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Abstract 

 

Pulsed laser surface melting (pLSM) is a technique that offers efficient and effective way to 

modify the geometry surfaces without any addition or removal of material. The resultant surface 

geometry plays a critical role in several applications. This paper presents a steady state thin film 

approximation of the meltpool created by pLSM and the resulting semi-analytical solution for 

the evolved surface geometry. This predictions of the semi-analytical solution are then compare 

with a validated numerical solution. The comparison demonstrate a good match with errors 

ranging from ~4% to ~25% across several pulse duration. Larger errors are observed at 

comparatively lower and higher pulse duration, and smaller errors are observed for 

intermediate pulse duration values. Overall, the thin film solution is a reasonable and useful 

approximation of the of the evolved surface geometry through pLSM process, thus saving 

significant computational costs.  
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NOTATIONS AND NOMENCLATURE 

 
[∗]∗  Dimensional quantity 𝑃  Laser peak power, 𝑊 

[∗]𝑇  Transpose operator 𝑅𝑏  Laser beam radius, 𝜇𝑚 

[∗](0)  Order 1 parameter 𝜏𝑡
∗, 𝜏𝑛

∗   Tangential and Normal 

stress tensor at free surface 

∇∗  Gradient operator 𝜏∗  Viscous stress tensor 

𝜌  Density, 𝑘𝑔/𝑚3 (𝜕𝛾∗/𝜕𝑇∗)  Surface tension coefficient, 

𝑁/𝑚 − 𝐾 

𝑐𝑝
′   Equivalent specific heat, 𝐽/𝑘𝑔 − 𝐾 𝐿  Latent heat of fusion, 𝐽/𝐾 

𝑇∗  Temperature, 𝐾 𝑇𝑠  Solidus temperature, 𝐾 

𝑡∗  Time, 𝑠 𝑇𝑚  Melting temperature, 𝐾 

𝑉∗  Velocity vector, 𝑚/𝑠 𝑇𝑙  Liquidus temperature, 𝐾 

𝑘  Thermal conductivity, 𝑊/𝑚 − 𝐾 𝑇𝑣  Evaporation temperature, 𝐾 

𝑝∗, 𝑝𝑐  Pressure and its characteristic value, 𝑃𝑎 𝑇𝑖  Initial temperature, 𝐾 

𝜇  Dynamic viscosity, 𝑘𝑔/𝑚 − 𝑠   
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𝜈  Kinematic viscosity, 𝑚2/𝑠 Non-dimensional quantities 

𝑡𝑝  Pulse duration, 𝜇𝑠   

𝑟∗  Radial position, 𝜇𝑚 𝑟  Radial coordinate  

𝑅  Computational domain radius, 𝜇𝑚 𝑧  Vertical coordinate  

𝑧∗  Vertical position, 𝜇𝑚 𝑢𝑟  Velocity component in 𝑟-

direction 

𝑍  Computational domain height, 𝜇𝑚 𝑢𝑧  Velocity component in 𝑧-

direction 

ℎ∗  Free surface height function, 𝜇𝑚 ℎ  Free surface height function 

𝑢𝑟
∗ , 𝑈𝑅  Velocity and its characteristic value in 𝑟 

direction, 𝑚/𝑠 
𝑝  Pressure 

𝑢𝑧
∗ , 𝑈𝑧  Velocity and its characteristic value in 𝑧 

direction, 𝑚/𝑠 
𝑡  Time 

𝑙𝑐  Characteristic value in 𝑟-direction, 𝜇𝑚 𝜃  Temperature 

𝑧𝑐  Characteristic value in 𝑧-direction, 𝜇𝑚 𝑞  Heat flux 

𝑡̂, 𝑛̂  Unit tangent and normal vector at free 

surface 
𝑅𝑒  Reynolds number 

𝛼  Absorptivity 𝑃𝑒  Peclet number 

𝑞∗  Heat flux, 𝑊/𝜇𝑚2 𝐶𝑎  Capillary number 

𝛾∗, 𝛾0  Surface tension and its characteristic value, 

𝑁/𝑚 

  

    

1 Introduction 

Laser surface melting is a non-traditional, effective and efficient manufacturing process that 

has been increasingly used for generating micro-scale surface features on metallic components 

without addition or removal of material [1]. Creating a near flat feature to reduce surface 

roughness, also known as polishing, is an application of laser surface melting that has been 

widely studied recently. Several experimental studies have successfully demonstrated that 

polishing via laser surface melting is an effective alternative to other polishing techniques such 

as coatings, chemical polishing, abrasive polishing, etc. [1, 2].  

In laser surface melting (LSM), a continuous wave or pulsed laser source irradiates a surface. 

This heats the material and eventually melts a thin layer on the surface, creating a melt pool. 

Complex flows within the melt pool, primarily under viscous and surface tension forces, result in 

the dynamic evolution of the surface and upon resolidification results in new surface features. 

