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Abstract— Transparent interaction, or the reduction of
human-robot interaction forces, is an important quality of gait
training exoskeletons. In this paper, we investigate the feasibility
of using a repetitive controller for reducing impedance of gait
training exoskeletons using force feedback. We used a two-mass
spring damper model system, and simulated the application
of repetitive force controllers with the objective of reducing
the end-point impedance of the distal mass. We designed and
applied three repetitive controllers: a 1st order, a 2nd order
designed for random signal period error, and a 2nd order
designed for constant signal period error. We compared these
three repetitive controllers subject to plant model parameter
error, random signal period error, and constant signal period
error. Numerical simulations under nominal conditions show
that via repetitive force control, it is possible to reduce the
endpoint impedance to the targeted magnitude and RMSE
force below the limit achievable with force controllers while
guaranteeing passivity. Furthermore, we established that the
application of a 2nd order repetitive controller designed for
random period error is highly robust to random period error
- exceeding the performance of the passive proportional con-
troller up to 30% error of nominal frequency. Furthermore,
this 2nd order repetitive controller designed for random period
error maintains a 100% convergence rate through 60% plant
parameter error.

I. INTRODUCTION

Transparent human-robot interaction, or the achievement
of low interaction forces during unassisted movements, is a
necessary quality of effective lower extremity exoskeletons.
Commonly during gait training protocols there are phases of
baseline and after-effect evaluation in which the exoskeleton
is set to zero-torque mode and interaction forces are not
desired. Force feedback is a simple method implemented on
previous robotic platforms [1], [2], but has limitations due to
the fact that the input of the plant does not change until error
is already observed. Furthermore, stability of force-feedback
system crucially depends on an accurate knowledge of the
dynamics of the controlled system, knowledge that can be
difficult to obtain in practice. In fact, a system using high
control gains tuned to achieve high transparency performance
may not be passive, and thus could be unstable during inter-
action with a percentage of the user population. Passivity is a
desirable condition for the dynamics of a human-interacting
exoskeleton, as it guarantees the stability of the robot when
interacting with a range of environmental conditions [3],
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[4]. The trade-off between stability and performance is
particularly an issue on robotic platforms with high reflected
inertia and therefore high end-point impedance [1]. As such,
there is a need for novel controllers capable of reducing the
robot’s end-point impedance while remaining stable for a
robust range of conditions such as those encountered during
human-robot interaction.

In previous Bowden cable driven exoskeleton work, itera-
tive learning control has been utilized to learn periodic cable
tensioning patterns for the gait cycle [5]. The implementation
of this learning controller was possible due to the cable
slacking in the swing phase of the gait cycle, creating a reset
point between periods. However, not all exoskeletons have
this possibility, and in most cases the interaction forces are
continuous signals with the same periodicity as the resulting
motion.

The repetitive controller (RC), intended for periodic and
continuous operation in the time domain, could be a feasible
option for gait training exoskeletons during continuous oper-
ation [6]. RC is a feedforward control method for reducing
error of the current task cycle based on the error observed
in the previous task cycles, and is suitable for continuous
operations. In robotics, RCs have been applied to trajectory
control [7] and we are not aware of any applications of these
controllers in force control.

RCs require some knowledge of the dynamics of the
system they are applied to, and have traditionally been
applied to systems with highly regular periodicity. In gait
training exoskeletons, the dynamics of the coupled system
are usually not known with great accuracy due to between-
subject variability. Also, stride-by-stride variation in gait
spatiotemporal parameters is on the order of 3-5% [8].
There are formulations of RCs (high-order controllers) which
combine information measured on multiple previous cycles
to improve robustness input period error [9], [10]. However,
the suitability of these controller to be used for gait training
exoskeletons has yet to be established.

In this work, we present formulations for RCs that use
force feedback to reduce the end-point impedance of a gait
training exoskeleton. We test the performance of these RCs
via simulations applied to a two-mass spring damper system
classically used to study controllers for human-interacting
robots under force control. We first simulate behavior in
a case where we assume perfect knowledge of system
parameters and perfect periodicity of subject inputs. Then,
we conduct simulations in non-ideal conditions to assess
the robustness of different formulations of the controller
to variations in parameters of the system dynamics, and to



variations in the period of the inputs that would be applied
by the subject.

