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Abstract

Structural monitoring of wind turbines often involves the use of a numerical model, which must be regularly updated
to yield an adequate representation of the governing dynamics. The model updating can be cast as an inverse problem,
in which selected model parameters are estimated by minimizing the discrepancy between experimental target poles
and model-predicted ones. An issue that may prevail in this setting is that the problem will be ill-posed, because the
number of model parameters to be updated exceeds the number of target poles. The noted issue can be remedied by a
virtual implementation of output feedback, which allows for computation of multiple closed-loop (CL) eigenstructures
through non-linear transformations of the open-loop transfer matrix. The present paper offers an application study,
in which virtual output feedback is used for updating numerical wind turbine models based on CL system poles. In
particular, we explore the feasibility of employing the excitation stemming from the blade pitch control system as the
input in the open-loop input-output realization required in the virtual output feedback. The methodological concept is
outlined, and subsequently the applicability of the procedure is tested numerically in the context of simulations with a
finite element model of a parked wind turbine. The preliminary findings suggest that procedures for customizing the
pitch excitation to yield sufficient system excitation are required for the CL model updating to be feasible.
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1. Introduction

Offshore wind turbine systems operate under vary-
ing environmental and operational conditions, which are
governed by, among other parameters, the wind, the
waves, the temperature, and the control system. The
shifts in these environmental and operational parame-
ters (EOPs) render the structural properties time-variant
and promote structural integrity degradation [1, 2], thus
regular integrity assessments are required to ensure that
the wind turbines operate adequately. A particular
way of conducting the assessments is to use vibration-
based structural health monitoring (VSHM) techniques,
in which the structural condition is inferred on the ba-
sis of processed vibration measurements [3]. Numer-
ous VSHM techniques have been suggested for differ-
ent levels of VSHM of wind turbine systems; cover-
ing damage detection [4], localization [5], quantifica-
tion [6], and prognosis [7].

Numerical models are widely used in damage lo-
calization, assessment, and prognosis of wind turbines
[8, 9]. In order to ensure that the models provide an ad-
equate representation of the governing system dynam-

ics, they must be regularly calibrated through model up-
dating [10]. Different studies have shown how indirect
model updating—in which a subset of model parame-
ters are estimated in an inverse problem setting—can
allow for efficient calibration of numerical models of
wind turbines and subsystems hereof [11, 12, 13, 14].

Indirect model updating aims to minimize the dis-
crepancy between experimental target features and the
corresponding model-predicted features by updating the
selected model parameters. Let δλ ∈ Cp denote the
discrepancy between the p experimental and model-
predicted features and let θ ∈ Rq be the q model pa-
rameters to be updated, then

δλ ≈ Jδθ, (1)

where J ∈ Cp×q is the Jacobian matrix containing
the sensitivities of λ with respect to θ. A commonly
adopted approach in structural model updating is to cal-
ibrate a finite element model by matching system poles
from the model with target poles estimated from exper-
iments [10]. When using this setting for updating wind
turbine models, a likely scenario is that problem (1) will
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be ill-posed, because the number of updating parame-
ters, q, exceeds the number of identifiable poles, p.

The ill-posedness of problem (1) can be resolved us-
ing output feedback to design multiple closed-loop sys-
tems and hence target features [15, 16, 17]. To imple-
ment the feedback physically, the system input needs to
be controllable, which will be infeasible in some appli-
cations. Instead, a signal processing-based implemen-
tation of the feedback can, as outlined in [18, 19, 20],
be attained from available open-loop (OL) input-output
realizations. As such, this implementation, which is
referred to as virtual output feedback, eliminates the
practical issues associated with closed-loop (CL) test-
ing (including the physical constraints on the gain) and
removes the constraint of CL system stability.

The present paper addresses the use of virtual output
feedback for CL updating of finite element models of
offshore wind turbine systems in parked conditions. In
particular, we explore the feasibility of using excitation
from the blade pitch control system as deterministic in-
put in the virtual output feedback during parked condi-
tions. Here, the pitch control system refers to the tech-
nology that is used to control the angle of the wind tur-
bine blades in order to satisfy specific operational con-
straints governed by the wind speed, power output, and
so forth. As such, the proposed procedure does not re-
quire any additions to the control system. This study is
based on a numerical model of an 8 MW offshore wind
turbine system, which is introduced to stiffness-related
perturbations that emulate common structural damage
in wind turbine substructures.

The paper is organized as follows. In Section 2,
the methodological principles of output feedback-based
model updating are outlined. Section 3 describes the
case study setup, including the use of pitch excitation
input, while Section 4 presents the appertaining model
updating results. The paper closes with some conclud-
ing remarks in Section 5.

