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Abstract

The dynamic characteristics of any structural system depend on the temperature. This poses a challenge in vibration-based
damage detection, as temperature variability can mask damage-induced shifts in the vibration features. Different means for
resolving the issue have been put forth, and two general method types can be distinguished; (i) those mitigating the effect of
temperature variability on the features and (ii) those increasing the sensitivity to damage of the features. The present paper
explores the use of features composed of closed-loop (CL) mode shapes, which combine attributes from both method groups
by offering adequate sensitivity to damage and robustness to temperature variability. The CL mode shapes are designed using
an eigenstructure assignment scheme formulated as a bi-objective optimization problem. The first objective is the reciprocal of
the spectral norm of the CL mode shape Jacobian matrix, which is thus to be minimized to maximize the sensitivity to damage.
The second objective, whose implementation hinges on the assumptions that temperature variability induces spatially uniform
stiffness changes and that homogeneous sensing is employed, is a measure of how much the damping in each of the assigned
CL modes deviates from a classical distribution. Since classically damped mode shapes obtained using homogeneous sensing
are invariant under spatially uniform stiffness changes, the latter objective is minimized to promote robustness to temperature
variability. The designed CL mode shape features can be used in any damage detection method, but in the paper we restrict
the use to outlier analysis and assess the merit of the proposed scheme in the context of numerical examples. The damage
detection results are compared to findings obtained using cointegration (a well-established method for mitigating the effect of
temperature variability), and it is seen how the proposed scheme outperforms the cointegration-based method.

Keywords: damage detection, temperature variability, output feedback, structural health monitoring.

1. Introduction

Using monitored vibration variables to provide an estimate of the health condition of a structure has been recognized as
vibration-based damage detection. The monitored variables correspond to features extracted from the vibration response of
the structure, while the health condition corresponds to a set of binary states, namely, undamaged and damaged. A pivotal
challenge in vibration-based damage detection is to deal with the environmental and operational variabilities observed in the
feature set [1, 2]. These variabilities, which are governed by the temperature, wind speed, humidity, excitation level, and so
forth, are known to camouflage damaged-induced changes in the feature set and thus deteriorate the damage detectability [3].
Several studies have noted that the temperature constitutes the most influential parameter [4, 5, 6, 7, 8, 9], and therefore we
limit this paper to investigate the effect of temperature-induced variability.

For systems exposed to temperature variability, the damage detectability boils down to the ratio between sensitivity to
damage (high is good) and sensitivity to temperature variability (high is bad). There are two ways to improve the ratio; (i) by
mitigating the effect of temperature variability and (ii) by enhancing the sensitivity to damage. Numerous methods have been
suggested to mitigate the distortive effect of temperature-induced variability [1, 10]. A common approach is to identify and
discriminate between linear sub-spaces carrying information on, respectively, damage and temperature variability. One such
method is principal component analysis (PCA), which operates by transforming the feature set into uncorrelated minor and
major principal components, so that the major components retain most of the variation present in the features [11]. Yan et al.
[12] exemplified the use of PCA to mitigate the effect of temperature variability by projecting their features onto the sub-space
of the minor principal components since the major principal components were assumed to retain most of the temperature
variability. Other successful application studies concerning PCA can be found in [13, 14].
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Cointegration, which is a method for analyzing non-stationary signals [15], has also been put forth as a means for mit-
igating the effect of temperature variability. In this context, the assumptions are that the temperature variability renders the
vibration features non-stationary and that the effects of the temperature variability and damage do not couple [16]. Coin-
tegration can then be used to form stationary linear combinations of the non-stationary features, in which the temperature
variability is mitigated. The standard procedure in cointegration-based damage detection is to use the most stationary linear
combination directly as a damage indicator [16, 17, 18]. Some successful application studies on the use of cointegration for
damage detection under temperature variability can be seen in [19, 20].

Regression-based methods have also been suggested to mitigate the effect of temperature variability by explicitly taking
into account both the vibration features and covariate information from temperature measurements. Such methods operate
by capturing the influence of measured temperature variability on the features by a functional dependence model attained
via, for instance, polynomial chaos expansions [21], Gaussian process regression [22, 23], or Bayesian learning [9]. Damage
is then detected if the current observation differs significantly from what the regression model predicts. Some documented
application studies on the use of regression for damage detection under temperature variability can be seen in [22, 24, 9].

The second option for improving damage detectability, namely, enhancing the sensitivity to damage, can be addressed via
structural control schemes. Specifically, closed-loop (CL) systems can be designed by using an eigenstructure assignment
scheme, which allows for assignment of eigenvalues and/or eigenvectors (and hence mode shapes) such that these eigenchar-
acteristics exhibit higher sensitivity to damage than the open-loop (OL) counterparts [25, 26, 27]. The concept was introduced
to the field of structural damage detection by Ray and Tian [25], who used an eigenstructure assignment scheme to design
a feedback controller to enhance the sensitivity to damage of a subset of eigenvalues. The design, which was carried out
for a cantilevered beam, resulted in the subset of CL eigenvalues having increased sensitivity to damage compared to the
corresponding subset of OL eigenvalues. Jiang et al. [28] showed that if multiple control inputs are available, then further
sensitivity enhancement can be attained by assigning both the CL eigenvalues and the associated CL eigenvectors.

The preceding paragraphs summarize some of the extensive research that has been conducted to improve the damage
detectability by either mitigating the effect of temperature variability or increasing the sensitivity to damage. One of the
remaining issues in this context relates to the relationship between sensitivity to damage and robustness to temperature vari-
ability being reciprocal for an unfiltered observation/measurement [29]. It is contended by the authors of the present paper that
no feature extraction procedure—despite its level of “intelligence”—can completely decouple the two damage detectability
components. In other words, if a method for mitigating the effect of temperature variability is applied, then it will inherently
result in a certain loss of information on damage. Likewise, if a control strategy is implemented to enhance the sensitivity to
damage of CL eigencharacteristics, then the CL eigensystem will also exhibit increased sensitivity to temperature variability.