II. METHODS

A. Mechanical System

We use a two-mass model classically studied in force
control for human-interacting robots [3], [4] to evaluate the
behavior of the RCs under force feedback. The mechanical
system considered in this paper, shown in Fig. 1, consists of
two masses connected by a spring and damper in parallel. In
the general case of a robotic exoskeleton, the proximal M1

and distal M2 masses are representative of the motor rotor
and exoskeleton leg, respectively. The spring K and damper
B in parallel are representative of the geared transmission
dynamics.

Fig. 1: Mechanical system of interest

The proximal and distal masses each have a position,
velocity and acceleration as defined in Fig. 1. The distal mass
interacts with an environment modeled as a velocity source
V2, as might theoretically be imposed by a human participant,
with resulting environmental force FEnv . The proximal mass
has an applied control action motor force FAct as specified
by controller architecture explained in the following sections.
The interaction force FInt is the force that can be measured
at the spring and damper, arranged in parallel, between the
two masses.

B. Passive Impedance Controller

We are utilizing impedance control since it allows us to
directly specify the desired dynamics we wish to display to
the environment through a target impedance transfer function
given an environmental velocity [4]. The capability and goal
of the proposed impedance controller, shown in Fig. 2, is the
reduction of end-point impedance below that of the distal
mass alone. As such, the target impedance is given as:

ZQ(s) = Q ·M2 · s (1)

In this expression, the target impedance is defined as a
fraction Q of the physical impedance of the distal mass. Q
ranges between 0 and 1 if the goal is to reduce the displayed
impedance below the physical value of the distal mass. It
is worth noting that a proportional force controller which
aims to obtain an impedance in the form of equation 1 with
Q < 1 will not be passive [3]. The desired environmental
force FEnvDes

is derived by passing the prescribed distal

Fig. 2: Schematic of the impedance controller.

velocity V2 through this transfer function block of the desired
impedance ZQ(s).

The control action motor force FAct applied to the prox-
imal mass is obtained by taking the error between the
measured environmental force FEnv and the desired envi-
ronmental force FEnvDes

and passing it through the control
block transfer function Cf (s). We are requiring the controller
to meet the condition of passivity, to ensure stability when
interacting with a range of environmental conditions [4]. As
such, the control block transfer function Cf (s) is required
to satisfy the passivity requirement of:

Re{ZEnv(jw)} = Re

{
FEnv(jω)

V2(jw)

}
≥ 0 ∀ω ∈ R (2)

This leads to the following expression for the passive
upper limit on the proportional gain KP :

Cf (s) = KP ≤
M1

M2(1−Q)
(3)

The equation relating the environmental force FEnv to the
distal velocity V2 and control action motor force FAct and
plant transfer functions is given as:

FEnv = V2 · PV2
(s) + FAct · PFAct

(s) (4)

Where the plant transfer functions PV2
(s) and PFAct

(s)
take the form:

PV2(s) =
(M1 ·M2)s

3 +B(M1 +M2)s
2 +K(M1 +M2)s

M1s2 +Bs+K
(5)

PFAct(s) =
Bs+K

M1s2 +Bs+K
(6)

Although the expressions for the transfer functions are
derived in the s-domain, the transfer functions are simulated
in the z-domain in the following sections using a zero order
hold (Ts = 0.001s)

C. Repetitive Force Control

In an RC, the error of the previous cycle is applied through
a feed-forward system to compensate for the anticipated error
of the current cycle. The general form of the first order RC
[11] is as follows:

U(z) = z−pI(z)H(z)[U(z) + F (z)E(z)] (7)

The RC is designed and implemented in the z domain. The
controller’s output U(z) and error E(z), operated on by a
compensator F (z), from the previous cycle (given delay z−p)
are combined to produce the output at the current cycle. The
interpolator I(z) is necessary if the number of time steps in



a cycle p is not an integer and the zero phase low-pass filter
H(z) can be applied if a frequency cutoff of the learning
process is necessary.