2. Methodology

We consider a linear, time-invariant system of order
2n with input u(k) ∈ Rr and output y(k) ∈ Rm at time
instant k. The discrete-time state-space formulation of
the system is

x(k + 1) = Adx(k) + Bdu(k), (2a)
y(k) = Cdx(k), (2b)

where Ad ∈ R2n×2n, Bd ∈ R2n×r, and Cd ∈ Rm×2n are
the state, input, and output matrices. In system (2), it
is assumed that the direct transmission term is zero or

subtracted from the output. Let system (2) operate under
static output feedback given as

u(k) = −Gy(k) + v(k), (3)

in which G ∈ Rr×m is the feedback gain and v(k) ∈ Rr

is a disturbance vector. By inserting (3) into system (2),
we get the CL state equation

x(k + 1) = (Ad − BdGCd) x(k) + Bdv(k) (4)

with
Ā = Ad − BdGCd (5)

being the CL state matrix.

2.1. Virtual output feedback
The virtual implementation of output feedback fol-

lows from OL input-output realizations of system (2).
In particular, let

H(z) = Cd (zI − Ad)−1 Bd (6)

be the OL transfer matrix of system (2), then, with feed-
back law (3), we establish

y(z) = H(z) (−Gy(z) + v(k)) . (7)

Hereby, the CL transfer matrix can be found as

H̄(z) = (I + H(z)G)−1 H(z), (8)

which implies that multiple CL systems can be com-
puted based on a single OL input-output realization by
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Figure 1: The concept of virtual output feedback with a total of N CL
systems based on a single OL input-output system realization.
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plugging in different gains, G j ∈ Rr×m. This concept is
illustrated in Figure 1, where Λ ∈ C2n is the full set of
OL system poles while Λ̄ j ∈ C2n contains the poles of
the CL system formed using G j.

2.2. Model updating formulation and gain design

In practice, only a subset of Λ will be identifiable.
To increase the dimensionality of the target feature vec-
tor, one can simply expand it with poles from Λ̄ j (for
j = 1, . . . ,N) until the inverse problem to be solved is
(over)-determined with p ≥ q. With the expanded target
feature vector, the model updating can be conducted in
full analogy to the conventional OL inverse problem for-
mulations [10]. In the present study, the optimal model
parameter set, θ̂, is estimated as

θ̂ = arg min
θ∈Rq

(
δλTδλ

)
, (9)

where δλ is specified as the difference between the ex-
perimental target features, λT , and the model-predicted
features, λM(θ).

The N gains to be used in the updating can be de-
signed using different approaches [18, 21, 22, 23]. Here,
we employ a gain design aiming to decrease the condi-
tion number of the Jacobian matrix in (1). Let

G =
[
GT

1 GT
2 . . . GT

N

]T
∈ RNr×m (10)

be the compound gain matrix, then

Ĝ = arg min
G∈RNr×m

K(J) (11)

with K denoting the condition number operator. Worth
of explicit note is that the gain design, for necessary
practicality, is conducted on the basis of a model of the
structural reference state, which does not take into ac-
count the current realization of the system parameters.

3. Case study setup

The offshore wind turbine model used in the numer-
ical example is shown in Figure 2. The system, which
is depicted without its rotor, consists of a three-legged
jacket substructure with four brace levels connected to
the soil with piles and an 8 MW turbine. Details about
the modeling, including dimensions, soil conditions,
and damping properties, can be found in [24].

We use the terms nominal model and simulation
model to refer to, respectively, the model to be updated
and the model used to simulate experiments. The two
models are shown in Figure 3, and it is noted that they

Figure 2: Wind turbine model used in the case study. The arrows in-
dicate the wind load direction, which is co-directional with the waves.

both have 1200 degrees of freedom (DOF). The mod-
els have identical mass and damping matrices, denoted
M, C ∈ R1200×1200, while the stiffness, as outlined in
Subsection 3.1, differs. The nominal model—whose
stiffness, K ∈ R1200×1200, is to be updated—provides
the model-predicted features, λM(θ). Additionally, this
model is used for designing the gains in accordance with
the procedure outlined in Subsection 2.2.

In the simulations, the turbine is, as specified in Ta-
ble 1, in a parked condition with the impact from the
wind and waves at a minimum. Hereby, the time-variant

Table 1: Load case used in the case study.

Parameter Value

Turbine state Parked
Wind speed, U [m/s] 4
Wind profile NWP∗

Wave height, Hs [m] 0.45
Wave period, Tp [s] 3.76
Wind and wave direction N∗∗

∗Normal wind profile (NWP)
∗∗North (N)
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(a) Nominal model.
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(b) Simulation model.

