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ABSTRACT 
Cracks considerably reduce the life span of pavement surfaces. Currently, there is a need for the 

development of robust automated distress evaluation systems that comprise a low-cost crack detection 

method for performing fast and cost-effective roadway health monitoring practices. Most of the current 

methods are costly and have labor-intensive learning processes, so they are not suitable for small local-

level projects with limited resources or are only usable for specific pavement types. 

This paper proposes a new method that uses an improved version of the weighted neighborhood pixels 

segmentation algorithm to detect cracks in 2-D pavement images. This method uses the Gaussian 

cumulative density function as the adaptive threshold to overcome the drawback of fixed thresholds in noisy 

environments. The proposed algorithm was tested on 300 images containing a wide range of noise 

representative of different noise conditions. This method proved to be time and cost-efficient as it took less 

than 3.15 seconds per 320 × 480 pixels image for a Xeon (R) 3.70 GHz CPU processor to determine the 

detection results. This makes the model a perfect choice for county-level pavement maintenance projects 

requiring cost-effective pavement crack detection systems. The validation results were promising for the 

detection of low to severe-level cracks (Accuracy = 97.3%, Precision = 79.21%, Recall= 89.18% and F1 

score = 83.9%). 

 

Keywords: Pavement Crack Detection, Pixel Segmentation, Pavement Management System   



Safaei, Smadi, Safaei, Masoud 

4 
 

INTRODUCTION 

Roads provide an effective way of transportation between different locations for various vehicle 

types. Modern societies are heavily dependent on transporting people and cargo through roads; this imposes 

a continuous degradation to pavement surfaces and necessitates establishing a robust pavement 

maintenance system. Maintaining pavement surface conditions in high quality will mitigate the dangers 

associated with poor pavement conditions and improve road safety, among the other factors (2–4). In 

general, pavement surfaces are classified into several groups based on ingredient materials and texture 

composition. Two primary groups of pavements are Asphalt Concrete (AC) and Portland Cement Concrete 

(PCC) pavements. They consist of mineral aggregates bound together with either asphalt or cement water 

past respectively, which provides each type of pavements with unique characteristics.   

 

Pavement surfaces are often subjected to increasing challenges of direct vehicle forces (vertical, 

shear, and radial), deterioration, and fatigue stresses, leading to the formation of cracks on their surface. 

Also, factors such as aging and environmental conditions, temperature, wind, relative humidity, and 

sunlight are effective in the formation of cracks (5). Cracks make the water penetrate the surface and 

damage it by the process of freezing and thawing. Roads that approach the end of their service lives are 

frequently rehabilitated by removing the old surface and replacing it with new materials (6).  If cracks that 

appear in the pavement surface are not treated, they spread and get worse with excessive traffic growth, 

pavement aging, road widening, extreme events, and debonding, which endanger the road's life 

performance (7–9). The pavement deterioration problem worsens with insufficient maintenance budgets. 

Globally, every year more than $400 billion is spent on pavement construction and maintenance costs; thus, 

reducing the inspection-related expenditures and maintenance costs is the primary goal of researchers 

working in this field (10, 11). Early detection of cracks can prevent potential damage and failure (12). 

Building a fast, robust, and cost-effective image processing algorithm for detecting the pavement surface 

cracks is one of the most critical priorities for building a robust pavement management system (13–17). 

 

Pavement distress surveys typically are conducted with one of the three approaches: manual, semi-

automated, or fully automated. In manual distress surveys, raters perform either a visual study of pavement 

distresses by walking along the pavement surface or conducting a windshield survey from a slow-moving 

vehicle. In semi-automated evaluations, raters use a point and trace manual method at an office workstation 

to evaluate the type, extent, and severity of pavement surface distresses one image at a time. Previously, 

most state highway agencies (SHAs) used the semi-automated approach (18, 19); however, as the method 

was time-consuming, especially for massive projects and network-level evaluations (20), it is not used 

anymore. Fully automated distress evaluations are conducted with image processing and pattern recognition 

software for distress identification and quantification. Raters conduct quality assurance testing of the 

software functionality and perform quality control of the distress rating output (21). Automated pavement 

assessment provides a fast, accurate, and non-subjective alternative to manual inspection surveys. They can 

deliver a quantitative analysis of the pavement condition compared with the traditional manual methods, 

which were mostly qualitative. Automated pavement assessment requires an automatic data collection 

system. Vavrik et al. indicated that as of 2012, most state agencies (more than 35 of them) used fully 

automated image analysis methods for pavement distress data collection systems (22). 

State highway agencies routinely employ high-speed data collection vehicles for capturing the 

network level pavement images. The process's challenges are the random and irregular size of cracks, noise 

caused by variable lighting conditions, shadows, stains, and other external objects present on the surface. 

The following general steps are typically followed to conceptualize an algorithm for automated pavement 

distress surveys (23–25):  

1- Initial processing: it improves and enhances the image quality and makes it ready for the next 

step. This step is mainly based on contrast stretching and histogram equalization techniques, and it is used 

to reduce the effects of shadows, equalize pavement texture variations, and reduce the contrast between 

different pavement areas. 
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2- Pre-processing: it removes noise that otherwise might be misunderstood as cracks. This step 

reduces false positive occurrences in the final segmentation results.  

3- Pre-filtering: it identifies parts of the image with high chances of crack occurrence and limits the 

detection procedure for those areas; doing this reduces the computational expenses and makes the process 

more efficient.  

4- Crack detection: it uses a combination of image processing techniques to separate the crack 

information from the rest of the image (26).  

5- Post-processing: it is based on morphological and connectivity searching operations. Its goal is 

to reduce the number of false cracks detected previously and join fragmented crack regions to make groups 

of connected pixels with darker intensities than their neighboring areas. 

The rest of this paper is organized as follows: "Literature Review" section represents a brief review 

of the past and current approaches. "Methodology" describes the proposed framework, along with 

presenting a brief description of the method. "Numerical Results" presents the detection results and 

compares them with some other studies' detection power in the literature. Finally, the "Conclusion" wraps 

up the finding and makes some suggestions for future studies. 