While conductive heat transfer is dominant in the initial stages of surface melting, convection 

heat transfer dominates the later stages in molten state. Among continuous wave and pulsed 

sources, pulsed laser sources have the advantage of smaller melt pool sizes while producing the 

desired final surface. Thus, there is minimal modification of material morphology and the bulk 

properties of the workpiece material are conserved. 

 In pulsed laser surface melting (pLSM), the evolution of the surface and the geometry of 

the surface feature depends on process properties such as incident laser power, pulse duration 

and incident beam diameter. There are few studies that try to capture the effects of various 

process parameters in pulsed laser surface melting in the context of determining final surface 

evolution. While most of the works are experimental [3–6], some have developed complex 
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multi-physics numerical models to investigate the evolution of the final surface after melting [7–

9]. Numerical studies done in [10] demonstrate that buoyancy forces in the melt pool during laser 

surface melting can be neglected. They have considered non-deformable free flat surface to find 

the velocity and temperature distribution in melt pool of rectangular cavity shape. In this context, 

studies done at the University of Wisconsin Madison [3,11] are of particular interest as they have 

systematically demonstrated the effects of temperature gradients of surface tension on surface 

evolution due to laser micro melting. Ma el al. [11] have developed a numerical model and 

showed that the resultant surface geometry matches well with experimental values. Their work 

will be used to validate the work done in this paper.  

For axisymmetric flow under gaussian beam distribution, analytical solutions of the heat 

conduction equation is obtained by Woodard et al. [12] and provide initial estimates of 

temperature distribution and hardened spot size. Tokarev et al. [13] presented an analytical 

estimation for melt depth using a one dimensional transient heat conduction in pulsed laser 

melting. They have given overestimate and underestimate values for melt depth which depends 

on various property values of material and laser pulse duration (𝑡𝑝). They have shown a good 

match with experiments. Their results will be used in the current current work. A limitation 

among all these studies is that the analysis was done under non-deformable free surface of the 

material and haven’t considered stress balance conditions at free surface. Subsequently, two 

dimensional numerical simulations were performed [14] to showcase the deformation of free 

surface under steady state and transient condition. Analytical similarity solution for velocity 

profile and temperature distribution was given by [15] for marangoni convected flow over flat 

surface. They have assumed the formation of boundary layer on flat free surface under imposed 

temperature gradient. While these are useful in deriving insights into the process, no studies exist 

that can provide for a analytical or semi-analytical solution for the evolution of the surface 

geometry, which ulmitately play a key role in several applications ranging from bio-implants to 

micro-fluiding channels. The present study, therefore focusses to develop a semin-analytical 

solution for prediction of surface geometry.  

In this work, a two dimensional transient axisymmetric numerical model with a deformable 

free surface will be developed for pulsed laser surface melting. This model will include 

temperature dependent material properties and will act as a baseline model the semi-analytical 

solution. For rigor, it will be shown that this model compares well with the results presented in 

Ma et al. [11]. Next, a steady state semi-analytical experession will be derived for the surface 

geometry using a thin film approximation. It will be shown that the predictions of the this semi-

analytical solution match closely with the numerical results with certain caviats. Finally, a 

detailed discussion on the results will be provided highlight the advantages and more 

importantly, the limitations of the semi-analytical solution. 

2 Physics of Pulsed Laser Surface Melting  

 

2.1 Mechanism of pulsed laser surface melting  

pLSM is a multi-physics process consisting heating of a micro scaled metal surface asperities 

beyond the melting and below the ablation temperature, using laser pulses. This complex process 

involves heat transfer primarily through conduction and convection, phase change of material 
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and resulting flow of the melt. Once material is in molten state, it starts to redistribute under 

influence of surface tension, pressure and viscous forces until material is resolidified. The 

mechanism of pLSM can be easily understood with the following four stages:  

Stage 1: Heating 

In this stage, the surface of the material is heated by the incident laser beam and the heat is 

conducted into the metal. As shown in Figure 1(a), conduction continues and the temperature at 

center point (shown in blue) of metal reaches the melting temperature. At this temperature, the 

material begins to melt by absorbing energy equivalent to its latent heat of fusion before 

changing phase. Note that in case of alloys, there is no single temperature at which the material 

melts, but the melting happens from solidus temperature, the temperature in metal below which 

the entire metal is in solid phase, to the liquidus temperature, above which the entire metal is in 

liquid phase.  

Stage 2: Melting 

This stage begins when the surface temperature is beyond the liquidus temperature (melting 

temperature for pure metals). The heat is transferred into the material through conduction and 

convection modes. The metal continues to melt and melt pool size increases in both radial and 

axial directions. Figure 1(b) shows the ascending melt-front, as the liquidus temperature 

isothermal contour, as it moves into the bulk of the material. This melt pool size continues to 

increase until the laser pulse is ON. The direction of the molten metal flow depends on the value 

of surface tension coefficient (𝜕𝛾∗/𝜕𝑇∗ ) which will be discussed in Section 2.2.    