Figure 3: Models used in the case study. The load vector, fb, is ex-
plained in Subsection 3.2.

and non-linear effects induced by rotor operations are
avoided, and the pitch excitation can be tailored to gov-
ern a part of the output. Each simulated OL input-output
realization has a duration of 600 s and a time increment
of 0.01 s, hence totaling NS = 60001 sample points.
From the realizations, the state-space system matrices
are estimated as Ãd, B̃d, and C̃d such that the OL tar-
get poles can be extracted as the eigenvalues of Ãd. The
CL target poles are computed by plugging Ãd, B̃d, and
C̃d into (5) with a gain from the compound gain in (10).
These estimated OL and CL poles compose the target
features, λT . Subsections 3.1 to 3.3 provide further de-
tails on the simulation model.

3.1. Input, output, and damage locations

To accommodate the constraints imposed by practi-
calities, it is chosen to place all output sensors in dry
and accessible locations on the turbine. The sensors
are taken as displacement sensors, which are distributed
as shown in Figure 4. It is noted that at each out-
put location, both x- and y-directional displacements
are captured, thus the output vector is y(k) ∈ R8 for
k = 0, . . . , 60001. The selected sensor distribution im-
plies, as elaborated in [24], that the “local” brace modes
of the system are not identifiable.

The loads used as deterministic input in the model
updating are computed based on the load iteration pro-

Figure 4: Input, output, and damage/stiffness perturbation locations.

cedure outlined in Subsection 3.2. The result is a set of
interface loads, composed of x- and y-directional forces
and moments around the x- and y-axes, at the location
marked in Figure 4. Therefore, we get the input vector
u(k) ∈ R4 for k = 0, . . . , 60001. In practice, the input
should be taken as the pitch loads acting in the rotor,
which are either to be measured directly or estimated
based on the available pitch angle time histories. The
procedure selected in this study is thus merely for com-
putational convenience.

The simulation model is, compared to the nominal
model, perturbed by local stiffness changes at the lo-
cations indicated in Figure 4. With the first perturbation
being the lowermost and the last the topmost, the pertur-
bation vector is set to

[
920% 0 915%

]
. The perturbations

are introduced in three beam elements, which each has
a length of approximately 3 m and is placed around a
bolted connection in the tower; with the lowermost per-
turbation being at the bolted interface point between the
tower and the jacket.

3.2. Load iteration and response simulation

The load iteration setup [25] depicted in Figure 5 is
used to produce the required structural load input and
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Figure 5: Load iteration used in input-output realizations.

response output. The setup includes the following four
steps:

1. Initial Ramboll offshore structural analysis
(ROSA) [26] model containing a wave model.

2. Craig-Bampton condensation [27] of the ROSA
model and wave loads to generate a superelement
(SE) with reduced mass, damping, stiffness, and
loading (Mr, Cr, Kr, and fr) used in the subsequent
aeroelastic simulation.

3. Aeroelastic simulation in LACflex [28], which
computes the interface loads, fb.

4. Load recovery run in ROSA, with turbine loads
from LACflex applied to the interface DOF, ub.

The last step of the load iteration, namely, the load
recovery run, computes the structural response of the
jacket and tower. Here, it is afterwards possible to ex-
tract displacements, stresses, and so forth.

3.3. Pitch excitation

The interface loads from the pitch excitation are used
as input in the OL system identification, thus u(k) =
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Figure 6: Bending moment Mx at the interface point during pitching.

fb(k). The pitching is programmed such that all three
blades rotate between two specific pitch angles, namely,
90 deg and 75 deg. In Figure 6, the time history of one of
the pitch excitation-induced loads, namely, the bending
moment around the x-axis, Mx, is plotted along with the
blade pitch angle. As expected, the temporal evolution
of the moment correlates with the blade pitching.

To quantify the impact of the pitch excitation on
the structural response, we plot, with reference to Fig-
ure 4, the displacements captured in the topmost sen-
sor. The results are shown in Figure 7 for the system
with and without the pitch excitation; with y1 being

100 120 140 160 180 200

10

20

30

100 120 140 160 180 200

-20

0

20

Figure 7: Structural displacement response at the topmost sensor (with
reference to Figure 4) with and without pitch excitation. y1 and y2 are
the x- and y-directional displacements.
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Table 2: OL continuous-time poles of the nominal model, λM, plus the exact, λT , and estimated, λ̃T , poles of the simulation model.

Pole λM λT λ̃T

1 −0.0430 ± 5.0153i −0.0431 ± 4.9836i
−0.0427 ± 4.9878i2 −0.0430 ± 5.0153i −0.0431 ± 4.9837i

3 −0.1132 ± 9.0915i −0.1134 ± 9.0529i
−0.1123 ± 9.0845i4 −0.1132 ± 9.0928i −0.1134 ± 9.0542i

the x-directional displacements and y2 the y-directional
displacements. Evidently, the pitching affects the y-
directional response, while the x-directional response is
not affected. The findings are a result of how the turbine
loads are affected by the wind and wave direction, and
how the turbine is rotated with respect to the global axis
and jacket setup, as depicted in Figure 2.

