in (hard) single crystal, followed by hard-hard bi-crystal, soft-hard bi-crystal,
(soft) single crystal and finally soft-soft bi-crystal.

Figure 15: Distribution of misorientation angle with respect to the initial orientation for soft-hard bi-crystal for
T = 0, L = −1 and equivalent strain 0.45, Pole figures (111) at the bottom present the spread of the current
crystal orientations for each Gauss point in the cell (pole figure on the left is a density plot, pole figure on the
right-discrete point plot.)
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Figure 16: Distribution of misorientation angle with respect to the initial orientation for hard-hard bi-crystal for
T = 0, L = 1 and equivalent strain 0.45, Pole figures 111 at the bottom present the spread of the current crystal
orientations for each Gauss point in the cell (pole figure on the left is a density plot, pole figure on the right-discrete
point plot.)

Figure 14, presents the influence of void on the heterogeneity of lattice rotation in the soft-hard
bi-crystal, at T = 0 and L = 1. Let us stress that initially all elements within each half cell have
the same orientation. While for a bi-crystal without a void, lattice rotates uniformly within each
half cell (results are confirmed by calculations, but not presented here for brevity), strong variation
is observed when the voids are present at the grain boundary. What is not obvious at first is that
heterogeneity is more pronounced within hard half cell as initially homogeneous orientation in
half cell is fragmented into two distinct orientations after deformation, as visible in the left pole
figure. This is probably caused by the fact that different set of slip systems are operating in the
top and bottom part of the half cell and the lattice is rotating in opposite directions in these two
parts. Note that the largest misorientation angle (> 45o) is observed close to the void boundary,
where the void is distorted most. Figure 15 presents analogical results for the same bi-crystal
but for L = −1 and T = 0. Here, also the larger misorientation angles are found in the hard
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half cell. Note that in both cases observed, differences in misorientation angles between elements
belonging to the hard half cell are often higher than 15o, which suggests, appearance of new high
angle boundaries and possibility of grain refinement. Smaller differences in misorientation angles
in two half cells are observed for hard-hard bi-crystal in figure 16. Nevertheless, also in this case
the presence of void leads to the non-uniform lattice rotation leading to an increase of a lattice
curvature.

4. Summary and Conclusions

Three-dimensional finite element cell calculations are carried out with the aim of analysing the
response of voids at the grain boundary of a bi-crystal RVE. The effect of crystal orientation on
porosity evolution are studied for three different cases: soft-hard, soft-soft and hard-hard RVEs
subjected to different loading conditions. Unit cells consisting of cubic cells divided in two halves
with a spherical void at the grain boundary with total void volume fraction in the cell f0 = 0.0044
and volume of void in each half cell f0 = 0.0022 are analysed. The responses of bi-crystal RVEs are
studied for four stress triaxiality values: T = 0, 1/3, 2/3, 1, three Lode parameters L = −1, 0, 1
with a strictly specified orientation of loading directions with respect to the initial bi-crystal
orientation, and a dimensionless equivalent strain rate ε̇eqv/γ̇0 in the range (100 – 150). In order
to select soft and hard orientations first calculations have been performed for the case of single
crystal without voids. For a given Lode parameter, the orientation with higher values of equivalent
stress are considered as hard orientations and orientations with lower values of equivalent stress
are considered as soft orientations.

The evolution of void volume fraction strongly depends on the overall stress triaxiality and
more specifically on the triaxiality for the stress averaged over each half cell for all bi-crystal RVEs
considered. When the level of strain increases the Lode value of macroscopic loading importantly
modifies this dependencies. Moreover the Lode value has a prominent effect on the evolving shape
of void, which especially seen at low triaxialities. Even though all bi-crystal RVEs considered
have high angle grain boundaries, significant difference in void growth between the two half cells
occurs specially for soft-hard bi-crystal case. The different behaviour of the void evolution in each
half cell can be attributed to the difference in the strength (soft-hard) between the two initial
orientations (O1 and O4) and the incompatibility between the two half cells. In the soft-hard
bi-crystal case, at high triaxialities, void grows faster in softer crystal compared to harder crystal
counterpart, whereas at low triaxialities, void tends to collapse faster in harder half cell compared
to neighbouring softer crystal. Void growth is higher for higher triaxialities and void growth is
faster for L = −1, followed by L = 0 and L = 1.