 

LITERATURE REVIEW 

Studies reported in the literature have focused on the development of automated image-based 

pavement crack detection methods, which could broadly be classified into four groups (27): 

1- Thresholding and filtering-based methods are among the oldest and most popular methods used 

for crack detection. A threshold-based method can be based on a histogram analysis with the Gaussian 

hypothesis with adaptive or local thresholding. Ayaho et al. used the average pixel intensity values in each 

row of the input image as a threshold value for comparing it with other pixels. They labeled the ones with 

huge differences as potential crack pixels (28). Wang and Tang proposed a new pixel thresholding approach 

and compared it with the global and local threshold value algorithms (29). The main problem of 

thresholding-based methods is that they do not consider the cracks' geometric and photometric 

characteristics. This method also assumes that the pixel intensity distributions for the background pavement 

and the crack area can be separated based on global level statistics, which sometimes results in inaccurate 

measurements.  

2- Tanaka and Uematsu introduced mathematical morphological operations in 1998 (30). They 

defined cracks as the progression of saddle points with linear features. The quality of the processes in this 

method is highly dependent on parameter selection, which limits their practical application; however, if 

used as the preliminary stage for the thresholding methods, the accuracy would improve considerably. He 

and Qiu presented an enhanced segmentation approach based on a combination of multidirectional and 

multi-threshold averaging morphologies (31). They showed that their proposed algorithm significantly 

improves the segmentation process and works effectively in noisy environments. 

3- Model analysis can result in accurate crack modeling. Kass et al. proposed the minimal path 

selection model in 1988; they provided both the endpoints of a curve to the model and extracted simple 

open curves (cracks) from the image (32). This algorithm was then improved by Kaul et al. and Amhaz et 

al. in 2012, 2014; they reduced the need for prior knowledge about the topology and the desired curve 

endpoints (33, 34). In 2016, Amhaz et al. proposed an improved training-based minimal path selection 

method for asphalt crack detection. The idea was based on the fact that the lowest cost function belongs to 

a minimal path within a crack (35). P. Delagnes used Markov random field (MRF) model to detect poorly 

contrasted cracks in textured areas (36). Svenson et al. used finite mixture models to identify pavement 

segments with the most rapid deterioration rate and implemented them for making more efficient 

maintenance decisions (37). According to Shi et al. (38), the model-based methods ignore the local neighbor 

information, and they cannot precisely detect cracks with intensity inhomogeneity. 

4- Learning-based methods have contributed significantly to roadway crack detection in recent 

years (39, 40). Recently, the image data size has increased considerably, and concurrently the computation 

power of computers has soared up. In 1998, Cheng and Miyojim used a neural network to select the 

appropriate threshold for distress detection. They used the standard deviation as a parameter in the training 
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of the neural network (41). Liu et al. pre-defined potential crack features based on the pixel intensity values 

and used a support vector machine (SVM) classifier (42) for detecting cracks. Later in 2006, Abdelqader et 

al. used an unsupervised Principal Component Analysis (PCA) to reduce the feature vector dimensions 

based on region values and extract cracks from PCC images (43). Deep learning is a promising branch of 

artificial intelligence that is widely used in different engineering disciplines. Deep learning techniques can 

be successfully implemented in crack detection problems. Deep convolutional neural networks (CNNs), 

which are extensively used for image classification (44), can be implemented in crack detection problems 

on pavement surfaces (45, 46). 

In recent years, crack detection algorithms were trained either by using object detection methods 

such as OverFeat, SSD, Yolo, Faster-RCNN, Mask-RCNN (=Faster-RCNN + FCN) or segmentation 

methods such as SegNet (47). In 2017, Gopalakrishnan et al. proposed a deep CNN and trained it on the 

massive ImageNet database for automatically detecting cracks in AC and PCC surfaces (48). The main 

drawback of CNNs is the vast amount of data required for training the model (49). In 2014, Wu et al. 

proposed a novel crack-defragmentation technique and named it MorphLink-C. The method's primary 

objective was to connect crack fragments; the method consisted of two sub-processes, including fragment 

grouping using the dilation transform and fragment connection using the thinning transform by an artificial 

neural network (ANN) (50). Learning-based methods have proven to have substantially better accuracy 

than the previously-mentioned algorithms; however, the main disadvantage of learning-based methods is 

that labeling the data to train the algorithm is a labor-intensive and error-prone procedure. Most of these 

methods are computationally expensive and require a vast amount of resources and budgets; these problems 

necessitate the development of more cost-effective methods, especially for smaller and county-level 

pavement crack detection systems, which is the primary goal of this study. 

 

METHODOLOGY 

This study aims to detect pavement cracks using an improved version of the weighted neighborhood 

pixels segmentation method based on the Gaussian cumulative density function as an adaptive threshold. 

First, using the initial processing (image enhancement) and pre-processing techniques, the noise was 

removed, and the luminosity condition was unified throughout the input image surface. Second, using the 

proposed segmentation algorithm, the image was binarized, and the probable crack regions were extracted. 

Next, by applying crack region property features, non-crack areas that resulted in false positive detections 

were removed. Finally, by taking advantage of morphological operations, a closing operator was used at 

the post-processing stage to connect the fragmented pieces of cracks (Figure 1). 

 

There are two groups of datasets used in this study. The first dataset is the Crack Forest Dataset 

(CFD), which comprises 118 publicly available images. The dataset can generally reflect urban road surface 

conditions in Beijing, China. The CFD data set images were taken by an iPhone 5 with a focus of 4 mm, 

the aperture of f/2.4, and exposure time of 1/134 s. The CFD contains many noise features such as shadows, 

oil spots, and water stains. The second dataset is the MTC dataset owned by Midwest Transportation Center 

(MTC). MTC is one of the leading regional University Transportation Centers and is sponsored by the US 

Department of Transportation Office of the Assistant Secretary for Research and Technology 

(USDOT/OST-R). MTC is funded by the Moving Ahead for Progress in the 21st Century Act (MAP-21) 

federal transportation bill. One of the critical focus areas of the MTC's research is data-driven performance 

measures of transportation infrastructure, including pavement monitoring and maintenance. 