In this paper, we propose a new damage detection scheme that addresses (without dissolving) the coupling of the damage
detectability components by exploiting the fact that temperature variability is more globally distributed than damage-induced
changes. The scheme utilizes designed CL mode shapes as features in a conventional outlier analysis setting with the Ma-
halanobis distance [30] as discordance measure. The CL mode shapes are designed through eigenvector assignment to offer
adequate sensitivity to damage and robustness to temperature variability. The design is carried out as a bi-objective opti-
mization problem, in which the first objective considers the mode shape Jacobian matrix and thus reflects the sensitivity to
damage, while the second objective promotes the robustness to temperature variability. In particular, the second objective—
which is based on the assumption that temperature variability induces spatially uniform stiffness changes—is formulated as
the reciprocal of the condition number of a matrix quantifying the deviation from a classical damping distribution according
to Caughey’s commutative law [31]. We test the proposed scheme through numerical studies on a frame structure exposed to
different levels of temperature variability. In this context, the merit of the proposed scheme is further assessed by comparing
its damage detection performance with that of a well-established cointegration-based method [16].

The paper is organized as follows. Section 2 outlines the basics of structural systems theory in OL and presents an
illustrative example with a chain system to demonstrate the damage detectability issue often encountered in OL. Section 3
provides a brief description of eigenstructure assignment, while Section 4 outlines the proposed damage detection scheme
and returns to the chain system example to show how the scheme can mitigate the damage detectability issue. The numerical
damage detection studies with the frame structure exposed to temperature variability are presented in Section 5, and the paper
closes with concluding remarks in Section 6.

2. Damage detectability in structural open-loop systems

We consider a structural domain Ω, which is described in OL by the linear, time-invariant (LTI) model

Mẍ(t) + Cẋ(t) + Kx(t) = B2u(t), (1)
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where ẍ(t), ẋ(t), x(t) ∈ Rn denote the acceleration, velocity, and displacement vectors, u(t) ∈ Rr collects the independent
inputs that are distributed to Ω by B2 ∈ Rn×r, and M, C, K ∈ Rn×n are the mass, damping, and stiffness matrices for which it
is assumed that M, C, K � 0.

Definition 1. The damping model in system (1) is denoted classical if M−1K and M−1C commute [31].

The damping in real structures never strictly complies with the classical distribution given by Definition 1. The majority of all
structures will, however, have a subset of well-separated modes, whose damping distribution can be adequately described by
the classical damping model [32, 33, 34]. We thus confine the study to classically damped systems and denote the eigenvectors
(which are real) and eigenvalues of system (1) by φ j ∈ Rn and λ j ∈ C.

By defining the state vector z(t) = [x(t)T ẋ(t)T ]T ∈ R2n, the output vector y(t) ∈ Rm, and the system matrices Ac ∈ R2n×2n,
Bc ∈ R2n×r, and Cc ∈ Rm×2n, system (1) can be rewritten into the continuous-time state-space formulation

ż(t) = Acz(t) + Bcu(t), (2a)
y(t) = Ccz(t), (2b)

where it is assumed that the contribution from the direct feedthrough is zero or subtracted from the measurements. The modal
parameters follow from

(Ac − λ jI)ψ j = 0, µ j = Ccψ j, (3)

where ψ j = [φT
j φT

j λ j]T ∈ C2n and µ j ∈ Cm are, respectively, the eigenvector and mode shape of mode j. Worth of explicit note
is that µ j will be real-valued if the damping is classical and the output sensing is homogeneous (that is, solely displacements,
velocities, or accelerations are measured).

2.1. Modal parameters as damage detection features

LTI systems can be fully described by means of the modal parameters, and therefore it makes sense to discuss damage
detectability for structural systems on the basis of these parameters. Assumptions 1 and 2 are prerequisites for the discussion.

Assumption 1. Temperature variability induces spatially uniform stiffness changes, which perturb the stiffness of system (1)
from K to αK with α ∈ R>0.

Assumption 2. Damage is local and yields a stiffness perturbation ∆K ∈ Rn×n for which rank(∆K) < n.

Proposition 1. Assume that system (1) is classically damped and let (λ j, φ j) be an eigenpair of the system. If the stiffness is
perturbed in accordance with Assumption 1, then (λ̃ j, φ j) is an eigenpair of the perturbed system with |λ̃ j|

2 = α|λ j|
2.

Proof. The undamped eigenvalue problem for the perturbed system can be written as

(
αK − |λ̃ j|

2M
)
φ̃ j = α

(
K −
|λ̃ j|

2

α
M

)
φ̃ j = 0, (4)

so Null
(
K − |λ̃ j |

2

α
M

)
, ∅ if and only if |λ̃ j|

2 = α|λ j|
2. It follows that φ j ∈ Null

(
αK − |λ̃ j|

2M
)
, leading to the assertion.

As shown in Proposition 1, the eigenvalues of a classically damped LTI system are affected by spatially uniform stiffness
changes; with the undamped eigenfrequencies changing linearly by a factor of α. The associated mode shapes specified in (3)
are, however, invariant to the uniform stiffness variability when homogeneous output sensing is employed. We exemplify the
use of system eigenvalues and mode shapes as damage indicators under temperature variability in Subsection 2.2.

2.2. Illustrative example

The issue of temperature variability is demonstrated in the context of the chain system depicted in Fig. 1. The chain
system, which is classically damped with 5 % damping in each mode in the undamaged state presented in Fig. 1, is affected
by an imposed temperature field yielding a system stiffness of αK, where K is the nominal stiffness matrix according to
Fig. 1 and α ∈ [0.97, 1]. An impulse force is applied to the sixth degree of freedom (DOF), and the output is taken as the
displacement response measured at the first and second DOF. The output, which is captured with a sampling frequency of
150 Hz, is contaminated with 2 % white Gaussian noise.
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Fig. 1: 6-DOF chain system with ki = 1000 and mi = 2 in consistent units and a classical damping distribution with 5 % critical damping in each mode.
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Fig. 2: Estimated eigencharacteristics of the first OL mode of the chain system with (a) showing the mode shape and (b) the eigenvalue for both structural
states.