Stage 3: Solidification 

Solidification begins once the incident heat source is switched off. In this stage the 

conduction and convection of heat in the melt pool continue to slightly increase the melt pool 

size before solidification begins. At this point, the melt pool continues to lose energy as 

conduction into the bulk and a small amount as radiation to the environment. Figure 1(c) shows 

the solidification-front, as the liquidus temperature isothermal contour, receding from the bulk of 

the material toward the surface.   

Stage 4: Cooling 

In this stage, the entire molten material has resolidified. The solid material continues to cool 

down by conducting heat into the bulk and losing little heat as radiation. The stage is complete 

once the material returns back to its original temperature, usually at room temperature.   
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2.2 Effect of surface tension gradient 

In Stages 2 & 3 of pLSM, the metal is in a molten state of a metal. A large gradient of 

temperature exists across the melt pool surface. This creates a gradient in the surface tension and 

thus causing an force imbalance across the surface. This imbalance in surface tension coupled 

with viscous forces causes the molten metal to flow. This phenomenon is called the Marangoni 

effect and the resulting flows are called thermocapillary flows. The nature of the flows and the 

behavipor of the molten material are dictated by the surface tension coefficient, 𝜕𝜎∗/𝜕𝑇∗, of the 

material.  

Typical power distribution of a laser beam is Gaussian, i.e., the intensity at the center of the 

beam is maximum and it exponential decays to zero towards the edges. Therefore, the 

temperature at center of the melt pool is much higher than that at the edge. Materials with a 

negative surface tension coefficient will have higher surface tension at the edges than the center 

of the meltpool. This creates gradients of surface tension and flow of molten metal takes place 

from low surface tension to higher surface tension. This process develops the upwelling of 

material from center point towards the edge of molten pool as shown in Figure 2. Conversely, a 

positive surface tension coefficient results in upwelling of the material towards the center of the 

pool.  

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

 

Figure 1: Four stages of pLSM process 
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Figure 2: Schematic of solidified surface geometry for materials with negative 𝝏𝝈∗/𝝏𝑻∗ 

3 Numerical model of pLSM 

To capture the physics of the process, a numerical model is developed and is simulated using 

COMSOL commercial software for simulation purpose. Axisymmetric model is the natural 

choice of for numerical analysis, as within each cycle of melting and solidification, the process is 

inherently symmetric about the central axis of the incident laser beam. Further, sufficient time is 

provided between two laser pulses to ensure the material returns to its room temperature. 

Therefore, studying the process under a single pulse is sufficient. is sufficient to study the 

process. This numerical model will also act as a reference to validate the semi-analytical results 

to be discussed later in the paper. In this section, this model is detailed with the validation 

results.  

3.1 Governing equations and assumptions 

 

For modelling simplicity and ease, the following assumptions are made:  

• The material is isotropic and homogeneous. 

• Chemical changes are ignored as the process is typically carried out in an inert 

environment.  

• Radiation and convection heat losses to the surroundings are neglected.  

• Newtonian flow is assumed in melt pool, i.e., constant viscosity. 

• The surface tension of the molten material is varying linearly with temperature.  

• The gravitational forces [3] and buoyancy forces [16] are neglected as they are 

considerably small as compared to the surface tension effects. 

• Ablation is not modeled as maximum temperature is ensued to be not beyond 

vaporization temperature of material. 

• There is no additional source irradiating on surface. 

 

Under the above assumptions, the coupled temperature and velocity fields are given by the 

energy conservation equation and the Navier-Stokes equation and are given by the following,  
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 𝜌𝑐𝑝
′ (
𝜕𝑇∗

𝜕𝑡∗
+ 𝑉∗ ⋅ 𝛻∗ 𝑇∗) − 𝛻∗ ⋅ (𝑘𝛻∗ 𝑇∗) = 0 (1) 

 𝜌 [ 
𝜕𝑉∗

𝜕𝑡∗
+ (𝑉∗ ⋅ 𝛻∗ )𝑉∗ ] =  −𝛻∗ 𝑝∗ + 𝛻∗ ⋅ { 𝜇 [(𝛻∗𝑉∗) + (𝛻∗𝑉∗)

𝑇
]} (2) 

where, 𝑐𝑝
′  is equivalent specific heat which accounts latent heat of fusion, 𝑘 is thermal 

conductivity, 𝜇 is dynamic viscosity of a material. Further, under the assumption of steady flow 

of the molten material, the continuity equation is written as, 

 𝛻∗ ⋅ 𝑉∗ = 0 (3) 

3.2 Interfacial and boundary conditions 

Normal and tangential stress is developed on the interface between affected surface area and 

surrounding environment. Stress balance in normal and tangential direction on interface is as 

follows,  

 

Normal Stress Balance −𝑝∗ + (𝜏∗ ⋅ 𝑛̂) ⋅ 𝑛̂ = 𝛾∗ (𝛻∗ ⋅  𝑛̂) (4) 