 

The MTC dataset images are captured by a Laser Road Inspection System (LRIS) composed of two 

high-resolution line scan cameras and high-power lasers from the highway infrastructures at Illinois and 

Iowa states. A subset of 80 images from the CFD dataset combined with 220 images from the MTC dataset 

was used in the study. The reason for selecting a combination of two data sets was to assess the algorithm's 

strength in detecting cracks from low-cost smart phone-captured images (CFD) in addition to the network-

level pavement images (MTC) that are costly and taken by special data collection vehicles. Also, the CFD 

dataset consists of a wider variety of crack types and represents the method's capability in detecting a more 
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comprehensive range of pavement cracks. MTC's original image dimensions were 3072 × 2048 pixels, so 

they were divided into 320 × 480 pixels to have a uniform size with the CFD images. Each image in the 

CFD has a manually labeled ground truth contour produced by Matlab (38, 51). For the polygonal 

annotation of cracks in this study, Labelme, a graphical image annotation tool inspired by the Massachusetts 

Institute of Technology, was used. Labelme is coded in Python and uses Qt for its graphical interface. 

 

Image Enhancement and Pre-processing 

Since pavement images are captured under non-uniform illumination distribution, image enhancement is 

an essential step of image analysis. The pre-processing technique is also implemented to reduce the noise 

and enhance the desired image features like dark linear features. First, it is necessary to convert all input 

images to the same lighting condition. The histogram equalization technique was used to compensate for 

the luminosity problem during the capturing process. The existing differences in illumination are corrected 

using Equations 1 and 2. 

𝑠𝑘 = 𝑇(𝑟𝑘) = ∑ 𝑝𝑖𝑛(𝑟𝑗)

𝑘

𝑗=0

                                0 ≤ 𝑘 ≤ 𝐿 − 1 

𝑝𝑖𝑛(𝑟𝑘) =
𝑛𝑘

𝑛
 

 

Where 'sk' is the image's accumulated normalized histogram. Pin (rk) is the image's histogram for 

the pixel value 'rk.' 'L' is the total number of gray level pixels in the image. 'n' is the total number of pixels 

in the image, and 'nk' is the number of pixels with grayscale value 'rk.' 

After luminosity correction, the bottom 1% and the top 1% of all the pixel values were saturated, 

and the image contrast was increased. A sample image is illustrated in Figure 2 with its enhanced version. 

Based on Figure 2, cracks are more discernible in (b) than (a). 

 

An adaptive median filtering was implemented for the first step of the pre-processing stage. It 

works by changing the neighborhood's size during the operation and, consequently, reduces distortions such 

as excessive thinning of object boundaries. The adaptive median filter has some benefits over the standard 

median filter; it preserves detail while smoothing non-impulse noise (52), and an unrepresentative pixel 

value cannot divert the filter values (53). Through this method, it is determined that which pixels are 

affected by the impulse noise. Each pixel is compared to the surrounding pixels; if it is different from most 

of them, or if it is not structurally aligned with the similar surrounding pixels, that pixel is classified as 

impulse noise.  The impulse noise is replaced by the median pixel value of the surrounding pixels. The 

algorithm for selecting the appropriate threshold value is shown in Figure 3 (The algorithm was proposed 

by Peng (52)). 

 

Zmin is the minimum pixel value in Sxy, Zmax is the maximum pixel value in Sxy, Zmed is the median 

of pixel values in Sxy, Zxy is the pixel value at (x, y) coordinates, and Smax is the size of Sxy. 

Based on Figure 3, in level 'A,' if Zmin < Zmed < Zmax is true, then Zmed is not the impulse noise, and 

the algorithm moves to level 'B' to test whether Zxy is an impulse noise. If Zmin < Zmed < Zmax is not valid, 

then Zmed is impulse noise, so the size of the window is increased and level 'A' is repeated until Zmed is not 

an impulse noise and the algorithm moves to level 'B,' or the window size is reached to the maximum value, 

and the algorithm output is Zxy. In level 'B,' if Zmin < Zxy < Zmax is true, then Zxy is not an impulse noise, and 

the algorithm's output is Zxy. If Zmin < Zxy < Zmax is not valid, then Zmed is not an impulse noise, and the 

algorithm's output is Zmed. 

For further pre-processing, the K-SVD image denoising method was applied to the image. K-SVD 

is a signal representation method that utilizes a sparse combination of atoms and derives a dictionary from 

a group of signals to approximate each of them. The efficiency of the dictionary is optimized by taking 

advantage of the non-local similarities of the image. The K-SVD algorithm consists of three main steps:  

(1) 

(2) 



Safaei, Smadi, Safaei, Masoud 

8 
 

1- Sparse coding is computing the sparse approximation of all image patches with a fixed size 

using the initial dictionary. 

2- Dictionary Update is done to improve the quality of the sparse approximations. 

3- Reconstruction Step builds the denoised image from the denoised patches (54, 55).  

Figure 4 shows the structure of the implemented K-SVD approximate algorithm. Figure 5 shows 

the image output after enhancing the image and removing noise using the adaptive median filtering and K-

SVD denoising algorithm. 

 

Feature Extraction and Image Segmentation 

Image segmentation is a technique for extracting a target object (e.g., cracks) from the background. As 

mentioned earlier, an improved version of the weighted neighborhood pixels segmentation method was 

used to enhance crack detection accuracy in noisy environments. Generally, cracks have a series of unique 

structural properties that differ from noise. Based on this idea, a novel crack descriptor was proposed by 

using the Gaussian adaptive threshold in the weighted neighborhood pixels segmentation method. 