The chain system is analyzed in its undamaged structural state and in a damaged structural state where the stiffness of the
third spring is reduced by 0.2 %. Both the mass and the damping are assumed invariant to the introduced damage. A total of
1000 realizations are simulated, with the first 500 realizations being from the undamaged state and the remaining 500 from
the damaged state. We employ a stochastic sub-space identification (SSI) method [35] to estimate the modal parameters for
each realization, and the results can be seen in Figs. 2a and 2b. Evidently, no clear decision boundary arises for neither the
mode shape estimates nor the eigenvalue estimates when damage is introduced. The extracted eigenvalues are correlated with
the temperature variability, while the mode shapes, in accordance with Eq. (4), are invariant to the variability. Despite the
invariance, the damage detectability offered by the mode shape is insufficient since its sensitivity to damage is too low.

3. Output feedback

We introduce a temporal discretization of system (2) under the assumption that the input is delivered with a zero-order-hold
(ZOH) with an inter-sample time of ∆t. The discretization yields

zk+1 = Adzk + Bduk, (5a)
yk = Cdzk, (5b)

with the system matrices Ad = eAc∆t, Bd = A−1
c (Ad − I)Bc, and Cd = Cc. Since Ad is square, it follows that Ad = eAc∆t =∑∞

i=0
1
i! Ai

c(∆t)i. It can thus be readily shown that the eigenvectors and eigenvalues of Ad equal ψ j and eλ j∆t, where (ψ j, λ j) is
the continuous-time eigenpair defined in (3).

We apply static output feedback to the OL system (5a) of the type

uk = −Gyk, (6)

where G ∈ Rr×m is the controller gain. Substituting (6) in (5a) gives the system of CL state equations

zk+1 = (Ad − BdGCd)zk = Ādzk, (7)

4



with Ād ∈ C2n×2n being the discrete-time CL state matrix.

Lemma 1. Let Cdis, Cvel, and Cacc denote the output selection matrices for displacement, velocity, and acceleration measure-
ments, then the CL stiffness and damping matrices of system (7) are given as

• K̄ = K + B2GCdis and C̄ = C for homogeneous displacement sensing,

• K̄ = K and C̄ = C + B2GCvel for homogeneous velocity sensing, and

• K̄ = (I − B2GCaccM−1)K and C̄ = (I − B2GCaccM−1)C for homogeneous acceleration sensing,

while the CL mass matrix equals the OL mass matrix independently of the sensing type.

Proof. The proof follows directly by transforming (7) to continuous time.

Theorem 1. If at least one of the two conditions m < n and r < n holds for system (7) under homogeneous sensing, then the
system’s damping, as defined in Lemma 1, is non-classical for all G , 0.

Proof. See the proof by Ulriksen [36].

From Theorem 1, it follows that in the typical case where m << n and r << n, the CL system damping will not follow a
classical distribution and the CL mode shapes will thus depend on the temperature.

3.1. Eigenvalue and eigenvector assignment

Let Λ = {λ̄1, . . . , λ̄p, λ̄
∗
1, . . . , λ̄

∗
p} be a set of 2p discrete-time eigenvalues (with superscript ∗ denoting complex conjugate)

to be assigned for system (7), then it follows for λ̄ j ∈ Λ that

(Ad − BdGCd) ψ̄ j = λ̄ jψ̄ j, (8)

or, in partitioned form, [
Ad − λ̄ jI −Bd

] {ψ̄ j

b j

}
= 0, (9)

where b j = GCdψ̄ j ∈ Cr and ψ̄ j ∈ C2n are extracted from the null space of
[
Ad − λ̄ jI −Bd

]
. If the nullity is more than one,

then b j and ψ̄ j can be taken as combinations of the null vectors. Collecting b j and ψ̄ j such that Ψ = Cd

[
ψ̄1 . . . ψ̄2p

]
∈ Cm×2p

and Γ =
[
b1 . . . b2p

]
∈ Cr×2p, it follows that

GΨ = Γ, (10)

such that the gain can be computed by inversion when Ψ has full rank and the number of assigned eigenvalues, 2p, equals the
number of outputs, m. Since transposition does not change the eigenvalues, one can also operate with left-side eigenvectors
and assign r eigenvalues.

If 2p > m, (10) becomes overdetermined and the computed gain may not realize the assigned eigencharacteristics. One
way of mitigating this issue is to define Ψ̂ = Cd

[
ψ̄1 . . . ψ̄2n

]
∈ Cm×2n and Γ̂ =

[
b1 . . . b2n

]
∈ Cr×2n and then, under the

assumption that p < n, introduce a weighted least squares solution as

G = Γ̂WΨ̂H
(
Ψ̂WΨ̂H

)−1
, (11)

where the superscript H denotes the conjugate transpose and W = diag(η1, . . . , η2p, 1, . . . , 1) ∈ R2n×2n is a diagonal weighting
matrix; with ηi denoting the weights, which are taken such ηi = η. As pointed out by Bernal and Ulriksen [26], good
performance can be obtained for a wide range of η-values, thus no “fine-tuning” is required.
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3.2. Mode shape sensitivities

Let C̄d be the CL output matrix, then the jth CL mode shape follows as µ̄ j = C̄dψ̄ j. The sensitivity of µ̄ j with respect to a
structural parameter ε is thus given by

∂µ̄ j

∂ε
=
∂C̄d

∂ε
ψ̄ j + C̄d

∂ψ̄ j

∂ε
, (12)

where ∂C̄d/∂ε is easily computed for the particular sensing/measurement type, while ∂ψ j/∂ε is derived by taking the partial
derivative with respect to ε on both sides of (8). Hereby,

∂Ād

∂ε
ψ̄ j + Ād

∂ψ̄ j

∂ε
=
∂λ̄ j

∂ε
ψ̄ j + λ̄ j

∂ψ̄ j

∂ε
(13)

such (
Ād − λ̄ jI

) ∂ψ̄ j

∂ε
=

(
∂λ̄ j

∂ε
I −

∂Ād

∂ε

)
ψ̄ j, (14)

which can be solved using Nelson’s method [37]. We note that the method calls for the computation of the eigenvalue
sensitivity, ∂λ̄ j/∂ε, which can be found from (13). Furthermore, the method requires the partial derivative of the CL state
matrix, which writes