The transfer function form of the general first order RC,
converting the error input E(z) to control output U(z), is:

R1(z) =
F (z)I(z)H(z)

z−p − I(z)H(z)
(8)

Given the context of simulation of this work, the interpola-
tor I(z) has been set to unity, as the capability of specifying
any nominal frequency is not necessary in simulations. This
yields the following simplified transfer function for a first
order RC:

R1(z) =
F (z)H(z)

zp −H(z)
(9)

It is known that a high-order RC can provide robustness to
signal period error through the widening of the notches in the
sensitivity transfer function [10], [12]–[14]. The sensitivity
transfer function describes the influence of the command
signal on the error signal and is defined as [15]:

S(z) =
1

R(z) ·G(z)
(10)

The closed loop transfer function G(z) is defined as:

G(z) =
CfPFAct

(z)

1 + CfPFAct
(z)

(11)

As such, we implemented an additional controller, a 2nd
order RC, with generic transfer function form:

R2(z) =
φF (z)H(z)[α1z

p + α2]

z2p −H(z)[α1zp + α2]
(12)

The parameter φ is the learning gain, and parameters α1,2

provide weights to the compensatory action resulting from
the previous two cycles. These parameters are constrained
such that:

0 < φ < 1 (13)
α1 + α2 = 1 (14)

For this work, we have implemented plug-in type RCs
[15], [16], as shown in Fig. 3, where the RC transfer function
is located in parallel to a standard feedback loop.

Fig. 3: Schematic of the impedance controller with applied
plug-in type repetitive control.

We opted for this form of controller, as opposed to
the cascade-type RC, because the plug-in type could be
conveniently enabled or disabled without disruptive transient
of force error. This capability was deemed to be essential for
safety-critical applications such as human-robot interaction.

D. Repetitive Controller Tuning

For these RCs, the compensator, a finite impulse response
digital filter, is specified by two design terms m & n, where
the compensator has m zeros and n−m poles. We know that
the closed-loop system with added RC (plug-in or cascade)
and zero phase low-pass filter is stable if the following
expression holds:

MHFG(ω) =

∣∣∣∣∣H(ω∗)

(
1 + (1− F (ω∗))CfPFAct(ω

∗)

1 + CfPFAct(ω
∗)

)∣∣∣∣∣ < 1

(15)
where ω∗ = eiωTs .

To determine a suitable compensator, the following expres-
sion is minimized [17] over the frequency range of interest
utilizing fmincon in MATLAB (MathWorks Inc, Natick,
MA):

J = max(|1− F (eiωTs)G(eiωTs)|) (16)

Two sets of 2nd order RC weight parameters were taken
from previous work [12]. These sets of parameters α1,2 were
designed specifically for accommodating random period er-
ror (RPE) and constant period error (CPE) and assigned as
[2/3, 1/3] and [2, -1], respectively. The learning gain φ for
both 2nd order RCs leading to convergence was determined
empirically to be 0.5.

E. Nominal Performance Evaluation

All controller simulations were implemented via Simulink
models with an environmental velocity signal obtained as the
time integral of a unit magnitude acceleration signal, sampled
at a specified interval (Ts = 0.001s). Each nominal simulation
began with 5 seconds of passive proportional control (PPC)
followed by the plug-in type RC engaged for 30 seconds.

There are two primary assessment metrics of performance:
the first is the root mean squared FEnvErr

(RMSFE) for each
cycle of the source velocity signal (nominal value: 1 Hz).
The second is the end-point impedance ZEnv over a range of
excitation frequencies. The end-point impedance was tested
at a set of frequencies that did not require an interpolator in
order to be implemented.

F. Robustness Analyses

1) Model Parameter Error: The compensator optimiza-
tion process, based on a model of the plant transfer function
PFAct

(s) and the passive control block Cf (s), determines the
stability of the RCs. However, in practical implementation of
the RCs, there will exist error in the plant transfer function
estimate relative to the actual physical plant. As such, it was
important to asses the stability of the RC when there was
error present in the modeled transfer function. In order to
assess the robustness of the RC to model error; we assessed
the convergence of the controllers when the compensator
was designed with an ideal plant model and was applied
to plant models with various magnitude of error applied to
the individual parameters (i.e., B,K,M1,M2).

For each of the three RCs, we ran one hundred simulation
repetitions for ten values of parameter error (i.e., 0%, 10%,
... , 90%). As such, if a nominal value was 10 kg and the



parameter error was equal to 10%, the value simulated in
each of the 100 repetitions was randomly sampled from a
uniform distribution with margins [9, 11] kg. Each simulation
started with ten seconds of PPC followed by 490 seconds of
plug-in type RC. The convergence of each simulation was
assessed by the relative magnitudes of the RMSFE of early
RC (mean of cycles 11-15) and late RC (mean of the last
10 cycles). If the late RMSFE values was less than the early
RMSFE value, the simulation was considered to converge.