Void shape evolution in bi-crystals depends on triaxiality, Lode parameter and initial orien-
tation of each grain. At high triaxialities, void tends to evolve into spherical/ ellipsoidal shapes
irrespective of Lode parameter and grain orientation. At low triaxialities, void shape is greatly
affected by the initial bi-crystal orientation with respect to the assumed loading conditions spec-
ified by the Lode parameter as the void tend to evolve into ellipsoidal shapes for soft half cells,
and into crack like shapes for hard half cells. Void shape in half cell 2 of soft-hard bi-crystal looks
more similar to hard (O4) single crystal, rather than half cell 2 of hard-hard bi-crystal. Void shape
in half cell 1 of soft-hard bi-crystal, half cell 1 of soft-soft bi-crystal and soft single crystal looks
similar.
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If the volume and morphology of voids with the same matrix orientation, but different neigh-
bouring cell orientation are compared we observe that void tend to behave like the single crystal
case (same orientation as bi-crystal half cell) if the difference in strength between two half’s of
the bi-crystal is small, i.e., in the cases soft-soft and hard-hard. When the difference in strength
between the two half cells is higher (i.e., soft-hard) void behaviour tend to move away from the
respective single crystal behaviour.

At high triaxialities, the profound effect the orientation of the neighbouring grain has on the
evolution of the void volume becomes even more important than the orientation of the grain
itself. Irrespective of Lode value, for void in half cell 1 of soft-soft, soft-hard bi-crystals and soft
(O1) single crystal, void growth is faster in the soft grain when the neighbouring grain has hard
orientation. For void in half cell 2 of soft-hard, hard-hard bi-crystal and hard (O4) single crystal,
void grows faster in the hard grain if the counterpart has hard orientation.

Slip system activity also depends on triaxiality, Lode parameter and initial crystal orientation
and far away from the void becomes similar to a fully dense crystal under the same imposed
loading conditions. Depending on crystal orientation we have different Schmid factors, which
in turn leads to different slip activity. Higher the value of stress triaxiality, higher will be the
amount of slip activity, and hence higher plastic deformation in the matrix around the void,
leading to higher void growth. For a soft-hard bi-crystal, at high triaxiality, the maximum value
of accumulated shear occurs around the void in the softer part, and away from the void, slip
activity in the harder part is higher. At low triaxiality, slip system activity is significantly higher
in the harder part and the maximum value of accumulated shear is observed around the void also
in the harder part, irrespective of Lode value. Moreover, in soft-hard bi-crystal the heterogeneity
of slip activity, especially within the harder crystal increases leading to a non-uniform lattice
rotation and consequently grain fragmentation. Slip activities dependence on Lode parameter is
clearly evident from our studies. Slip activity is higher for L = −1, followed by L = 0 and least
for L = 1, irrespective of triaxiality value. For hard-hard and soft-soft bi-crystals, slip activity
away from the void is similar in both half cells and around the void maximum slip activity occurs.

The crystal plasticity model used in the present study is standard. Observed dependencies can
be modified when enhanced strain gradient formulations Wulfinghoff et al. (2013); Stupkiewicz
and Petryk (2016); Ling et al. (2018), which introduce size effects, are applied. For example, as
recently demonstrated by Ling et al. (2018) using the reduced micromorphic finite strain crystal
plasticity model, the void growth is slow down and the void coalescence delayed when the void
size is small as compared to the intrinsic length scale of the material. It happens due to the
modification of accumulated shear field close to the void. Similarly, the strain gradient formulation
may help to account for the grain boundary effect on the resistance to plastic flow, as demonstrated
by Wulfinghoff et al. (2013). This may affect the results obtained in the context of bicrystal.
Therefore, in the future more advanced crystal plasticity formulations can be considered for the
analysis of the grain boundary effect on the void growth.