∂Ād

∂ε
=
∂Ad

∂ε
−
∂Bd

∂ε
GCd − BdG

∂Cd

∂ε
, (15)

with
∂Bd

∂ε
= A−1

c

(
∂Ad

∂ε
Bc + Ad

∂Bc

∂ε
−
∂Bc

∂ε
−
∂Ac

∂ε
Bd

)
. (16)

Thus, substitution of (16) into (15) yields

∂Ād

∂ε
=
∂Ad

∂ε
− A−1

c

(
∂Ad

∂ε
Bc + (Ad − I)

∂Bc

∂ε
−
∂Ac

∂ε
Bd

)
GCd − BdG

∂Cd

∂ε
, (17)

where the partial derivative of Ad with respect to the structural parameter can be taken as the complex step approximation [38]

∂Ad

∂ε
= lim

h→0
=

e
(
Ac+

∂Ac
∂ε hi

)
∆t

h

 . (18)

4. Damage detection using closed-loop mode shapes

The low sensitivity to damage of OL mode shapes, which is exemplified in Subsection 2.2, is well-known and documented
in numerous application studies [2]. In the present section, we propose a scheme for outlier analysis-based damage detection
with features composed of CL mode shapes, which are designed to offer enhanced sensitivity to damage while retaining an
adequate robustness to temperature variability.

4.1. Optimal gain design

Feedback gains are designed in a bi-objective optimization setting such that each of the resulting CL systems has one
mode shape assigned to exhibit an adequate trade-off between sensitivity to damage and robustness to temperature variability.
Specifically, q modes are selected from the OL system (typically based on the identifiability of these modes), and then q gains
are designed such that Gi assigns the mode shape of the ith mode of the selected subset. The gain designs are carried out
by use of the eigenstructure assignment scheme outlined in Subsection 3.1, with the aid of a design model of the undamaged
structural system in question.
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4.1.1. Objective function 1: Sensitivity to damage
The sensitivity to damage of a CL mode shape, µ̄i, is given by (12) when ε is taken as a stiffness-related parameter. For

each of the q mode shapes to be assigned, we establish the Jacobian matrix

Si =



∂µ̄1i
∂ε1

∂µ̄1i
∂ε2

. . . ∂µ̄1i
∂εn

∂µ̄2i
∂ε1

∂µ̄2i
∂ε2

. . . ∂µ̄2i
∂εn

...
...

. . .
...

∂µ̄mi
∂ε1

∂µ̄mi
∂ε2

. . . ∂µ̄mi
∂εn


, (19)

where µ̄ki denotes the kth entry in the ith mode shape to be assigned and ε j is the jth stiffness-related parameter. We define the
cost function

F
(i)

1 =
1
||Si||2

, (20)

which must be minimized in order to maximize (in a spectral norm-sense) the sensitivity to damage of the ith assigned CL
mode shape. With SOL

i denoting the Jacobian of the corresponding OL mode shape, the condition ||Si||2 > ||S
OL
i ||2 must be

fulfilled. Compliance with the condition will obviously not result in
∣∣∣∂µ̄ki/∂ε j

∣∣∣ > ∣∣∣∂µki/∂ε j

∣∣∣ for all k = 1, . . . ,m, j = 1, . . . , n,
so the use of multiple gains (that is, q > 1) is encouraged to promote adequate sensitivity to any local damage of interest.

4.1.2. Objective function 2: Robustness to temperature variability
According to Theorem 1, CL systems are, in general, non-classically damped, so the CL mode shapes are not invariant

to uniform temperature variability. In order to promote robustness to temperature variability, we introduce a second objective
function that quantifies the extent to which the damping in each of the assigned CL modes deviates from a classical distribution.
In particular, let ρ denote the condition number operator, then the second objective function is defined as

F
(i)

2 =
1

ρ
[
< (µ̄i) = (µ̄i)

] , (21)

where ρ
[
< (µ̄i) = (µ̄i)

]
= ∞ in the limit with a classically damped/undamped mode shape. Hence, F (i)

2 is to be minimized in
order to promote robustness to temperature variability.

4.1.3. Optimization formulation
Let G ⊂ Rr×m be the space of feasible gains—that is, gains that the r input controllers can deliver—and let ζ̄i and ω̄i denote

the CL damping ratio2 and damped eigenfrequency associated with the mode shape being assigned. Then, the design of each
gain is conducted on the basis of the following bi-objective optimization problem:

Ĝi = arg min
Gi∈G

(
F

(i)
1 ,F (i)

2

)
subject to ∀ j ∈ [1, 2n] : ||λ̄ j|| < 1,

0 < ζ̄i ≤ ζ̄
U
i ,

ω̄L
i ≤ ω̄i ≤ ω̄

U
i ,

(22)

in which explicit reference to any structural state is omitted, as the constraints must be complied with both prior and posterior
to the occurrence of damage. Obviously, one does not know the damaged state, so a maximum allowable damage extent is
defined and the design model is perturbed accordingly to ascertain the compliance with the constraints. The first constraint
in (22) ensures system stability, while the second and third constraints are defined such that the particular CL eigenvalue of
interest is identifiable through system identification and in the vicinity of the corresponding OL eigenvalue. In particular, ζ̄U

i

2For a non-classically damped mode, the notion of an associated damping ratio does no longer strictly apply. However, we still use the notion in accordance
with the classically damped formulation.
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is an upper bound on the CL damping ratio and ω̄L
i and ω̄U

i bound the associated CL damped eigenfrequency. The CL mode
shape assigned by use of Ĝi is denoted µ̄i

(
Ĝi

)
.

Problem (22) can be solved by either (i) transforming it into two single-criterion subproblems using, for example, the
Weighted Sum Method [39] or the ε-Constraint Method [40] or (ii) searching for the Pareto-optimal set using, for example,
multi-objective evolutionary algorithms [41]. In the illustrative example in Subsection 4.3 and the application example in
Section 5, we will use the Weighted Sum Method to solve (22).