3.4. Updating features

The input and output data is used to infer an estimate
of the system and, as such, the employed target features
through system identification. In this study, the data-
driven subspace identification algorithm N4SID [29] is
used under the precondition that the system is observ-
able and controllable. The system identification yields
consistent estimates of two poles of the wind turbine,
which are presented in Table 2 along with the exact first
and second bending mode poles from the simulation
model and the nominal model. Evidently, the attained
estimates match, with reasonable accuracy, the poles of
the first two sets of bending modes. The corresponding
exact poles from the nominal model have, as expected,
higher frequencies since no perturbations are present.

4. Results

The updating is conducted in a setting where the three
model parameters perturbed with

[
920% 0% 915%

]
in the

simulation model are to be estimated in the nominal
model. With three model parameters, the two estimated
OL poles are insufficient to render the updating problem
well-posed, so CL systems are formed to expand the tar-
get vector such p ≥ q. We design three CL systems from
each of which we extract the two CL poles that “corre-
spond” to the two OL poles. The target feature is thus a
mixture of two OL and six CL poles.

With the target vector discrepancy δλ ∈ C8, the three
model parameters are estimated via minimization of

β = δλTδλ, (12)

which is solved in MATLAB® using “fmincon” with
an interior-point algorithm [30]. The results for dif-
ferent initial configurations, δθ0, are listed in Table 3.
As can be seen, the CL updating scheme fails to pro-
vide the correct perturbation configuration, as it, even
when initializing the optimization from the true config-
uration, converges to smaller perturbations (in an ab-
solute sense). The associated OL poles for this con-
verged model configuration are presented in Table 4,
where it can be appreciated that the frequency of the
first pole is above the target value, while the frequency
of the second pole is below the target value. It is
noted that when conducting the updating with just the
two OL poles, rendering the problem ill-posed, the
results are

[
912% 92.2% 1.3%

]T for δθ0 =
[

0 0 0
]T and[

99.3% 1.3% 95.8%
]T for δθ0 =

[
920% 0% 915%

]T .
The error in the estimate of the second OL pole, see

Table 2, is a likely cause of the erroneous findings in
Tables 3 and 4. Therefore, we conduct a new update
of the nominal model based solely on the first OL pole
and three “corresponding” CL modes. The appertain-
ing results are listed in Table 5 for different initial con-
figurations. When initializing the optimization from

Table 3: CL updating results using eight target features with δθ in
percentage. Note that ’a’ is the initial evaluation of the cost function
and ’b’ the converged.

Setup δθT
0 δθ̂1 δθ̂2 δθ̂3 β (1093)

1a
[

0 0 0
]

Initial evaluation 5.2
1b

[
0 0 0

]
913 916 8.0 0.63

2a
[
920 0 915

]
Initial evaluation 2.8

2b
[
920 0 915

]
914 3.2 93.9 0.70

Table 4: Estimated target poles and poles of the nominal model up-
dated with the converged solution in configuration 2b in Table 3.

λ̃T λM(θ̂)

90.0427 ± 4.9878i 90.0431 ± 4.9978i
90.1123 ± 9.0845i 90.1133 ± 9.0744i
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Table 5: CL updating results using only the first OL pole and three
“corresponding” CL poles with δθ in percentage. Note that ’a’ is the
initial evaluation of the cost function and ’b’ the converged.

Setup δθT
0 δθ̂1 δθ̂2 δθ̂3 β (1094)

1a
[

0 0 0
]

Initial evaluation 36
1b

[
0 0 0

]
922 97.0 96.8 1.1

2a
[
920 0 915

]
Initial evaluation 1.2

2b
[
920 0 915

]
921 90.26 915 1.1

δθ0 =
[

0 0 0
]T , the three model parameters converge at

values that do not coincide with the true values. In the
case of δθ0 =

[
920% 0% 915%

]T , the three model param-
eters converge in the vicinity of the theoretical values.
The attained cost function is, however, equal to the one
attained in setup 1, so although using only the first OL
pole and the “corresponding” CL poles improves the re-
sults, there is still some clear room for improvement. It
is contended that this can be achieved if the pitch excita-
tion can be tailored trough input shaping [31, 32], such
that more accurate estimates can be obtained of a subset
of the OL poles.

5. Conclusion

The paper explores the feasibility of employing blade
pitch-induced excitation as input in CL updating of nu-
merical models of parked offshore wind turbines. The
merit of the CL implementation is that it can be formu-
lated such that the inverse problem to be solved in the
model updating is well-posed. A case study with a nu-
merical wind turbine system is presented, and although
the current, preliminary findings do not appear particu-
larly encouraging, it is contended that the encountered
issues can be resolved by tailoring the delivered pitch
excitation to allow for improved estimation of the sys-
tem poles. This is a part of the ongoing research.
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