Furthermore, to complement numerical results presented in this work and in order to extract
definite conclusions, more numerical simulations should be developed and experimental campaigns
focus on studying the evolution of intergranular voids in fcc bi-crystals should be designed and
conducted in the future.
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Appendix A. Prescribed Boundary Conditions

Figure A.17: Periodic boundary conditions applied to the 3D cell.

Boundary conditions applied for a representative volume element is described in detail in this
section. In the undeformed cell, the edges of the cell are aligned along the coordinate axes (X,Y,Z),
and the origin of the reference coordinate system corresponds to the node a6 (see Figure A16). The
faces of the cell are initially straight and the nodes on the opposite faces are connected in order to
obtain a periodic response from the cell. Apart from the periodic response, in the present work,
constant values of stress triaxiality and Lode parameter are applied to the cell. The procedure
to prescribe loading to keep constant values of macroscopic stress triaxiality and Lode parameter
throughout the deformation history follows the work of Vadillo et al. (2016).

If the ratio of principal macroscopic true stress R and Q are defined in the form:

R =
σ2
σ1

; Q =
σ3
σ1

; (A.1)

triaxiality T and Lode parameter L (Eq. (10)) can be written as:

T =

√
2(R +Q+ 1)

3
√

(1−R2) + (1−Q2) + (R2 −Q2)
; L =

2R−Q− 1

1−Q
(A.2)

Since the macroscopic principal true stresses (σ1, σ2, σ3) and the normal components of macro-
scopic strain rate in the basis of stress principal directions (ε̇11, ε̇22, ε̇33) are equal to the volume
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average values in a cell (Hill (1967)), the total rate of deformation work in the whole cell Ẇ can
be written as:

Ẇ = V σ1ε̇11 + V σ2ε̇22 + V σ3ε̇33 (A.3)

Ẇ can be also expressed in terms of the transformed rates of deformation and forces, as:

Ẇ = V σ(I)ε̇(I) + V σ(II)ε̇(II) + V σ(III)ε̇(III) (A.4)

considering the transformation

(A.5) ε̇(I)
ε̇(II)
ε̇(III)

 = N

 ε̇11
ε̇22
ε̇33

 ;

 σ(I)
σ(II)
σ(III)

 = N

 σ1
σ2
σ3

 ; with N =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 ;

and:

A11 =
1√

1 +R2 +Q2
; A12 =

R√
1 +R2 +Q2

; A13 =
Q√

1 +R2 +Q2

A21 = − R√
1 +R2

; A22 =
1√

1 +R2
; A23 = 0. (A.6)

A31 =
Q√

(1 +R2) (1 +R2 +Q2)
; A32 =

RQ√
(1 +R2) (1 +R2 +Q2)

A33 = − (1 +R2)√
(1 +R2) (1 +R2 +Q2)

If in the transformed coordinate system, the three imposed incremental boundary conditions are
prescribed as stress uniaxial:

σ(II) = 0; σ(III) = 0; ε̇(I) = ε̇dummy (A.7)

the three prescribed boundary conditions in 1,2,3 directions, using N−1 relations are therefore:

Rσ1 − σ2 = 0; Qσ1 − σ3 = 0; ε̇11 +Rε̇22 +Qε̇33 = ε̇dummy
√

1 +R2 +Q2 (A.8)

Values of ε̇11, ε̇22, ε̇33 and hence stress states (T and L) can be controlled in the cell by fixing
properly values R and Q and prescribing incremental strain on an added dummy node. The multi-
point constraints given in equations A.6, A.8 are implemented into ABAQUS/Standard (2019)
via a user defined subroutine MPC.