The neighborhood pixel orientation of the weighted neighborhood algorithm is shown in Figure 6, 

where 'C' represents the central pixel. A pixel can have 8, 16, and 24 neighbors in the first, second, and 

third circles surrounding it, respectively, represented by stars, dashes, and cross symbols in Figure 6. The 

pixel's attributed weight was calculated based on the pixel values around the pixel (Equation 3). 

 

𝑤 =
𝐺𝑡𝑜𝑡𝑎𝑙

𝐺𝑚𝑎𝑥
 

Where 'w' is the weight of the neighborhood pixels; 'Gtotal' represents the sum of all pixel values in 

three surrounding loops, and 'Gmax' is the maximum achievable pixel value of all pixels among the three 

surrounding loops. 

 

Different pavement surface distresses have different patterns with specific characteristics; so, a 

robust feature extraction algorithm needs to be calibrated for specific types of pavement cracking. There 

are different patterns selected for assigning neighborhood pixel weights in the literature such as 'four main 

far pixels', 'four partial far pixels', 'eight-direction far point pixels', 'four main direction pixels', 'four partial-

direction pixels', 'Kumar pattern' (56) and 'eight-direction pixels'. In this paper, the eight-direction pattern 

was used as the main pattern of the algorithm. In the original method proposed by Sun et al. (57), a local 

sliding window was applied to all pixel locations to generate the averaged pixel value of the pre-processed 

image (Iavg) (Equation 5). Using Equation 4, the average pixel value was compared with the weighted 

pixel value (Wc). If the weighted pixel satisfied Equation 4, the pixel was labeled with 1, and it was 

identified as a crack. Otherwise, it was labeled with 0 and identified as a background pixel.  

 

𝑤𝑐 ≤ 0.85 × 𝐼𝑎𝑣𝑔  

 

Where 

𝐼𝑎𝑣𝑔 =
1

𝑀 × 𝑁
∑ ∑ 𝐼(𝑖, 𝑗)

𝑁

𝑗=1

𝑀

𝑖=1

 

I (i, j) is the pixel value of the pre-processed image at row 'i' and column 'j,' 'M' is the number of 

rows, and 'N' is the number of columns in the sliding window. 

The above approach's main drawback is using a fixed threshold (0.85), which is not appropriate for all the 

images. In this paper, a new adaptive threshold function was proposed, which was adapted based on local 

and global image statistics. In this method, there is no individual band for each image. Instead, the threshold 

value is changing for each window. The proposed threshold function is based on the cumulative density 

function (CDF) of the Gaussian distribution function (Equation 6) and leads to a fast and robust weighted 

neighborhood feature extraction algorithm:  

(3) 

(4) 

(5) 
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𝑓𝑖 =
1

2
[1 + erf (

𝜎𝑖

𝜎|µ − µ𝑖|
)]           , 𝑖 = 1, … , 𝑁 

Where 'N' is the number of window blocks, 'µ' and 'σ' are global mean and standard 

deviation respectively, and 'µi' and 'σi' are the mean and standard deviation of an image block, and erf (x) 

is the error function defined in Equation 7: 

 

erf(𝑥) =
2

√𝜋
∫ 𝑒−𝑡2

𝑥

0

𝑑𝑡 

 

Finally, the binary image is obtained using Equation 8.  

 

𝐼𝑏𝑖𝑛𝑎𝑟𝑦 = {
1        𝑖𝑓   𝑤𝑐𝑖 < 𝑓𝑖 × 𝐼𝑎𝑣𝑔  

0        𝑖𝑓    𝑤𝑐𝑖 ≥ 𝑓𝑖 × 𝐼𝑎𝑣𝑔
               

 

The method was named the Adaptive-Threshold Weighted Neighborhood Pixel method (AT-

WNP). The threshold function is based on noise behavior. The threshold value is proportionate to the image 

noise density value, so when the noise density increases, the value of the threshold increases. This adaptive 

threshold made the feature selection work more robust. So far, the binary image results contain some false 

positive occurrences that consist of non-crack pixels that are wrongly identified as crack pixels (Figure 7 

(C)). The reason for these false positives is the presence of external objects on the pavement surface. These 

irregular shapes need to be filtered out, but first, a closing operation is used to connect the small fragmented 

cracks around the main crack line. A closing operation consists of a dilation followed by an erosion, using 

the same structural element for both operations. The structural element for this closing operation was 

selected as a circle with a radius of 5 pixels (Figure 7 (D) and (E)). The characteristic feature of the false 

positive noise is their irregular shapes. The irregular-shaped noise can be filtered out effectively by 

measuring the crack regions' properties, such as the area and eccentricity of the connected crack areas. The 

eccentricity of the ellipse (identified crack regions) is defined as the distance between the ellipse's foci over 

the length of its major axis. The range for the eccentricity value is between 0 and 1. An ellipse with the 

eccentricity of 0 is a circle, and an ellipse with an eccentricity of 1 is a line segment. A filtering method is 

built to remove objects whose eccentricity value is less than 0.8. This value was chosen after trying and 

testing some extracted regions. Next, a filling operator was used to fill isolated pixels (individual 1s 

surrounded by 0s). The results of this step are shown in Figure 7 (F). Based on Figure 7 (F), segmented 

cracks so far are disjointed and need to be connected to build a united crack entity. 

 

Figure 7 (A) shows the original image; Figure 7 (B) indicates the corresponding enhanced image; 

Figure 7 (C) shows the preliminary detection results after applying the improved method and obtaining the 

binary image; Figure 7 (D) shows the image after being dilated; Figure 7 (E) shows the image after being 

eroded, and Figure 7 (F) shows the image after filtering out the irregular shapes and filling isolated pixels. 