Tangential Stress Balance (𝜏∗ ⋅ 𝑛̂) ⋅ 𝑡̂ = (𝜕𝛾∗/𝜕𝑇∗)(𝛻∗ 𝑇∗ ⋅  𝑡̂)  (5) 

 

where 𝛾∗ is the surface tension and ∇∗ ⋅ 𝑛̂ is the curvature of the surface. The laser beam source 

incident on the surface is modelled as a heat flux boundary condition on initially flat surface is 

given by,  

 𝑛̂ ⋅ (𝑘𝛻∗𝑇∗) = 𝛼𝑞∗ (6) 

where 𝑞∗ is heat flux and  𝛼 is the absorptivity. Gaussian distribution of heat flux within pulse 

duration is assumed and is given by,   

 
𝑞∗ =

𝑃

𝜋𝑅𝑏
2 𝑒

(−
2𝑟∗

2

𝑅𝑏
2 )

 
(7) 

where 𝑃 is the peak power of gaussian distribution and 𝑅𝑏 is the laser beam radius. 

 

Boundaries 𝑟∗ = 𝑅 and 𝑧∗ = 0 in Figure 2 are considered stationary as material has no 

velocity at these boundaries. Therefore, no slip conditions are appropriate to imposed at these 

boundaries. Further, adiabatic boundary conditions are assumed at 𝑟∗ = 𝑅 and 𝑧∗ = 0 as these 

are sufficiently far from the melt pool to ensure no heat or mass transfer with the surroundings.  

These are mathematically described as,  

 𝑉∗(0, 𝑟∗) = 0 & 𝑉∗(𝑧∗, 𝑅) = 0  (8) 

 𝑛̂ ∙ (𝑘𝛻∗𝑇∗)|
(0,𝑟∗)

= 0 & 𝑛̂ ∙ (𝑘𝛻∗𝑇∗)|
(𝑧∗,𝑅)

= 0 (9) 

3.3 Material properties 

Without loss of generality, Ti6Al4V alloy is the material of choice for all the work presented 

in this paper.  Temperature dependent properties of Ti6Al4V, viz.,  density, thermal 
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conductivity, specific heat and dynamic viscosity, are taken for the numerical simulations 

[17,18]. Effective viscosity method is used to enable the solid material to stationary position and 

molten metal to flow [16]. For convergence, the solid state viscosity is set to be approximately 

30 million times of liquid state viscosity. The value of surface tension coefficient is used for pure 

titanium in air (𝜕𝜎∗/𝜕𝑇∗ = -0.26 𝑚𝑁/𝑚 −𝐾 [19]), as it was not found in literature for Ti6Al4V 

alloy. As 𝜕𝜎∗/𝜕𝑇∗ plays an important role, this value would build some error in simulating final 

surface geometry. Absorptivity value is taken as 0.5 [12]. Table 1 shows some properties used in 

simulation. 

Table 1: Parameters and constants used in simulations 

 

3.4 Meshing and solver 

Computational domain was meshed with free triangular and finer mesh element. As material 

will flow once the metal is in molten state, moving mesh was applied to meshed geometry and 

mesh element size was calibrated for fluid dynamics. Direct solver PARDISO used in simulation 

requires less RAM then other solvers and can store the solution out-of-core [21]. Laplace mesh 

smoothing method ensures smooth deformations of mesh, given the constraints on boundaries of 

domain.  

3.5 Model validation 

The model was validated by comparing the melt pool geometry and normalized peak to 

valley height (PVH) to those discussed in Ma et al. [11]. Although the application in [11] laser 

micro polishing of metallic surfaces, as discussed earlier, it is a specific application of pLSM. 

Note that the model by Ma et al. was validated against experimental laser polishing results on 

Ti6Al4V and therefore, this model-to-model validation is acceptable. The results of both the 

models are within +7% of error. These are summarized in following Table 2. 

Table 2: Validation of numerical simulation model 

𝑡𝑝 (𝜇𝑠) 
Normalized PVH (𝜇𝑚) %Error 

 Ma et al [11] Current work 

1 0.01 0.0105 -5 

3 0.06 0.056 6.66 

5 0.12 0.113 5.83 

Computational dimensions (𝑅 x Z) (𝜇𝑚) 120 x 30  

Solidus temperature, 𝑇𝑠 (K) [20] 1877 

Melting temperature, 𝑇𝑚 (K) [20] 1903 

Liquidus temperature, 𝑇𝑙 (K) [17] 1923 

Evaporation temperature, 𝑇𝑣 (K) [18] 3500 

Ambient temperature, 𝑇𝑎𝑚𝑏 (K) 298 

Initial temperature, 𝑇𝑖 (K) 298 

Latent heat of fusion, L (J/K) [17] 3.24 × 105 
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4 Non-dimensionalization of equations 

The mathematical model of the process described in Sections 3.1 and 3.2 are non-

dimesionalized for ease of analysis. Further, Non-dimensionalization results in dimensionless 

numbers through which material independent insights into the process can be easily derived 

without the need to run complex numerical simulations. This section details the procedure of 

non-dimensionalization under the following assumptions: 

• Only steady state equations are considered i.e., the temporal variations of temperature, 

pressure, velocity are neglected. Although this is only true when the meltpool is in molten 

state for sufficiently long durations, it will be shown later in the the paper that this analysis 

will result in useful estimates of the surface geometry.   

