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Abstract The stresses acting in the vicinity of wells have a significant impact on the 
flow properties of the reservoir and, as a result, on the flow rate of oil wells. The 
magnitude of such stresses depends on the deformation properties of the rock and 
on the oil pressure at the bottom of the well. In this work, an attempt to study the 
effect of flow fields (formation flow rate, well flow rates) on rocks in near-wellbore 
zones was performed. For this purpose, the correlation of such indicators as the 
fluid flow rate and the risk of destruction of the rocks of the productive deposits of 
one of the gas fields were experimentally studied. The experiments were performed 
on chosen core samples with quite wide range of flow and volumetric reservoir 
properties. It was concluded that the rock samples of the productive deposits of the 
studied formation do not collapse under the influence of pressure gradients 
corresponding to the design flow rates.
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When the pressure in the well decreases, the shear stresses in its vicinity increase, which under
certain conditions can lead to the destruction of the rock near the well [1][2]. At the same time, the
permeability in the destroyed area increases sharply, which increases the flow of oil from the
reservoir into the well. Today, one of the problems of the development and operation of natural
hydrocarbon deposits is the reliable accounting of geomechanical processes in the development
project [3][4].
The use of geological-flow-strength models makes it possible to assess the likelihood of subsidence
of the earth's surface over the developed deposits, to determine the stress-strain state in the section
of the proposed drilling of wells and to predict the deterioration of the filtration capacity of the
reservoir due to its destruction and clogging [5][6].
When performing geomechanical calculations, in addition to elastic properties (Poisson's ratio,
Young's modulus), the strength criterion is laid down in the model. For its formulation, it is
necessary to conduct special strength tests under conditions of triaxial loading [7][8]. However, the
necessary amount of experimental data is not always available to create a reliable geomechanical
model. In this case, we have to be content with an experimental assessment of the maximum
permissible loads. Modern geological and flow models make it possible to perform a joint calculation
of flow and geomechanical fields, taking into account their mutual influence [9][10]. Thus, a
separate issue is to study the effect of flow fields ( flow rate, well flow rates) on rocks in near-
wellbore zones.
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2. Methodology

For this purpose, the correlation of such indicators as the fluid flow rate and the risk of destruction
of the rocks of the productive deposits of one of the gas fields were experimentally studied. The
experiments were carried out under conditions of equiaxial  and non-equiaxial loading of the
skeleton of a dry or partially water-saturated reservoir rock in a wide range of flow-volumetric
properties (Table 1).

To assess the possibility of reservoir destruction in the near-wellbore zone, where the drawdown 
reaches its maximum values due to the pore pressure gradient arising during the filtration of 
fluids[11][12], experiments were conducted using a special unit (Fig. 1) to simulate the design flow 
rates of wells.

Table 1: Flow-volumetric and lithological characteristics of the studied samples:  K - 
absolute permeability, φ - porosity

Figure 1: Installation diagram: R - regulator; V1 – V4 - valves; G1 – G3 - manometers 
(pressure gauges); PC - personal computer; GT - glass trap
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The unit (see Fig. 1) is designed to measure gas permeability in reservoir conditions and to 
determine the conditions for the destruction of core samples at different ratios of radial (lateral) 
and axial stresses, as well as at different pore pressure gradients. The experimental installation 
consists of a special type core holder ZK-8 (CH), a crimping pressure system based on an 
automated high-precision single-plunger piston pump with an electric drive LN1-700-100 (ED), a 
flow rate determination system, a system of connecting pipes, valves, high pressure gauges(G) 
and a precision gauge of overpressure MIDA-13P (DD).
The core holder ZK-8 allows us to independently create axial and radial loads of up to 60 MPa on a 
standard core sample and flow the fluid in the axial direction (Fig. 2). 
The pump LN1-700-100 is equipped with its own 
pressure sensor and operates in the mode of 
maintaining a given flow rate (in the range of 0.001–
25 ml / min) and pressure (up to 70 MPa). The volume 
of the cylinder is 100 ml. At flow rates less than 1000 
ml / min, the gas flow rate was determined using high-
precision electronic sensors MKS 179A-21951 (ES), 
and at high flow rates, a GSB-400 gas meter was 
used  (GM) .  In  the  experiment,  dried  air  with  high 
linear velocities and large pressure gradients (up to 
30 MPa/m) was flowed through a core sample at an 
effective voltage. The studies were carried out on 
cylindrical samples with a diameter and a length of 30 
mm. The pressure drop at the inlet and outlet (ΔP) of 
the core holder reached 1 MPa.
The moment of destruction of the reservoir rock 
relative to a given linear flow rate was supposed to be 
recorded by a sharp drop in pressure in the hydraulic 
system, as well as by the extreme dependence of the 
sample permeability on the pressure gradient [13][14]
[15].