 

Post-processing 

For connecting crack fragments, a closing operator was applied to the image. The structural element (SE) 

size and shape are based on the characteristics of the actual crack features. Due to this metric's importance, 

two structural elements were built and tested on 50 random samples. By measuring the Intersection over 

Union (IoU) metric between the ground truth and the segmented image, the best SE was selected. If the SE 

size is too large, it might merge the noise, and if it is too small, it will fail to connect the actual crack 

fragments properly.  First, assuming that the gaps are typically at the distance of less than 10 or 15 pixels, 

a line with a SE length of 10 and 15 pixels was selected. The line's orientation was between -90 and 90 

degrees, with 35 degrees as the increment step. This value was chosen after trying and testing some 

extracted regions. Another morphological closing operator was used to fill gaps using a disk-shaped 

(6) 

(7) 

(8) 
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structural element with a radius of 10 and 15 pixels. Table 1 shows the IoU results of different parameter 

selections. 

 

Based on Table 1, the line with a distance length of 15 pixels led to slightly better results and, 

therefore, was selected as the SE for the closing operator. After connecting the fragmented crack pixels, a 

filtering operation based on region properties was used to remove noise and connect fragmented pixels. The 

reason for this step is that once the cracks are connected, new non-crack regions might be created. A filtering 

algorithm is used to filter out the crack regions less than 75 pixels, whose eccentricity value is less than 0.8, 

and the length is less than 25 mm. These criteria were selected based on the AASHTO Cracking Protocol 

PP44-01 (58), which does not assume areas smaller than 75 mm2 and shorter than 25 mm as cracks. By 

doing so, all the isolated pixels and probable noise created by the closing operator were removed. Figure 7 

(G) shows the final image after applying the mentioned operations. 

 

NUMERICAL RESULTS AND DISCUSSION 

In this section, the performance of the proposed method was investigated and compared with Canny 

(59), CrackTree (60), CrackIT (61), and CrackForest (38), which were tested on the CFD dataset. The 

evaluation of the proposed crack detection system was performed using precision, recall, and F1 score. 

Figure 8 shows the performance of the proposed method on three sample images. It is observed 

that the proposed method is effective in eliminating the noise and identifying the cracks. The sample images 

were selected in a way to represent specific types of surface conditions. Figure 8 (A) was chosen to 

represent a sample of PCC surfaces with tining; Figure 8 (B) and (C) were selected as the representatives 

of the AC surfaces with different levels of external noise. 

 

Table 2 compares the results of the proposed method with some other methods in the state-of-the-

art. It is observed from Table 2 that the proposed method shows better or almost equal performance in all 

four metrics. The evaluation of the mentioned methods on the CFD was provided by Shi et al. (57). 

 

The average manual segmentation time for building the ground truth image dataset was 115 seconds 

per image. The average time for processing the 300 images was 3.15 seconds per image using a Xeon (R) 

CPU E3-1240 v6 @ 3.70 GHz, which is better than the fixed threshold weighted neighborhood pixels 

segmentation method, which was reported to be 4.67 seconds (57). 

 

 

CONCLUSIONS 
This paper proposes a novel image processing algorithm for the automated detection and 

segmentation of pavement cracks. For the image enhancement stage, the histogram equalization technique 

and contrast stretching were used to compensate for the luminosity problem during the image capturing 

process. The new enhanced image was then pre-processed using adaptive median filtering and K-SVD 

denoising algorithms. A corresponding binary image was then created by applying an improved version of 

the weighted neighborhood pixel segmentation algorithm based on cumulative density function as an 

adaptive threshold, and the image was then segmented using the eight-direction pattern. The threshold value 

is changing based on the noise present in the neighboring regions, and it makes the algorithm have a robust 

and accurate detection process. Next, through a disk-shaped dilation and erosion operator, some crack 

fragments were connected. Also, the irregular-shaped regions and isolated pixels were removed through 

closing and filling operations. Finally, in the post-processing stage, the crack fragments were connected 

through the linear closing operator, and linear regions shorter than 25 mm were filtered out. The method is 

extremely cost and time-efficient compared to deep learning-based methods widely used by the state and 

federal highway agencies. Generally, it is too expensive to use deep learning-based methods on local roads 

and small projects, where this algorithm could be implemented and save lots of resources. Like most of the 

comparable methods in the literature, the major drawback of this method is that the results' quality is mostly 
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dependent on the image quality. This method is not effective when there are severe anomalies and surface 

irregularities on the pavement surface or when the images are captured under poor lighting conditions and 

extreme shadow existence. Further research is necessary to enhance the accuracy and robustness of the 

method in the presence of surface anomalies. Although there is no perfect solution for accurate crack 

detection, and there is always a trade-off between accuracy and speed, further research could result in higher 

computational speed and F1 scores and, consequently, better results.  

 

AUTHOR CONTRIBUTIONS 

The authors confirm contribution to the paper as follows: study conception and design: Smadi. O, 

Safaei. N; data collection: Smadi. O, Safaei. B; analysis and interpretation of results: Safaei. N, Masoud. 

A, Safaei. B, Smadi. O; draft manuscript preparation: Safaei. N, Masoud. A. All authors reviewed the results 

and approved the final version of the manuscript. 

  



Safaei, Smadi, Safaei, Masoud 

12 
 

REFERENCES 

 

1. Safaei, N., O. Smadi, B. Safaei, and A. Masoud. A Novel Adaptive Pixels Segmentation 

Algorithm for Pavement Crack Detection. 2021. 

https://doi.org/10.31124/advance.13601339.v1. 

 

2. Safaei, N., and C. Zhou. Gasoline Pricing Policies for Transportation Safety. 

arXiv:2001.02734 [stat], 2020. https://arxiv.org/abs/2001.02734 

 

3. Mahmud, M. S., N. Gupta, B. Safaei, H. Jashami, T. J. Gates, P. T. Savolainen, and E. 

Kassens-Noor. Evaluating the Impacts of Speed Limit Increases on Rural Two-Lane 

Highways Using Quantile Regression. https://engrxiv.org/afxsb/. Accessed Jan. 15, 2021. 

 

4. Safaei, B., N. Safaei, A. Masoud, and S. Seyedekrami. Prioritizing Strategies to Reduce 

Motorcycle Crashes Using Fuzzy TOPSIS and AHP Methods: A Human Factors 

Perspective. Advances in Transportation Studies, No. In Press, 2021. 