Due to the anisotropy of the problem, and in order to determine a proper deformation behavior
of the cell, periodic boundary conditions should be adopted in the external surfaces of the cell in
all three directions. In this work, the general ideas of the implementation of periodic boundary
conditions into a Finite Element solver given in (Segurado et al., 2002) is adopted. For the
implementation of periodic boundary conditions, it is necessary to couple the displacements of
opposite external nodes, on which an average macroscopic strain is allowed.
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For simplicity and easy implementation, nodes on the surfaces of the cell are categorized into
3 different groups: corner nodes, edge nodes and surface nodes (see figure A16 for nomenclature
details)

The node a2 is connected to the dummy node by the MPC subroutine, through which the
average strains are applied to the system. This means that any deformation that is applied to the
cell through the MPC has to be applied only connecting a2 to the added dummy node. In order
to prescribe displacements in the outer surfaces which ensure periodicity:

uk+i − uk−i = Eij∆xj; i, j = 1, 2, 3; ∆xj = xk+j − xk−j ; t+ − t− = 0; t = σ.n (A.9)

being Eij the macroscopic strain tensor and xj the position vector, the following set of relations
should be applied to the external nodes of the cell in order to avoid constraint linkages. These
conditions are implemented in ABAQUS/Standard (2019) by the use of the command *Equation
.

1. For nodes on the faces of the cell:

uTop(x, y, z)− uBottom(x, y, z) = ua5(x, y, z)− ua8(x, y, z)

uRear(x, y, z)− uFront(x, y, z) = ua8(x, y, z)− ua4(x, y, z)

uLeft(x, y, z)− uRight(x, y, z) = ua8(x, y, z)− ua7(x, y, z)

2. For nodes on the edges of the cell:

ue7(x, y, z)− ue3(x, y, z) = ua8(x, y, z)− ua4(x, y, z)

ue3(x, y, z)− ue1(x, y, z) = ua5(x, y, z)− ua8(x, y, z)

ue1(x, y, z)− ue5(x, y, z) = ua4(x, y, z)− ua8(x, y, z)

ue12(x, y, z)− ue11(x, y, z) = ua8(x, y, z)− ua7(x, y, z)

ue11(x, y, z)− ue10(x, y, z) = ua5(x, y, z)− ua8(x, y, z)

ue10(x, y, z)− ue9(x, y, z) = ua7(x, y, z)− ua8(x, y, z)

ue8(x, y, z)− ue4(x, y, z) = ua8(x, y, z)− ua4(x, y, z)

ue4(x, y, z)− ue2(x, y, z) = ua8(x, y, z)− ua7(x, y, z)

ue2(x, y, z)− ue6(x, y, z) = ua4(x, y, z)− ua8(x, y, z)

3. For nodes on the corner of the cell:

ua6x = ua7x ; ua3x = ua2x ; ua7x = ua3x ; ua1x = ua4x ;

ua3y = ua4y ; ua1y = ua2y ; ua5y = ua1y ; ua6y = ua5y ;

ua1z = ua4z ; ua4z = ua2z ; ua7z = ua6z ; ua3z = ua2z ;

ua8x,y,z = 0; ua4x,y = 0;
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Appendix B. Average triaxialities and Lode values in each half cell of the voided
bi-crystal

Table B.4: Average local Triaxiality and Lode parameter for each half cell of hard-hard voided bi-crystal

Applied global T and L Local T and L (half cell 1) Local T and L (half cell 2)

T = 0, L = −1 T = 0, L = −1 T = 0, L = −0.8
T = 0, L = 0 T = 0, L = 0 T = 0, L = 0
T = 0, L = 1 T = −0.2, L = 1 T = 0.23, L = 1