• Temperature dependence of material properties is neglected and constant properties at 

liquidus temperature are used. These are tabulated in Table 3. 

 

Under the above assumptions, Equations (1) - (6) are non-dimensionalised and are summarized 

in Table 4. A detailed derivation of the these equations is given in Appendix A.  

Table 3: Constant properties at liquidus temperature  

Thermal conductivity, k (𝑊/𝑚 − 𝐾) 30 

Surface tension coefficient, (𝜕𝛾∗/𝜕𝑇∗) (m𝑁/𝑚 − 𝐾) -0.26 

Surface tension, 𝛾0 (𝑁/𝑚) 1.65 

Density, 𝜌 (𝑘𝑔/𝑚3) 3886 

Specific heat, 𝑐𝑝 (𝐽/𝑘𝑔 − 𝐾) 800 

Dynamic viscosity, 𝜇 (𝑘𝑔/𝑚 − 𝑠) 0.005 

 

Table 4: Steady State Dimensionless Equations for pLSM 

Navier-Stokes Equations 

R-momentum 𝜖2𝑅𝑒 [(𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟
) + (𝑢𝑧

𝜕𝑢𝑟
𝜕𝑧
)] = −

𝜕𝑝

𝜕𝑟
+ 𝜖2

𝜕

𝜕𝑟
(
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟)) +

𝜕2𝑢𝑟
𝜕𝑧2

 (10) 

Z-momentum 𝜖4𝑅𝑒 [(𝑢𝑟
𝜕𝑢𝑧
𝜕𝑟
) + (𝑢𝑧

𝜕𝑢𝑧
𝜕𝑧
)] = −

𝜕𝑝

𝜕𝑧
+ 𝜖2 [𝜖2 (

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝑧
𝜕𝑟
)) + (

𝜕2𝑢𝑧
𝜕𝑧2

)] (11) 

Energy Balance Equation 

 𝜖2𝑃𝑒 [(𝑢𝑟
𝜕𝜃

𝜕𝑟
) + (𝑢𝑧

𝜕𝜃

𝜕𝑧
)] = [𝜖2 (

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝜃

𝜕𝑟
)) + (

𝜕2𝜃

𝜕𝑧2
)]   (12) 

Continuity Equation 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟) +

𝜕𝑢𝑧
𝜕𝑧

= 0,          𝑈𝑧 = 𝜖𝑈𝑅 (13) 
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Interfacial and Bourndary Conditions 

Normal Stress Balance 𝑝 = −
1

𝛿
(
𝜕2ℎ

𝜕𝑟2
) (14) 

Tangential Stress Balance 
𝜕𝑢𝑟
𝜕𝑧

+ 𝑂(𝜖2) =
ϵ(𝜕𝛾∗/𝜕𝑇∗)Δ𝑇

𝜇𝑈𝑅
[
𝜕𝜃

𝜕𝑟
+
𝜕𝜃

𝜕𝑧

𝜕ℎ

𝜕𝑟
] (15) 

Heat Flux (−𝜖2
𝜕ℎ

𝜕𝑟
)
𝜕𝜃

𝜕𝑟
+
𝜕𝜃

𝜕𝑧
= 𝑞 (16) 

 

In Table 4, ℎ(𝑟) is the non-dimensional geometry of the surface, 𝜖 =
𝑧𝑐

𝑙𝑐
, is the ratio of 

characteristic length scales in the 𝑧 and 𝑟 directions, 𝑅𝑒 = 𝑈𝑅𝑙𝑐/𝜈 is the Reynolds number,  

𝑃𝑒=𝑈𝑅𝑙𝑐/𝛼 is the Peclet number, 𝛿 = 𝐶𝑎/𝜖3 is a non-dimensional parameter resulting from 

Capillary number 𝐶𝑎 = 𝜇𝑈𝑅/𝛾0. 

5 Thin film approximation  

A thin film is defined as the region in which the characteristic depth scale is comparatively 

very smaller than the characteristic length scale. In case of pLSM, this translates to 𝜖 =
𝑧𝑐

𝑙𝑐
≪ 1. 

An illustrative schematic of metpool in pLSM is shown in Figure 3. The resultant melt pool 

diameters are of the order of 30-50 m and the resultant maximum melt pool are of the order of 

3-5 m [3,11], meaning that 𝜖~𝑂(−1). Therefore, approximation of the meltpool obtained in 

pLSM as a thin film is reasonable.  The solution obtained thereof gives the general idea about 

velocity, and temperature distribution. A outcome of particular interest in this paper is the semi-

analytical solution for evolved interfacial height function.   