 

5. Safaei, N., O. Smadi, A. Masoud, and B. Safaei. An Automatic Image Processing 

Algorithm Based on Crack Pixel Density for Pavement Crack Detection and 

Classification. International Journal of Pavement Research and Technology, No. In Press, 

2021. 

 

6. Han, J., and J. K. Thakur. Sustainable Roadway Construction Using Recycled Aggregates 

with Geosynthetics. Sustainable Cities and Society, Vol. 14, 2015, pp. 342–350. 

https://doi.org/10.1016/j.scs.2013.11.011. 

 

7. Park, H. J., and Y. R. Kim. Primary Causes of Cracking of Asphalt Pavement in North 

Carolina: Field Study. International Journal of Pavement Engineering, Vol. 16, No. 8, 

2015, pp. 684–698. https://doi.org/10.1080/10298436.2014.943220. 

 

8. Malakooti, A., W. S. Theh, S. M. S. Sadati, H. Ceylan, S. Kim, M. Mina, K. Cetin, and P. 

C. Taylor. Design and Full-Scale Implementation of the Largest Operational Electrically 

Conductive Concrete Heated Pavement System. Construction and Building Materials, 

Vol. 255, 2020, p. 119229. https://doi.org/10.1016/j.conbuildmat.2020.119229. 

 

9. Hamedi, G. H., A. Sahraei, and M. R. Esmaeeli. Investigate the Effect of Using 

Polymeric Anti-Stripping Additives on Moisture Damage of Hot Mix Asphalt. European 

Journal of Environmental and Civil Engineering, Vol. 25, No. 1, 2018, pp. 90–103. 

https://doi.org/10.1080/19648189.2018.1517697. 

 

10. Torres-Machí, C., A. Chamorro, E. Pellicer, V. Yepes, and C. Videla. Sustainable 

Pavement Management: Integrating Economic, Technical, and Environmental Aspects in 

Decision Making. Transportation Research Record, Vol. 2523, No. 1, 2015, pp. 56–63. 

https://doi.org/10.3141/2523-07. 

https://doi.org/10.31124/advance.13601339.v1
https://arxiv.org/abs/2001.02734


Safaei, Smadi, Safaei, Masoud 

13 
 

11. Daghighi, A., A. Nahvi, S. Nazif, and U. Kim. Seeking Substantiality: Evaluation of 

Public Attitudes toward Resilient Wastewater Reuse Management. Journal of Water 

Management Modeling, 2020. https://doi.org/10.14796/JWMM.C470. 

 

12. Moghadas Nejad, F., F. Zaremotekhases, H. Zakeri, L.-J. Wang, and J. Monaghan. An 

Image Processing Approach to Asphalt Concrete Feature Extraction. Journal of Industrial 

and Intelligent Information, Vol. 3, 2015. https://doi.org/10.12720/jiii.3.1.54-60. 

 

13. Hosseini, S. A., and O. Smadi. How Prediction Accuracy Can Affect the Decision-

Making Process in Pavement Management System. https://engrxiv.org/t28ue/. Accessed 

Dec. 15, 2020. 

 

14. Hosseini, S. A. Data-Driven Framework for Modeling Deterioration of Pavements in the 

State of Iowa. Graduate Theses and Dissertations, 2020. https://doi.org/10.31274/etd-

20200624-235. 

 

15. Sadati, S. M. S., A. Malakooti, K. S. Cetin, H. Ceylan, and S. Kim. Proposed 

Improvements to the Construction of Electrically Conductive Concrete Pavement System 

Based on Lessons Learned. 2020, pp. 1049–1056. 

https://doi.org/10.1061/9780784482889.111. 

 

16. Abukhalil, Y. Cross Asset Resource Allocation Framework for Pavement and Bridges in 

Iowa. Graduate Theses and Dissertations, 2019. 

 

17. Daghighi, A. Full-Scale Field Implementation of Internally Cured Concrete Pavement 

Data Analysis for Iowa Pavement Systems. Creative Components, 2020. 

 

18. McGhee, K. H. Automated Pavement Distress Collection Techniques. Transportation 

Research Board, 2004. 

 

19. Pierce, L. M., G. McGovern, and K. A. Zimmerman. Practical Guide for Quality 

Management of Pavement Condition Data Collection. Presented at the 92th annual 

meeting of Transportation Research Board, 2013. 

 

20. Offrell, P., and R. Magnusson. In Situ Photographic Survey of Crack Propagation in 

Flexible Pavements. International Journal of Pavement Engineering, Vol. 5, No. 2, 2004, 

pp. 91–102. https://doi.org/10.1080/10298430412331285752. 

 

21. Kargah-Ostadi, N., A. Nazef, J. Daleiden, and Y. Zhou. Evaluation Framework for 

Automated Pavement Distress Identification and Quantification Applications. 

Transportation Research Record, Vol. 2639, No. 1, 2017, pp. 46–54. 

https://doi.org/10.3141/2639-06. 

 

22. Vavrik, W. R., L. D. Evans, J. A. Stefanski, and S. Sargand. PCR Evaluation – 

Considering Transition from Manual to Semi-Automated Pavement Distress Collection 

https://doi.org/10.14796/JWMM.C470


Safaei, Smadi, Safaei, Masoud 

14 
 

and Analysis. Presented at the 92th annual meeting of Transportation Research Board, 

2013. 

 

23. Nguyen, T. S., M. Avila, and S. Begot. Automatic Detection and Classification of Defect 

on Road Pavement Using Anisotropy Measure. Presented at the 17th European Signal 

Processing Conference, 2009. 