T = 0.33, L = −1 T = 0.33, L = −1 T = 0.33, L = −1
T = 0.33, L = 0 T = 0.33, L = 0 T = 0.3, L = 0
T = 0.33, L = 1 T = 0.22, L = 1 T = 0.4, L = 1
T = 0.66, L = −1 T = 0.66, L = −1 T = 0.66, L = −1
T = 0.66, L = 0 T = 0.66, L = 0 T = 0.66, L = 0
T = 0.66, L = 1 T = 0.53, L = 1 T = 0.72, L = 1
T = 1, L = −1 T = 1, L = −1 T = 1, L = −0.86
T = 1, L = 0 T = 1, L = 0.1 T = 1, L = −0.1
T = 1, L = 1 T = 1, L = 1 T = 1, L = 1

Table B.5: Average local Triaxiality and Lode parameter for each half cell of soft-hard voided bi-crystal

Applied global T and L Local T and L (half cell 1) Local T and L (half cell 2)

T = 0, L = −1 T = 0, L = −1, T = 0, L = −0.8
T = 0, L = 0 T = 0, L = 0 T = 0, L = 0
T = 0, L = 1 T = 0, L = 1 T = 0, L = 1

T = 0.33, L = −1 T = 0.64, L = −1 T = 0.14, L = −1
T = 0.33, L = 0 T = 0.6, L = 0 T = 0.3, L = 0
T = 0.33, L = 1 T = 0.48, L = 1 T = 0.22, L = 1
T = 0.66, L = −1 T = 0.85, L = −1, T = 0.5, L = −1
T = 0.66, L = 0 T = 1, L = 0 T = 0.4, L = 0
T = 0.66, L = 1 T = 0.86, L = 1 T = 0.51, L = 1
T = 1, L = −1; T = 1.43, L = −1, T = 0.65, L = −0.86
T = 1, L = 0 T = 1.61, L = 0.1, T = 0.62, L = −0.1
T = 1, L = 1 T = 1.3, L = 1 T = 0.78, L = 1
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Table B.6: Average local Triaxiality and Lode parameter for each half cell of soft-soft voided bi-crystal

Applied global T and L Local T and L (half cell 1) Local T and L (half cell 2)

T = 0, L = −1 T = 0, L = −1 T = 0, L = −0.8
T = 0, L = 0 T = 0, L = 0 T = 0, L = 0
T = 0, L = 1 T = −0.2, L = 1 T = 0.23, L = 1

T = 0.33, L = −1 T = 0.33, L = −1 T = 0.33, L = −1
T = 0.33, L = 0 T = 0.33, L = 0 T = 0.3, L = 0
T = 0.33, L = 1 T = 0.22, L = 1 T = 0.4, L = 1
T = 0.66, L = −1 T = 0.66, L = −1 T = 0.66, L = −1
T = 0.66, L = 0 T = 0.66, L = 0 T = 0.66, L = 0
T = 0.66, L = 1 T = 0.66, L = 1 T = 0.66, L = 1
T = 1, L = −1 T = 1, L = −1 T = 1, L = −0.86
T = 1, L = 0 T = 1, L = −0.11 T = 1, L = 0.11
T = 1, L = 1 T = 1, L = 1 T = 1, L = 1
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6.19 edition.

Asaro, R.J., Needleman, A., 1985. Textured development and strain hardening in rate dependent
polycrystals. Acta metall. 33, 923–953.

Basu, S., Dogan, E., Kondori, B., Karaman, I., Benzerga, A., 2017. Towards designing anisotropy
for ductility enhancement: A theory-driven investigation in mg-alloys. Acta Materialia 131, 349
– 362.

Benzerga, A.A., Besson, J., 2001. Plastic potentials for anisotropic porous solids. European
Journal of Mechanics - A/Solids 20, 397 – 434.

Besson, J., 2010. Continuum models of ductile fracture: A review. International Journal of
Damage Mechanics 19, 3–52.

Bringa, E.M., Traiviratana, S., Meyers, M.A., 2010. Void initiation in fcc metals: Effect of loading
orientation and nanocrystalline effects. Acta Materialia 58, 4458 – 4477.
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