Figure 2: Loading scheme of the rock 
sample: σa- axial stress; σr - radial stress

In parallel with the permeability measurements, the control of sand removal from the sample was 
carried out at various flow modes into a special glass trap (L) located at the outlet of the core 
holder, which ensured the separation of the gas flow from suspended particles formed during rock 
destruction. By the presence of rock particles ("sand") in the trap, it is possible to judge the 
beginning of the destruction of the core sample.

3. Results and discussion
Two series of experiments were performed. In the first series, core samples dried to constant
weight were under equiaxially loading (effective stress was modelled as the difference between
the overburden and formation pressures Peff = Pov – Pfm): σa = σr = 22 MPa. In the investigated
range of gas flow velocities Vg (up to Vg = 53 m / min), none of the core samples was destroyed.
Sand removal was also not observed. A collection of samples was studied in the range of
permeability values K = 10 – 3150 md and porosities m = 20.4 –28.7% (see Table 1).

So, for a projected horizontal section of a well with a length of L = 500 m and a radius of R = 
12.25 cm, which penetrates a gas condensate reservoir and operates with a flow rate Qw in the 
range of 2–3 million m3 / day, the range of gas flow velocity in reservoir conditions will be:

(1)

Where Qg is the gas flow rate under reservoir conditions (formation pressure Pfm = 22 MPa, 
formation temperature Tfm = 125 °C); Aw is the area of the well site.
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The range of Qg values was estimated using the equation of state of an ideal gas[16][17]:

(2)

Where; Pst is the pressure under standard conditions = 0.1 MPa and Tst is the temperature 
under standard conditions = 25 °C.

In the single-phase flow approximation, it is also possible to estimate the linear oil flow velocity 
Vo, which corresponds to the experimental pressure gradients that occur during gas flow. To do 
this, knowing the ratio of fluid viscosities and assuming that the permeability is the same for both 
phases and corresponds to the absolute one, we can obtain the range:

(3)

Where; µo is the dynamic viscosity of oil  = 0.43 cp  and µg is the dynamic viscosity of gas (air) = 
0.018 cp.

It can be seen  (Table. 2), that the experimentally obtained maximum flow velocities for the 
studied group of samples exceeded the design ones (see formulas (1) and (2)) by at least 150 
times, and by a maximum of 2400 times. Thus, in the first series of experiments, no rock 
destruction was recorded, even when the design flow velocities were exceeded by two or three 
orders of magnitude.

Table 2 : Linear gas flow rate: ΔP / L - pressure gradient; Vg is the maximum linear velocity 
obtained in the experiment gas flow ; Vo - calculated maximum linear oil flow rate; Swr - fraction 

in the sample of residual water created by centrifugation

In the second series of experiments, the influence of non-axial loading and residual water on the 
strength of reservoir rocks was investigated. It is known that the strength of rocks significantly 
depends on the type of saturating fluid [18][19]. Thus, it was found that in the presence of an 
aqueous solution in the rock with a volume concentration of more than 5%, a significant change 
in the strength properties of carbonate rocks occurs [20][21][22].

To study the effect of residual water on the rock strength, core samples with residual water 
saturation created by centrifugation at 4500 rpm were placed under conditions of non-axial 
loading: σa = 22 MPa, σr = 11 MPa. In the second series (see Table 2) of experiments, none of 
the samples was destroyed in the investigated range of flow velocities (up to Vg = 116 m / min). 
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The experimentally obtained maximum flow velocities for the studied group of samples 
exceeded the design ones by a minimum of 130 and a maximum of 5250 times. The results of 
the second series of experiments showed that even in more severe (residual water and unequal 
loading) reservoir conditions at high flow velocities, the destruction of rock samples does not 
occur.
It should be noted that after centrifugation, some of the samples stratified (cracked) along the 
bedding (perpendicular to the flow direction). Nevertheless, during the flow tests, the stratified 
samples were not destroyed, but, on the contrary, there was a compaction of cracks at the site 
of the initial stratification.
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4. Conclusions
Summing up the results of the conducted research, it can be argued that the rock samples of
the productive deposits of the studied formation do not collapse under the influence of pressure
gradients corresponding to the design flow rates. This conclusion is based on the fact that the
studied collection of core material represents a wide range of flow and volumetric properties of
productive deposits of the studied area. The influence of residual water and non-axial
loading on the strength of the collection under reservoir conditions at high flow velocities is
studied. It is shown that the destruction of dry and partially water-saturated rocks did not occur
even in the presence of shear stress caused by an uneven load.
It was found that water flow during centrifugation had a stronger effect on the structure of the
skeleton of the rock than gas flow at large gradients under reservoir stress conditions.
For a more in-depth assessment of the conditions for the onset of destruction of the reservoir
rock during fluid flow with design flow rates in the future, it is advisable to conduct another
series of experiments under conditions of lower axial stress. Possibly, high compressive axial
stresses are the main factor preventing the destruction of samples in the experiment. In
addition, it should be noted that in order to fully simulate the stress-strain state of the rock on
the well wall, the experiments do not have enough implementation of an independent third
loading axis.
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