4.2. Proposed damage detection scheme
As noted in Subsection 4.1, µ̄i

(
Ĝi

)
∈ Cm is the assigned mode shape in the CL system with the optimal gain Ĝi. If q gain

designs are carried out, then the resulting q assigned mode shapes are gathered in

Ξ =
[
µ̄1

(
Ĝ1

)T
. . . µ̄q

(
Ĝq

)T
]T
∈ Cmq, (23)

which constitutes the feature vector used in the proposed damage detection scheme. A series of Ntr ≥ mq realizations of (23)
are extracted in the undamaged structural state and gathered in the matrix Σ =

[
Ξtr

1 Ξtr
2 . . . Ξtr

Ntr

]
∈ Cmq×Ntr , which is used

to train a baseline model. The baseline model is composed of the mean of Σ, denoted νΣ ∈ Cmq, and the cross-covariance of
Σ, denoted ∆Σ ∈ Cmq×mq.

Let Ξte
i be the ith feature vector realization from the current, potentially damaged state to be tested, then the Mahalanobis

distance
D2

i

(
Ξte

i ,Σ
)

=
(
Ξte

i − νΣ

)H
∆−1

Σ

(
Ξte

i − νΣ

)
(24)

is employed to quantify the discordance between Ξte
i and the baseline model. D2

i thus constitutes the damage index from which
inferences regarding the structural state are made. Specifically, if D is the selected threshold, then D2

i ≤ D implies that the
structure is undamaged, while D2

i > D implies that the structure is damaged.

4.3. Illustrative example
We return to the chain system depicted in Fig. 1 and retain the setup with noise-contaminated displacement output captured

at the first and second DOF with a sampling frequency of 150 Hz. An impulse force is applied to the sixth DOF to excite the
structure and the actuator delivering the feedback is positioned at the fourth DOF. The gain is designed by placing the first CL
eigenvector in accordance with (22). In this context, we set η = 1000 and ζ̄U

i = 0.08. With the attained gain, we conduct 500
CL simulations in both the undamaged and the damaged state and obtain the estimated CL eigencharacteristics seen in Fig. 3.
Evidently, the eigenvalue estimates appear to be more affected by the temperature variability than the OL counterparts, see
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Fig. 3: Estimated eigencharacteristics of the first CL mode of the chain system with (a) showing the mode shape and (b) the continuous-time eigenvalue for
both structural states.

8



Fig. 2b, and no clear decision boundary exists between the CL realizations from the two structural states. The CL mode shape
estimates are, however, clustered according to the structural states with a clear decision boundary in between. Compared to
the OL mode shapes, see Fig. 2a, we have thus gained some sensitivity to damage at the expense of strict invariance to the
temperature variability.

5. Application example

We consider the 2-story frame structure depicted in Fig. 4 and use the term simulation models to refer to the models
(of the undamaged and damaged structural states) used to simulate experiments. The design model and the undamaged
simulation model are throughout assumed identical, thus no model errors are introduced. The structure is modeled using 16
two-dimensional Euler-Bernoulli beam elements with a material model corresponding to structural steel. Classical damping
is assumed in OL such that each mode has a damping ratio of 5 % in the undamaged OL state. An impulse excitation, vk,
is applied to the frame structure, and an actuator delivering displacement output feedback, uk, is positioned between floor 1
and 2 as depicted in Fig. 4. The displacement response, yi

k, is captured at floor 1 and between floors 1 and 2 with a sampling
frequency of 13 kHz. The displacements are contaminated with 2 % white Gaussian noise, and the structure is simultaneously
exposed to a spatially uniform temperature variability for which α ∈ [0.97, 1] in accordance with Assumption 1. Damage is
emulated by reducing the Young’s modulus of a single element by 3 %. We confine the study to two damage cases; namely,
case 1 in which the stiffness of element 1 is reduced and case 2 in which the stiffness of element 7 is reduced.

5.1. Feature design and extraction

The design model is used for designing two gains in accordance with (22). The first gain is designed by assigning the
mode shape of the first CL mode, while the second gain is designed by assigning the mode shape of the second CL mode. With
reference to (22), we set ζ̄U

1 = ζ̄U
2 = 0.1 (hence allowing up to 10 % critical damping) and 0.5ωi ≤ ω̄i ≤ 2ωi, where ωi is the

corresponding OL eigenfrequency. The frequency bounds are selected to ensure that the assigned eigenvalues are identifiable
and that they do not become closely spaced with the other frequencies in the eigenspectra. A constraint with respect to the
maximum allowable damage is defined such that we permit up to 20 % damage at each element, and in each gain design the
eigenvalue associated with the mode to be assigned is weighted such that η = 7500. By use of the Weighted Sum Method, we
solve (22) for the two gain designs and obtain the findings presented in Tb. 1. It follows from the ratios F OL

1 /F (i)
1 , where F OL

1
is the inverse of the spectral norm of the OL mode shape Jacobian, that we (in a spectral norm-sense) gain 4.5 and 9.3 times
more mode shape sensitivity in the two assigned modes compared to the corresponding OL modes.

In the damage detection analysis, the following feature sets are explored: (i) the first mode shape (designed by using the
first gain), (ii) the second mode shape (designed by using the second gain), and (iii) the two mode shapes stacked. The features

vk

y1
k

y2
k

y3
k

y4
k

uk

1

2

3

4

5 6 7 8

9

10

11

12

13141516

2 m

2
m

Fig. 4: 2-story frame structure model with an exogenous input, vk , a control input, uk , and four displacement outputs, yi
k . The circle numbering denotes the

particular element number.
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Tb. 1: Gain design results obtained using (22) with ζU
i = 0.08 and 0.5ωi ≤ ω̄i ≤ 2ωi, where ωi is the corresponding OL eigenfrequency.