 

24. Safaei, N., and O. Smadi. A Tile-Based Image Processing Method Based on Crack 

Density for Detection and Classification of Pavement Cracks. Presented at the 98th 

Annual Meeting of Transportation Research Board, 2019. 

https://trid.trb.org/view/1595322 

 

25. Safaei, N. Pixel and Region-Based Image Processing Algorithms for Detection and 

Classification of Pavement Cracks. Graduate Theses and Dissertations, 2019. 17555. 

https://lib.dr.iastate.edu/etd/17555 

 

26. Karballaeezadeh, N., F. Zaremotekhases, S. Shamshirband, A. Mosavi, N. Nabipour, P. 

Csiba, and A. R. Várkonyi-Kóczy. Intelligent Road Inspection with Advanced Machine 

Learning; Hybrid Prediction Models for Smart Mobility and Transportation Maintenance 

Systems. Energies, Vol. 13, No. 7, 2020, p. 1718. https://doi.org/10.3390/en13071718. 

 

27. Chambon, S., and J.-M. Moliard. Automatic Road Pavement Assessment with Image 

Processing: Review and Comparison. International Journal of Geophysics. Volume 2011, 

e989354. https://www.hindawi.com/journals/ijge/2011/989354/.  

 

28. Ayaho, M., K. Masa-Aki, and B. Eugen. Automatic Crack Recognition System for 

Concrete Structures Using Image Processing Approach. Asian Journal of Information 

Technology, 2007. 

 

29. Wang, S., and W. Tang. Pavement Crack Segmentation Algorithm Based on Local 

Optimal Threshold of Cracks Density Distribution. Berlin, Heidelberg, 2012. 

 

30. Tanaka, N. A Crack Detection Mcthod in Road Surfacc Images Using Morphology. 

Machine Vision and Applications, 1998, p. 4. 

 

31. He, Y., and H. Qiu. A Method of Cracks Image Segmentation Based on the Means of 

Multiple Thresholds. Journal of Communication and Computer, 2012. 

 

32. Kass, M., A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. International 

journal of computer vision, 1988. 

 

33. Kaul, V., A. Yezzi, and Y. Tsai. Detecting Curves with Unknown Endpoints and 

Arbitrary Topology Using Minimal Paths. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, Vol. 34, No. 10, 2012, pp. 1952–1965. 

https://doi.org/10.1109/TPAMI.2011.267. 

 

https://doi.org/10.3390/en13071718


Safaei, Smadi, Safaei, Masoud 

15 
 

34. Amhaz, R., S. Chambon, J. Idier, and V. Baltazart. A New Minimal Path Selection 

Algorithm for Automatic Crack Detection on Pavement Images. Presented at the 2014 

IEEE International Conference on Image Processing (ICIP), 2014. 

 

35. Amhaz, R., S. Chambon, J. Idier, and V. Baltazart. Automatic Crack Detection on Two-

Dimensional Pavement Images: An Algorithm Based on Minimal Path Selection. IEEE 

Transactions on Intelligent Transportation Systems, Vol. 17, No. 10, 2016, pp. 2718–

2729. https://doi.org/10.1109/TITS.2015.2477675. 

 

36. Delagnes, P., and D. Barba. A Markov Random Field for Rectilinear Structure Extraction 

in Pavement Distress Image Analysis. In Proceedings., International Conference on 

Image Processing, No. 1, 1995, pp. 446–449  vol.1. 

 

37. Svenson, K., S. McRobbie, and M. Alam. Detecting Road Pavement Deterioration with 

Finite Mixture Models. International Journal of Pavement Engineering, Vol. 20, No. 4, 

2019, pp. 458–465. https://doi.org/10.1080/10298436.2017.1309193. 

 

38. Shi, Y., L. Cui, Z. Qi, F. Meng, and Z. Chen. Automatic Road Crack Detection Using 

Random Structured Forests. IEEE Transactions on Intelligent Transportation Systems, 

Vol. 17, No. 12, 2016, pp. 3434–3445. https://doi.org/10.1109/TITS.2016.2552248. 

 

39. Hosseini, S. A., A. Alhasan, and O. Smadi. Use of Deep Learning to Study Modeling 

Deterioration of Pavements a Case Study in Iowa. Infrastructures, Vol. 5, No. 11, 2020, 

p. 95. https://doi.org/10.3390/infrastructures5110095. 

 

40. Ghosh, R., and O. Smadi. Automated Detection and Classification of Pavement 

Distresses Using 3D Pavement Surface Images and Deep Learning. Presented at the 

100th Annual Meeting of Transportation Research Board, 2021. 

 

41. Cheng, H. D., and M. Miyojim. Novel System for Automatic Pavement Distress 

Detection. Journal of Computing in Civil Engineering, Vol. 12, No. 3, 1998, pp. 145–

152. https://doi.org/10.1061/(ASCE)0887-3801(1998)12:3(145). 

 

42. Liu, Z., S. A. Suandi, T. Ohashi, and T. Ejima. Tunnel Crack Detection and Classification 

System Based on Image Processing. In Machine Vision Applications in Industrial 

Inspection X, No. 4664, 2002, pp. 145–152. 

 

43. Abdel-Qader, I., S. Pashaie-Rad, O. Abudayyeh, and S. Yehia. PCA-Based Algorithm for 

Unsupervised Bridge Crack Detection. Advances in Engineering Software, Vol. 37, No. 

12, 2006, pp. 771–778. https://doi.org/10.1016/j.advengsoft.2006.06.002. 

 

44. Li, Z., X. Yang, J. Song, K. Liu, Z. Wang, and W. Wu. Improving Resolution of 3D 

Surface With Convolutional Neural Networks. Sustainable Cities and Society, Vol. 42, 

2018, pp. 127–138. https://doi.org/10.1016/j.scs.2018.06.028. 

 



Safaei, Smadi, Safaei, Masoud 

16 
 

45. Li, B., K. C. P. Wang, A. Zhang, E. Yang, and G. Wang. Automatic Classification of 

Pavement Crack Using Deep Convolutional Neural Network. International Journal of 

Pavement Engineering, Vol. 21, No. 4, 2020, pp. 457–463. 

https://doi.org/10.1080/10298436.2018.1485917. 

 

46. Tong, Z., J. Gao, Z. Han, and Z. Wang. Recognition of Asphalt Pavement Crack Length 

Using Deep Convolutional Neural Networks. Road Materials and Pavement Design, Vol. 