 

Figure 3: Thin Film domain of dimension 𝒛𝒄 x 𝒍𝒄 
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In additional to small 𝜖, the following are assumptions are made for analysis. It is to be noted 

that some of these assumptions are invalid for all process conditions and the effects of the same 

will be discussed in later sections.  

• Rescaled Reynolds number, defined as 𝑅𝑒̂ = 𝜖𝑅𝑒 and rescaled Peclet number, 𝑃𝑒̂ = 𝜖𝑃𝑒 are 

assumed to be 𝑂(1). 
• All dependent properties such as 𝑝, 𝜃, 𝑢𝑟, 𝑢𝑧, and ℎ can be expressed in asymptotic 

expansion in the thin film limit of 𝜖 ≪ 1. This can be mathematically expressed as: 

 

 𝑝 = 𝑝(0) + 𝜖𝑝(1) + 𝜖2𝑝(2) + ․․․․․ 

(17) 
 𝜃 = 𝜃(0) + 𝜖𝜃(1) + 𝜖2𝜃(2) + ․․․․․ 

 𝑢 = 𝑢(0) + 𝜖𝑢(1) + 𝜖2𝑢(2) + ․․․․․ 

 ℎ = ℎ(0) + 𝜖ℎ(1) + 𝜖2ℎ(2) + ․․․․․ 

Under these assumptions and neglecting all terms of the order 𝜖2 or higher in Equations (10) 

- (17), the simplified process equations can be rewritten as follows. More details are available in 

Appendix B. 

 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟

(0)
) +

𝜕𝑢𝑧
(0)

𝜕𝑧
= 0,  

(18) 

 𝜕2𝜃(0)

𝜕𝑧2
= 0 

(19) 

 𝜕2𝑢𝑟
(0) 

𝜕𝑧2
−
𝜕𝑝(0)

𝜕𝑟
= 0 

(20) 

 𝜕𝑝(0)

𝜕𝑧
= 0 

(21) 

 
 𝑝(0) = −

1

𝛿
(
𝜕2ℎ

𝜕𝑟2
) 

(22) 

 𝜕𝑢𝑟
(0)

𝜕𝑧
=
𝜕𝜃(0)

𝜕𝑟
+
𝜕𝜃(0)

𝜕𝑧

𝜕ℎ

𝜕𝑟
 

(23) 

 𝜕𝜃(0)

𝜕𝑧
= 𝑞 

(24) 

 

5.1 Lower boundary of thin film 

Usually, thin film analysis assumes a rectangular shape of the film, where both the top and 

the bottom boundaries are flat. In case of pLSM, the meltfront, which is boundary of the 

meltpool is rarely flat. This is especially true when the melt pool sizes are large. Therefore, in 

this paper, both flat as well as curved meltpool boundairs are considered. Further, based on 

numerical and experimental observations [11,22], the curved meltpool boundary is approximated 

as a parabolic curve. A typical melt front created observed in simulations is shown in Figure 4, 

along with a parabolic curve with suitable coefficients. The dimensional and non-dimensional 
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parabolic boundary, along with the corresponding boundary conditions are mathematically given 

by, 

 
𝑇∗ = 𝑇𝑙  &  𝑉

∗ = 0, @ℎ∗ = 𝑓∗(𝑟∗) = {
0,           𝑓𝑙𝑎𝑡 𝑚𝑒𝑙𝑡𝑓𝑟𝑜𝑛𝑡

𝐾𝑟∗2 + 𝛽,    𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 𝑚𝑒𝑙𝑡𝑓𝑟𝑜𝑛𝑡
 (25) 

 𝜃 = 0 & 𝑢𝑟,𝑧 = 0, @ℎ = 𝑓(𝑟) = {
0,           𝑓𝑙𝑎𝑡 𝑚𝑒𝑙𝑡𝑓𝑟𝑜𝑛𝑡

𝐾𝑟2 + 𝛽̂,    𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 𝑚𝑒𝑙𝑡𝑓𝑟𝑜𝑛𝑡
 (26) 

 

where 𝐾 and 𝛽 are constants.  𝐾̂ = 𝐾𝑙𝑐
2/𝑧𝑐,  𝛽̂ = 𝛽/𝑧𝑐 are the coefficient that are functions of 

characteristic length scales.  

 

 

5.2 Solution of surface height 

In this section, a steady state solution to the surface height, ℎ(𝑟), is derived under the thin 

film approximation of the melt pool created in pLSM. For conciseness, only the key details are 

provided in the section, while the detailed derivation is provided in Appendix B.  

To begin with the solution, Equation (19) for leading-order temperature, 𝜃(0) is solved under 

heat flux boundary condition in Equation (24) and constant temperature boundary condition in 

Equation (26), 

 𝜃(0) = 𝑞(𝑟)(𝑧 − 𝑓(𝑟)) (27) 

where 𝑓(𝑟) is the meltfront geometry as defined in Equation (26) and 𝑞(𝑟) = 𝐶 𝑒−8𝑟
2
. The 

constant 𝐶 is defined in Appendix A.  