Gain design Cost function valuesa Assigned CL mode shapeb Associated eigenvaluec

1 F OL
1

F
(1)

1
= 4.534, F (1)

2 = 1.462 · 10−5 µ̄1

(
Ĝ1

)∥∥∥∥µ̄1

(
Ĝ1

)∥∥∥∥
2

=


0.371 + 0.000 j
0.603 + 0.000 j
0.602 + 0.000 j
0.371 + 0.000 j


log(λ̄1(Ĝ1))

∆t = −7.880 + 155.598 j

2 F OL
1

F
(2)

1
= 9.278, F (2)

2 = 0.025 µ̄2

(
Ĝ2

)∥∥∥∥µ̄2

(
Ĝ2

)∥∥∥∥
2

=


0.336 + 0.000 j
0.524 − 0.004 j
0.703 + 0.032 j
0.344 + 0.002 j


log(λ̄2(Ĝ2))

∆t = −25.747 + 297.662 j

a F OL
1 is the inverse of the spectral norm of the OL mode shape Jacobian and F OL

2 = 0.
b The OL eigenvectors of modes 1 and 2 are [0.370 0.602 0.602 0.370]T and [0.673 0.218 0.218 0.673]T .

c The OL eigenvalues of modes 1 and 2 are −7.877 + 157.345 j and −27.713 + 553.574 j.

are computed by use of the SSI method. We extract 300 realizations from the undamaged state and 100 realizations from each
of the two damaged states. The Mahalanobis distance (24) is used for outlier analysis, and we establish the training model
based on 150 realizations from the undamaged state, while the remaining 150 realizations from this structural state are used
for testing along with the 100 realizations from each of the damaged states.

5.2. Damage detection results
Figs. 5a to 5c display the Mahalanobis distances for damage case 1 obtained using the three different feature sets, while

the corresponding results for damage case 2 are seen in Figs. 5d to 5f. From Figs. 5a and 5c, we can see that good performance
is obtained when using feature set 1 (that is, the first CL mode shape) and feature set 3 (that is, the combination of CL mode
shapes 1 and 2) since a clear decision boundary between the damaged and undamaged states is present. The results in Fig. 5b
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Fig. 5: Mahalanobis distances of features µ̄1
(
Ĝ1

)
, µ̄2

(
Ĝ2

)
, and

{
µ̄1

(
Ĝ1

)
, µ̄2

(
Ĝ2

)}
in (a)–(c) damage case 1 and (d)–(f) damage case 2.
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Fig. 6: ROC curves and AUC values attained when using µ̄1
(
Ĝ1

)
, µ̄2

(
Ĝ2

)
, and

{
µ̄1

(
Ĝ1

)
, µ̄2

(
Ĝ2

)}
as features in (a) damage case 1 and (b) damage case 2.

Tb. 2: Summary of the detection performances attained for damage cases 1 and 2 when using µ̄1
(
Ĝ1

)
, µ̄2

(
Ĝ2

)
, and

{
µ̄1

(
Ĝ1

)
, µ̄2

(
Ĝ2

)}
as feature vectors.

Feature vector, Ξ
Damage case 1 Damage case 2

AUC TPR FPR Acc. AUC TPR FPR Acc.
µ̄1

(
Ĝ1

)
0.993 0.980 0.033 0.972 0.881 0.860 0.187 0.832

µ̄2
(
Ĝ2

)
0.908 0.860 0.140 0.860 0.736 0.580 0.200 0.712{

µ̄1
(
Ĝ1

)
, µ̄2

(
Ĝ2

)}
1.000 1.000 0.000 1.000 0.911 0.860 0.147 0.856

display a somewhat fuzzy decision boundary, thus the damage detectability provided by mode shape 2 is lower than the one
provided by mode shape 1. As seen in Figs. 5d and 5e, the same tendency is observed in damage case 2, where mode shape
2 provides insufficient damage detectability. A clear decision boundary is, as seen in Fig. 5f, only attained when both mode
shapes are used in the feature set. The observations are supported by the receiver operating characteristic (ROC) curve for
each damage case, see Figs. 6a and 6b. The performance in each damage case is summarized in Tb. 2 on the basis of the area
under the ROC curve (AUC), the true positive rate (TPR), the false positive rate (FPR), and the accuracy (Acc) [42].

5.2.1. The effect of the temperature variability level
We examine the effect of the temperature variability level on the damage detection performance of the proposed scheme.

We do this in the context of damage case 2 using
{
µ̄1

(
Ĝ1

)
, µ̄2

(
Ĝ2

)}
as the feature vector. Four scenarios are explored, namely,

1 %, 3 %, 5 %, and 10 % uniform stiffness variability, where it is noted that the setting with 3 % has already been documented.
The attained ROC curves are presented in Fig. 7, where it can be seen that the AUC, as expected, increases as the temperature
variability decreases. The performance is summarized in Tb. 3 by the AUC, TPR, FPR, and Acc. To this end, the results con-
firm that the designed mode shape features—albeit not invariant under temperature variability—display adequate robustness
to temperature variability.

Tb. 3: Summary of the detection performances attained at different temperature variability levels for damage case 2 with
{
µ̄1

(
Ĝ1

)
, µ̄2

(
Ĝ2

)}
as feature vectors.

Temperature variability AUC TPR FPR Acc.
1 % 0.972 0.910 0.053 0.932
3 % 0.911 0.860 0.147 0.856
5 % 0.853 0.780 0.207 0.789

10 % 0.700 0.590 0.280 0.668
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Fig. 7: ROC curves for different temperature variability levels for damage case 2 with
{
µ̄1

(
Ĝ1

)
, µ̄2

(
Ĝ2

)}
as feature .

5.2.2. Comparison with an existing EOV mitigation method
The proposed CL scheme is compared to a well-established cointegration-based method [16] in the context of damage

case 2 with a temperature variability of 3 %. The feature set used in the cointegration is composed of the first and second OL
eigenvalues. The SSI method is employed to extract the features, which are gathered inH = [λ1 λ2]. The columns inH are
said to be cointegrated if a linear combination of them is stationary. Given that this stationary combination/residual exists, it
can be computed as

Z = βTH , (25)

where β is the so-called cointegration vector. When utilizing cointegration, two main conditions must be satisfied; (i) the
series of variables, found in the columns of H , must be integrated with the same order (i.e., the columns must have the same
“degree of non-stationarity“ [16]) and (ii) the series must share common trends. Assuming the aforementioned conditions are
satisfied, the Johanson procedure [43] can be employed to compute the cointegration vector.

The first step in the Johansen procedure is to fit a series of training realizations, gathered in H tr, to a c-order vector error
correction model (VECM) of the form [16]

∆H tr
b = υβTH tr

b−1 +

c−1∑
i=1

Pi∆H
tr
b−i + Eb, (26)

with ∆ denoting the difference operator, υ the adjustment matrix, b the observation number, P the short-run adjustments, and
E a white noise process. A rigorous explanation on how to compute β is outside the scope of the present paper, so the reader
is referred to [16] for such details. We note that the order/number of lags of the VECM model used in the present example is
set to 13, which is found by using the method proposed by Dao et al. [44].