2) Source Signal Random Period Error: The controller is
subject to the imposed environmental velocity source, mod-
eled as a sinusoidal waveform. The period of this waveform
is analogous to the period of the gait cycle during walking
in a lower extremity exoskeleton. In human walking, the gait
cycle period is subject to random errors, cycle to cycle. To
assess the robustness of the RCs subject to RPE as seen in
walking we assessed the RMSFE of the controllers when the
period of the input velocity signal varied randomly with a
uniform distribution.

For each simulation of the RPE analysis, the period of
each individual cycle of the applied sinusoid was drawn
from a uniform distribution with zero mean and variable
half width. The half width was changed in different runs
of the simulation, and ranged between 0 Hz to 0.90 Hz
(in increments for 0.01 Hz). The period of each individual
cycle of the applied sinusoid was drawn from a uniform
random distribution specified by the half width value. Each
simulation began with 10 seconds of PPC followed by 190
seconds of plug-in type RC. The RMSFE of each controller
was assessed: for PPC (mean of cycles 2-10) and for the RCs
(mean of last 100 cycles).

3) Source Signal Constant Period Error: The period of
the gait cycle in human walking is subject to CPE as
might be observed during sustained gait speed changes.
In order to assess the robustness of the RCs to CPE, we
assessed the performance of the controllers when the gait
cycle period was a consistent non-nominal value for the
duration of the simulation. This is a worst-case scenario to
assess the robustness of an RC to a discrepancy between the
perturbation period and the period assumed by the RC. In
practice, RC could be reset after a number of cycles, and the
period of their action p can be updated given measurements
of the perturbation period.

We assessed RMSFE at a range of 51 different environ-
mental velocity frequencies (i.e., 0.75 - 1.25 Hz), with a
constant spacing of 0.01 Hz. Each simulation, at a specified
environmental velocity frequency, began with 10 seconds
of PPC followed by 90 seconds of plug-in type RC. The
RMSFE of each controller was assessed: for PPC (mean of
cycles 2-10) and for the RCs (mean of last 5 cycles).

III. RESULTS

A. Repetitive Controller Tuning

Prior to performing simulations, the compensator was
designed according to the specified default set of parameters.
This default set of parameters is given in Table I.

TABLE I: The default set of simulation parameters

Parameter Value Description
M1 10 kg Proximal mass
M2 5 kg Distal mass
K 200 N/m Spring constant
B 20 Ns/m Damping constant
Q 0.10 Desired fraction of distal mass
KP 2.2 Passive proportional control gain
p 1000 Period in time steps
Ts 0.001 s Sample interval
fv 1 Hz Velocity source frequency
Av 1/(2π) m/s2 Velocity source amplitude
m 9 Compensator design term #1
n 2 Compensator design term #2
φ 0.5 Learning gain
α1,2 [2/3, 1/3] & [2, -1] RPE & CPE RC weights
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Fig. 4: (Top left) Asymptotic stability of the compensator
when coupled with the nominal plant and zero-phase low
pass filter, (bottom left) the magnitude of the low pass filter,
and (top right) the magnitude and (bottom right) phase of
the compensator.

It is important to note that we designate the value of Q to
be 0.10 such that our target end-point impedance is 10% of
the natural impedance of the distal mass.

In Fig. 4, the optimized compensator is shown and the
resulting asymptotic stability obtained when coupling the
compensator with the nominal plant is apparent.

In Fig. 5 are the sensitivity magnitude plots of the four
controllers. These describe the influence of the controller
design on disturbance signals, such that a lower sensitivity,
particularly in close proximity to the nominal frequency, is
desirable.

B. Nominal Performance

The nominal simulations for plug-in type 1st order RC,
2nd order RC designed for CPE, and 2nd order RC designed
for RPE applied to the passive impedance controller are
shown in Figs. 6-8, respectively. As can be seen, the PPC
quickly achieves steady state, after which, the RCs are
applied and achieve a new steady state after several cycles
of learning. The 1st order RC reduces the RMSFE to below
5% of the original passive control RMSFE after 12 cycles of
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Fig. 6: (Top) example simulation of the plug-in type 1st order
RC applied after 5 seconds of passive proportional control.
(Bottom) the RMSE of FEnv for each cycle.

learning, where as the 2nd order RC designed for CPE and
RPE require 37 and 18 cycles, respectively, of learning.