The solution for leading-order velocity, 𝑢𝑟
(0)

 can be found from Equations (20) and (23) under 

the boundary condition in Equation (26) and is given by,  

 
𝑢𝑟
(0)
=
𝜕𝑝(0)

𝜕𝑟

𝑧2

2
+ (𝐴 −

𝜕𝑝(0)

𝜕𝑟
ℎ) 𝑧 −

𝜕𝑝(0)

𝜕𝑟

𝑓(𝑟)2

2
− (𝐴 −

𝜕𝑝(0)

𝜕𝑟
ℎ) 𝑓(𝑟) 

(28) 

 

 

Figure 4: Melt front shape with a parabolic fit 
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where,  𝐴 =  𝑞′(𝑟)(ℎ − 𝑓(𝑟)) + 𝑞(𝑟)(−𝑓′(𝑟)) +
𝑑ℎ

𝑑𝑟
 𝑞(𝑟) 

Given that there is no loss of material in the melt pool, a zero net volume flux condition can be 

imposed as follows, 

 
∫ 𝑢𝑟

(0)(𝑟, 𝑧)𝑑𝑧 = 0
ℎ(𝑟)

0

 
(29) 

Substituting from (28), Equation (29) gives the pressure gradient as, 

 
𝜕𝑝(0)

𝜕𝑟
=

𝐴 (𝑓(𝑟) −
ℎ
2
)

(−
ℎ2

3
−
𝑓(𝑟)2

2
+ ℎ𝑓(𝑟))

 
 

(30) 

Finally, differentiating normal stress balance condition in Equation (22) with respect to 𝑟, 

𝜕𝑝(0)/𝜕𝑟 from Equation (30) can be eliminated, resulting in, 

 
𝑑3ℎ

𝑑𝑟3
=
𝛿 [ 𝑞′(𝑟)(ℎ − 𝑓(𝑟)) + 𝑞(𝑟)(−𝑓′(𝑟)) +

𝑑ℎ
𝑑𝑟
 𝑞(𝑟)] (𝑓(𝑟) −

ℎ
2
)

(−
ℎ2

3
−
𝑓(𝑟)2

2
+ ℎ𝑓(𝑟))

 
(31) 

A closed form solution to Equation (31) cannot be obtained. However, in the limit of 𝜖 ≪ 1, the 

deformation is small enough. Therefore, the 𝑂(𝜖2) and higher order terms can be neglected in 

the expression of ℎ in Equation (17) to obtain an approximate solution in the form of 

 ℎ(𝑟) = ℎ(0)(𝑟) + 𝜖ℎ(1)(𝑟) (32) 

Equations (31) and (32), yield two expression for the leading-order term, ℎ(0) and the first-order 

term, ℎ(1). The detailed derivation of these expressions is in documented in Appendix B. At 

𝑂(1), a trivial solution of ℎ(0) emerges as,  

 ℎ0(𝑟) = 1 (33) 

And the first-order term, ℎ(1) becomes,  

 𝑑3ℎ(1)

𝑑𝑟3
= 6𝛿𝐶𝑒−8𝑟

2
[16𝑟(1 − 𝑓(𝑟)) + 𝑓′(𝑟)] 

(𝑓(𝑟) − 0.5)

(3𝑓(𝑟)2 − 6𝑓(𝑟) + 2)
 

(34) 

While there is no analytical solution for ℎ(1), Equation (34) can be numerically integrated for the 

two boundary functions 𝑓(𝑟). Substituting both in Equation (32), thus results in a solution to the 

surface height of the meltpool in pLSM. 

Solution for ℎ1(𝑟), combined with ℎ0(𝑟) gives a semi-analytical solution for interfacial height 

function ℎ(𝑟) as,  

 ℎ(𝑟) = ℎ0(𝑟) + 𝜖ℎ1(𝑟) (35) 

5.3 Method of validation 

In order to validate the thin-film approximate solution for the steady state surface height of 

the meltpool, comparison are made with the detailed numerical model described earlier. Note 

that the numerical model itself was validated against experimental results from literature [11]. 
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These are summarized in Table 2. Comparisons for validation will be made at nine different 

pulse duration on an initially flat surface. The pulse energy for each pulse duration is chosen 

such that maximum temperature in the numerical simulation is just below the ablation 

temperature. This is hypothesized to provide sufficient time for the meltpool flows to reach 

steady state. It will be shown in later discussion that this has limitations. 

To have a meaningful comparision of the solution from thin film approximation with the 

numerical solution, non-dimensionalizing characteristic values, 𝑧𝑐 and 𝑙𝑐 are required. These 

characteristic values have to be chosen diffrerently for the two solution methods to properly non-

dimesionalize the results. For numerical results, 𝑧𝑐 is chosen as maximum melt depth defined as 

maximum penetration of the melt front from initial flat surface and 𝑙𝑐 is chosen the farthest radial 

reach of the meltfront. The values for each pulse duration are tabulated in Table 5.  