The obtained cointegration residual can be seen in Fig. 8a, and the associated ROC curve is depicted in Fig. 8b. From
Fig. 8a, we can see that no clear decision boundary is present between the undamaged and damaged states, hence leading to
rather poor damage detection results with FPR = 0.246, TPR = 0.710, AUC = 0.785, and Acc = 0.736. When comparing these
statistics with the ones obtained using the proposed CL scheme, see Tb. 3, it is evident that the proposed scheme outperforms
the cointegration-based method.

6. Conclusion

This paper proposes a new scheme for dealing with the effect of temperature variability in vibration-based damage detec-
tion. The scheme employs CL mode shapes as features that are designed to offer adequate sensitivity to damage and robustness
to temperature variability. The design is performed by a proposed eigenvector assignment scheme, which is formulated as
a bi-objective optimization problem. The first objective expresses the reciprocal of the sensitivity to damage and is to be
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Fig. 8: Damage detection results for damage case 2 with (a) showing the cointegration residual and (b) the associated ROC curve.

minimized. The second objective is a measure of the linear independence between the real and imaginary parts of the assigned
CL mode shapes, which quantifies the CL damping model’s deviation from a classical distribution in the assigned modes.
As classically damped mode shapes are invariant to spatially uniform stiffness changes, the latter objective is minimized to
promote robustness to temperature variability.

The proposed CL scheme is tested on the basis of an illustrative example with a chain system and a 2-story frame structure
model; both systems exposed to temperature variability. We see that the CL scheme effectively enhances the sensitivity to
damage of the selected mode shapes while preserving adequate robustness to temperature variability, hence leading to good
damage detectability. Finally, the scheme is compared to a well-established method for mitigating the effect of temperature
variability, namely, cointegration in the context of the frame structure. To this end, it is seen how the CL scheme outperforms
the cointegration-based method.

References

[1] C. R. Farrar, K. Worden, Structural health monitoring: A machine learning perspective, 1st Edition, John Wiley & Sons,
Inc., 2013.

[2] M. D. Ulriksen, Damage localization for structural health monitoring: An exploration of three new vibration-based
schemes, Ph.D. thesis, Aalborg University, Aalborg, Denmark (2018).

[3] S. Doebling, C. Farrar, M. Prime, A summary review of vibration-based damage identification methods, The Shock and
Vibration Digest 30 (1998) 91–105. doi:10.1177/058310249803000201.

[4] H. Sohn, M. Dzwonczyk, E. G. Straser, A. S. Kiremidjian, K. H. Law, T. Meng, An experimental study of temperature
effect on modal parameters of the alamosa canyon bridge, Earthquake Engineering & Structural Dynamics 28 (8) (1999)
879–897. doi:10.1002/(SICI)1096-9845(199908)28:8<879::AID-EQE845>3.0.CO;2-V.

[5] B. Peeters, G. De Roeck, One-year monitoring of the z24-bridge: environmental effects versus damage events, Earth-
quake Engineering & Structural Dynamics 30 (2) (2001) 149–171. doi:10.1002/1096-9845(200102)30:2<149::AID-
EQE1>3.0.CO;2-Z.

[6] T. Bull, M. D. Ulriksen, D. Tcherniak, The effect of environmental and operational variabilities on damage detection
in wind turbine blades, in: Proceedings of the 9th European Workshop on Structural Health Monitoring (EWSHM),
Manchester, UK, 2018, pp. 1–9.

[7] E. J. Cross, On structural health monitoring in changing environmental and operational conditions, Ph.D. thesis, The
University Of Sheffield, Sheffield, England (2012).

[8] M. D. H. Bhuyan, G. Gautier, N. Le Touz, M. Döhler, F. Hille, J. Dumoulin, L. Mevel, Vibration-based damage local-
ization with load vectors under temperature changes, Structural Control and Health Monitoring 26 (11) (2019) e2439.
doi:10.1002/stc.2439.

13



[9] R. Hou, X. Wang, Q. Xia, Y. Xia, Sparse bayesian learning for structural damage detection under varying temperature
conditions, Mechanical Systems and Signal Processing 145 (2020) 106965. doi:10.1016/j.ymssp.2020.106965.

[10] B. A. Qadri, L. D. Avendaño-Valencia, J.-O. Hooghoudt, D. Tcherniak, M. D. Ulriksen, Removal of environmental
and operational effects in damage detection: A comparative study with an operating wind turbine, Structural health
monitoring(submitted) (2020).

[11] I. Jolliffe, Principal Component Analysis, Springer Verlag, 1986.
[12] A.-M. Yan, G. Kerschen, P. De Boe, J.-C. Golinval, Structural damage diagnosis under varying environmen-

tal conditions - Part I: A linear analysis, Mechanical Systems and Signal Processing 19 (2005) 847–864.
doi:10.1016/j.ymssp.2004.12.002.

[13] A. D. F. Santos, M. F. M. Silva, C. S. Sales, J. C. W. A. Costa, E. Figueiredo, Applicability of linear and nonlinear
principal component analysis for damage detection, in: 2015 IEEE International Instrumentation and Measurement
Technology Conference (I2MTC) Proceedings, 2015, pp. 869–874.

[14] A. Deraemaeker, K. Worden, A comparison of linear approaches to filter out environmental ef-
fects in structural health monitoring, Mechanical Systems and Signal Processing 105 (2018) 1–15.
doi:https://doi.org/10.1016/j.ymssp.2017.11.045.

[15] R. Engle, C. Granger, Co-integration and error correction: Representation, estimation, and testing, Econometrica 55 (2)
(1987) 251–276.

[16] E. J. Cross, K. Worden, Q. Chen, Cointegration: a novel approach for the removal of environmental trends in struc-
tural health monitoring data, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
467 (2133) (2011) 2712–2732. doi:10.1098/rspa.2011.0023.

[17] E. J. Cross, K. Worden, Approaches to nonlinear cointegration with a view towards applications in SHM, Journal of
Physics: Conference Series 305 (2011) 012069. doi:10.1088/1742-6596/305/1/012069.