19, No. 6, 2018, pp. 1334–1349. https://doi.org/10.1080/14680629.2017.1308265. 

 

47. Badrinarayanan, V., A. Kendall, and R. Cipolla. SegNet: A Deep Convolutional Encoder-

Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, Vol. 39, No. 12, 2017, pp. 2481–2495. 

https://doi.org/10.1109/TPAMI.2016.2644615. 

 

48. Gopalakrishnan, K., S. K. Khaitan, A. Choudhary, and A. Agrawal. Deep Convolutional 

Neural Networks with Transfer Learning for Computer Vision-Based Data-Driven 

Pavement Distress Detection. Construction and Building Materials, Vol. 157, 2017, pp. 

322–330. https://doi.org/10.1016/j.conbuildmat.2017.09.110. 

 

49. Wang, K. C. P., A. Zhang, J. Q. Li, Y. Fei, C. Chen, and B. Li. Deep Learning for 

Asphalt Pavement Cracking Recognition Using Convolutional Neural Network. 2017, pp. 

166–177. https://doi.org/10.1061/9780784480922.015. 

 

50. Wu, L., S. Mokhtari, A. Nazef, B. Nam, and H.-B. Yun. Improvement of Crack-

Detection Accuracy Using a Novel Crack Defragmentation Technique in Image-Based 

Road Assessment. Journal of Computing in Civil Engineering, Vol. 30, No. 1, 2016, p. 

04014118. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000451. 

 

51. Cui, L., Z. Qi, Z. Chen, F. Meng, and Y. Shi. Pavement Distress Detection Using 

Random Decision Forests. Cham, 2015. 

 

52. Lei, P. Adaptive Median Filtering. Publication 140.429. 2004. 

 

53. Verma, K., B. Kumar Singh, and A. S. Thokec. An Enhancement in Adaptive Median 

Filter for Edge Preservation. Procedia Computer Science, Vol. 48, 2015, pp. 29–36. 

https://doi.org/10.1016/j.procs.2015.04.106. 

 

54. Aharon, M., M. Elad, and A. Bruckstein. K-SVD: An Algorithm for Designing 

Overcomplete Dictionaries for Sparse Representation. IEEE Transactions on Signal 

Processing, Vol. 54, No. 11, 2006, pp. 4311–4322. 

https://doi.org/10.1109/TSP.2006.881199. 

 

55. Lebrun, M., and A. Leclaire. An Implementation and Detailed Analysis of the K-SVD 

Image Denoising Algorithm. Image Processing On Line, Vol. 2, 2012, pp. 96–133. 

https://doi.org/10.5201/ipol.2012.llm-ksvd. 



Safaei, Smadi, Safaei, Masoud 

17 
 

56. Kumar, S. Neighborhood Pixels Weights-A New Feature Extractor. International Journal 

of Computer Theory and Engineering, 2009, pp. 69–77. 

https://doi.org/10.7763/IJCTE.2010.V2.119. 

 

57. Sun, L., M. Kamaliardakani, and Y. Zhang. Weighted Neighborhood Pixels 

Segmentation Method for Automated Detection of Cracks on Pavement Surface Images. 

Journal of Computing in Civil Engineering, Vol. 30, No. 2, 2016, p. 04015021. 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000488. 

 

58. AASHTO. Standard Practice for Quantifying Cracks in Asphalt Pavement Surface. 2005. 

 

59. Canny, J. A Computational Approach to Edge Detection. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, Vol. PAMI-8, No. 6, 1986, pp. 679–698. 

https://doi.org/10.1109/TPAMI.1986.4767851. 

 

60. Zou, Q., Y. Cao, Q. Li, Q. Mao, and S. Wang. CrackTree: Automatic Crack Detection 

from Pavement Images. Pattern Recognition Letters, Vol. 33, No. 3, 2012, pp. 227–238. 

https://doi.org/10.1016/j.patrec.2011.11.004. 

 

61. Oliveira, H., and P. L. Correia. CrackIT — An Image Processing Toolbox for Crack 

Detection and Characterization. Presented at the 2014 IEEE International Conference on 

Image Processing (ICIP), 2014. 

  

  

https://doi.org/10.7763/IJCTE.2010.V2.119
https://doi.org/10.1016/j.patrec.2011.11.004


Safaei, Smadi, Safaei, Masoud 

18 
 

 

 
Figure 1 Proposed method procedure 

 

Figure 2 Image enhancement (A) original image (B) enhanced image after using histogram 

equalization technique 
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Figure 3 Algorithm of adaptive median filtering 
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Figure 4 K-SVD approximate algorithm flowchart 

 
Figure 5 (A) enhanced image (B) enhanced image after applying adaptive median filtering and K-

SVD denoising algorithm 



Safaei, Smadi, Safaei, Masoud 

21 
 

 

Figure 6 Neighborhood pixels of a three-loop window (reprinted from (56)) 

 

Figure 7 (A) original image (B) enhanced image (C) segmented cracks after (AT-WNP) being applied 

(D) image after dilation of crack regions (E) image after the erosion of crack regions (F) image after 

removing irregular shapes (G) final image after post-processing 

TABLE 1 IoU results based on the SE and distance length selection 

SE\distance 

length 

10 

pixels 

15 

pixels 

Disk 94.2 93.1 

Line 94.3 95.2 
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Figure 8 (A) original image of a PCC surface with longitudinal tining (B) the original image of an AC 

surface with severe noise (C) the original image of an AC surface with moderate noise (D), (E) and 

(F) segmented cracks after (AT-WNP) was applied on (A), (B) and (C) respectively (G), (H) and (I) 

final image results after post-processing 

TABLE 2 Crack detection evaluation 

Method Precision Recall F1 Score 

Canny 12.23% 22.15% 15.76% 

CrackIT 67.23% 76.69% 71.64% 

CrackTree 73.22% 76.45% 70.80% 

CrackForest 80.77% 78.15% 79.44% 

Proposed Method 

(AT-WNP) 
79.21% 89.18% 83.90% 

 