Shown in Fig. 9 are the impedance phase and magnitude
of each controller. The magnitude of the passive impedance
controller aligned with the theoretical impedance of M2,
indicating the same end-point impedance. Most importantly,
the impedance of the impedance controller with applied
RC at specified frequencies were close to the theoretical
magnitude ZQ(s) indicating the successful reduction in end-
point impedance by the 1st order RC controller. For all
evaluated controllers, the impedance phase was within the
range [-90, 90] deg, indicating passivity of the controlled
system.

C. Robustness Analyses

1) Model Parameter Error: Depicted in Fig. 10, all con-
trollers performed with 100% of simulations converging at
nominal parameter values (0% error). The 1st order RC
performed with 100% of simulation converging through 20%
parameter error and moderately decreasing rates until just un-
der 70% at 60% parameter error. The best performance was
by the RPE controller which maintained 100% converging
simulation rate through 60% parameter error. The 2nd order
RC for CPE performed the most poorly of all three RCs.

2) Source Signal Random Period Error: As can be seen
in Fig. 11, passive proportional control performed uniformly
across all velocity RPE conditions. The 1st order RC and
2nd order RC for RPE perform the best at low error values
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Fig. 7: (Top) example simulation of the plug-in type 2nd
order RC, designed for random period error, applied after 5
seconds of passive proportional control. (Bottom) the RMSE
of FEnv for each cycle.
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Fig. 8: (Top) example simulation of the plug-in type 2nd
order RC, weighted for constant period error, applied after 5
seconds of passive proportional control. (Bottom) the RMSE
of FEnv for each cycle.

until 0.30 Hz. At higher error values the 2nd order RC for
RPE performed better than the 2nd order RC for CPE with
both inferior to passive proportional control. The 2nd order
RC for CPE performed with greatest error at all frequency
error values.

3) Source Signal Constant Period Error: Shown in Fig.
12; the performance of the four control conditions reflect
the sensitivity transfer function plots shown in Fig. 5. The
2nd order RC designed for CPE performed the best at low
error values and the 1st order RC performed the best at high
error values. The 2nd order RC designed for RPE performed
worse than the other two RCs but better than PPC at low
error values.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we showed that repetitive force control can
be successfully applied to a passive impedance controller
for the reduction of the end-point impedance and root mean
squared force error (RMSFE). We have established that there
is a wide range of plant parameter error under which the
repetitive controllers (RC) will converge. Furthermore, we
have established the effects of constant and random period
errors on stability and performance of RC based control
using force feedback and concluded that a higher-order RC
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Fig. 10: Rate of convergence of simulations under conditions
of parameter error for the three repetitive controllers.

can improve both the robustness to parameter error and the
performance of force display under variations in input period.

Under nominal conditions, the 1st order RC successfully
reduced the end-point impedance to the target impedance and
reduced the RMSFE in the least number of cycles. We found
that the 2nd order RC designed for RPE performed the best
of all three RCs for the RPE analysis, particularly at high
error values. This finding is consistent with previous work
in a 3rd order RC analysis [12]. Surprisingly, the 2nd order
RC designed for RPE performed the best in the robustness
to plant model error analysis, with 100% of simulations
converging through 60% parameter error. The 2nd order
RC for CPE did perform the best in the CPE analysis in
the region of low error values, which is consistent with
previous findings at 0.5% period time error [10]. However,
the 2nd order RC for CPE performed very poorly in our plant
model parameter error and RPE analyses. According to our
analyses, we conclude that the optimal form of controller
for such an application is a high order RC with positive real
fractional weights as in the RPE RC controller. This is due
to the fact that we are most concerned with plant model
parameter error and random error in signal period, as is
practically expected in the implementation of this controller.
In regards to CPE, the controller could be reset to a new
nominal period, if the CPE exceeds an acceptable value, as
might be expected in intentional gait speed changes.
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for the four force controllers under

random error of the period of the environmental velocity
signal.
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for the four force controllers under

constant period error of the environmental velocity signal.

Future work will involve the application of higher order
(e.g., 5th order) RCs to our force control application in an
effort to increase the robustness benefits of higher order RC.
We plan to implement the proposed repetitive force controller
for impedance reduction to a single degree of freedom joint
of a robotic exoskeleton platform and ultimately in a full
exoskeleton [18] for purposes of improved transparency.
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