[18] P. B. Dao, Cointegration method for temperature effect removal in damage detection based on lamb waves, Diagnostyka
Vol. 14, No. 3 (2013) 61–67.

[19] P. B. Dao, W. J. Staszewski, Data normalisation for lamb wave–based damage detection using cointegration: A case
study with single- and multiple-temperature trends, Journal of Intelligent Material Systems and Structures 25 (7) (2014)
845–857. doi:10.1177/1045389X13512186.

[20] B. A. Qadri, M. D. Ulriksen, L. Damkilde, D. Tcherniak, Cointegration for detecting structural blade damage in an op-
erating wind turbine: An experimental study, in: S. Pakzad (Ed.), Dynamics of Civil Structures, Volume 2: Proceedings
of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019, Springer International Publishing, 2020,
pp. 173–180. doi:10.1007/978-3-030-12115-0_23.

[21] M. D. Spiridonakos, E. N. Chatzi, Metamodeling of dynamic nonlinear structural systems through polynomial chaos
narx models, Computers & Structures 157 (2015) 99–113. doi:10.1016/j.compstruc.2015.05.002.

[22] L. D. Avendaño-Valencia, E. N. Chatzi, K. Y. Koo, J. M. W. Brownjohn, Gaussian process time-series models for
structures under operational variability, Frontiers in Built Environment 3 (2017) 1–19. doi:10.3389/fbuil.2017.00069.

[23] K. Tatsis, V. Dertimanis, Y. Ou, E. N. Chatzi, Gp-arx-based structural damage detection and localization under varying
environmental conditions, Journal of Sensor and Actuator Networks 9 (3) (2020) 41. doi:10.3390/jsan9030041.

[24] L. D. Avendaño-Valencia, E. N. Chatzi, D. Tcherniak, Gaussian process models for mitigation of operational variability
in the structural health monitoring of wind turbines, Mechanical Systems and Signal Processing 142 (2020) Article –
106686. doi:10.1016/j.ymssp.2020.106686.

[25] L. R. Ray, L. Tian, Damage detection in smart structures through sensitivity enhancing feedback control, Journal of
Sound and Vibration 227 (5) (1999) 987–1002. doi:https://doi.org/10.1006/jsvi.1999.2392.

[26] D. Bernal, M. D. Ulriksen, Output feedback in the design of eigenstructures for enhanced sensitivity, Mechanical Systems
and Signal Processing 112 (2018) 22–30. doi:10.1016/j.ymssp.2018.04.032.

[27] M. D. Ulriksen, D. Bernal, On the use of complex gains in virtual feedback for model updating, in: International
Conference on Structural Engineering Dynamics (ICEDyn), 2019, pp. 1–7.

[28] L. J. Jiang, J. J. Tang, K. W. Wang, An optimal sensitivity-enhancing feedback control approach via eigenstruc-
ture assignment for structural damage identification, Journal of Vibration and Acoustics 129 (6) (2007) 771–783.
doi:10.1115/1.2748476.

[29] K. Worden, C. R. Farrar, G. Manson, G. Park, The fundamental axioms of structural health monitoring, Proceed-
ings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463 (2082) (2007) 1639–1664.
doi:10.1098/rspa.2007.1834.

14



[30] P. C. Mahalanobis, On the generalised distance in statistics, Proceedings of the The National Institute of Science of India
2 (1) (1936) 49–55.

[31] T. K. Caughey, Classical normal modes in damped linear dynamic systems, Journal of Applied Mechanics 27 (2) (1960)
269–271. doi:10.1115/1.3643949.

[32] J. M. W. Brownjohn, T. C. Pan, H. K. Cheong, Dynamic response of republic plaza, singapore, The Structural Engineer
76 (11) (1998) 221–226.

[33] F. Magalhães, E. Caetano, Álvaro Cunha, Operational modal analysis and finite element model correlation of the braga
stadium suspended roof, Engineering Structures 30 (6) (2008) 1688–1698. doi:10.1016/j.engstruct.2007.11.010.

[34] C. Gentile, A. Saisi, Operational modal testing of historic structures at different levels of excitation, Construction and
Building Materials 48 (2013) 1273–1285. doi:10.1016/j.conbuildmat.2013.01.013.

[35] P. Van Overschee, B. De Moor, Subspace identification for linear systems. Theory, implementation, applications, Kluwer
Academic Publishers Group, 1996. doi:10.1007/978-1-4613-0465-4.

[36] M. D. Ulriksen, Closed-loop model updating for damage isolation in structural systems exposed to temperature variabil-
ity, Applied Mathematical Modelling(to appear) (2021).

[37] R. B. Nelson, Simplified calculation of eigenvector derivatives, AIAA Journal 14 (9) (1976) 1201–1205.
doi:10.2514/3.7211.

[38] A. H. Al-Mohy, N. J. Higham, The complex step approximation to the fréchet derivative of a matrix function, Numerical
Algorithms 53 (2010) 133–148. doi:10.1007/s11075-009-9323-y.

[39] S. Gass, T. Saaty, The computational algorithm for the parametric objective function, Naval Research Logistics Quarterly
2 (1-2) (1955) 39–45. doi:10.1002/nav.3800020106.

[40] Y. Y. Haimes, L. S. Lasdon, D. A. Wismer, On a bicriterion formulation of the problems of integrated system identi-
fication and system optimization, IEEE Transactions on Systems, Man, and Cybernetics SMC-1 (3) (1971) 296–297.
doi:10.1109/TSMC.1971.4308298.

[41] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Inc., 2001.
[42] J. P. Egan, Signal detection theory and ROC-analysis, Academic Press, 1975.
[43] S. Johansen, Statistical analysis of cointegration vectors, Journal of Economic Dynamics and Control 12 (2) (1988)

231–254. doi:https://doi.org/10.1016/0165-1889(88)90041-3.
[44] P. B. Dao, W. J. Staszewski, A. Klepka, Stationarity-based approach for the selection of lag length in cointegration

analysis used for structural damage detection, Computer-Aided Civil and Infrastructure Engineering 32 (2) (2017) 138–
153. doi:10.1111/mice.12238.

15