For thin film approximation, 𝑧𝑐 is chosen based on theoretical analysis done in [13], wherein 

the authors present given an analytical solution of maximum underestimated value, ℎ11 𝑚𝑎𝑥 and 

overestimated value, ℎ12 𝑚𝑎𝑥 for pulsed laser induced melt depth, based on simple heat 

conduction model valid for any material/alloy.  In the current work, 𝑧𝑐 is chosen as an average of 

ℎ11 𝑚𝑎𝑥 and ℎ12 𝑚𝑎𝑥. It can be seen from Table 5, that the analytical approximation of Tokarev et 

al. [13] and the numerical solution sufficiently close. There are no suitable analytical 

approximations for the characteristic length, 𝑙𝑐. Therefore, the full-width-half-maximum of the 

assumed gaussian beam is chosen as a constant 𝑙𝑐 for all pulse durations. In reality, this is a poor 

choice as the melt pool size inceases with increasing pulse duration. However, addressing this is 

beyond the scope of the current work. 

  

Table 5: Characteristic length values used for non-dimensionalize the results at different pulse 

durations 

𝑡𝑝(𝜇𝑠) Pulse 

Energy (𝑚𝐽) 
Length scales used to 

nondimensionalize numerical 

solution 

Length scales used to 

nondimensionalize thin film 

approximation results 

𝑧𝑐(𝜇𝑚) 𝑙𝑐(𝜇𝑚) 𝑧𝑐(𝜇𝑚) 𝑙𝑐(𝜇𝑚) 

0.5 265 2.30 62.10 2.29 62.18 

0.8 336 2.88 65.46 2.90 62.18 

1.0 380 3.05 67.96 3.24 62.18 

1.2 408 3.46 67.49 3.55 62.18 

1.5 473 3.94 66.80 3.97 62.18 

2.0 564 4.72 70.63 4.58 62.18 

3.0 720 5.87 74.43 5.61 62.18 

4.0 860 6.95 77.51 6.48 62.18 

5.0 975 7.80 77.24 7.24 62.18 
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6 Results and discussion 

Figure 5 shows nine different cases with final interfacial surface profile of simulation height 

(black color) and thin film approximation height for flat melt fron (red color) and parabolic melt-

front (blue color) under various pulse duration values. Figure 5 also shows the percentage error 

plots for thin film predictions with respect to the numerical results. The error is quantified using 

two metrics namel, Mean Absolute Percentage Error (MAPE) and Root Mean Square Error 

(RMSE), for the two melt-front geometries. In general, the solution with parabolic melt front 

matches closely with the solution with a flat melt front. However, there are few caveats and are 

discussed in the following.  

Observation 1 

Figure 5 (a), (b) and (c) compare the thin film surface geometry estimation to surface 

evolution from the numerical solution for smaller pulse durations (𝑡𝑝 = 0.5, 0.8 and 1.0 𝜇𝑠). The 

RMSE errors are 11%, 7% and 5% respectively with a flat meltfront geometry and 15%, 10% 

and 8% for a parabolic meltfront.  

It can be seen that the solution obtained by thin film overestimates the surface height as 

compared to the numerical results. This is because thin film is a steady state solution while 

numerical model accounts for transients of the flows. Further, the thin film does not account for 

phase change. It assumes that the melt pool is always in liquidus state. On the other hand, phase 

change is accounted for in the numerical solutions. At smaller pulse durations, it is possible that 

the melt pool resolidifies before reaching a steady state. In other words, the flows do not have 

sufficient time to reach a steady state. Therefore, the steady state thin film solution over-

estimates the surface geometry as compared to the transient numerical solution. To support the 

above discussed argument, further analysis and investigation is required which is beyond the 

scope of the current work. Nonethless, the errors in these three cases range from 5% to 15% 

RMSE value across the two geometries and quite useful in predicting the overall surface features 

and roughness of the surface. 

 

Observation 2 

For longer pulse durations, 𝑡𝑝 = 3, 4 and 5 𝜇𝑠, shown in Figure 5 (g), (h) and (i), The RMSE 

errors are ~17%, ~24% and ~26% respectively with a flat meltfront geometry and ~15%, ~23% 

and ~25% for a parabolic meltfront.  

Here, the thin film solution underestimates the numerical solution. At these longer pulse 

durations, dominance of thermocapillary flows result in more upwelling of surface from center 

towards outwards. In thin film approximation study, only the 𝑂(1) solution was considered, 

neglecting higher order terms. Further, the rescaled Peclect number, 𝑃𝑒̂ and the rescaled 

Reynolds number, 𝑅𝑒̂ are assumed to be of 𝑂(1). The values of 𝑃𝑒̂ and 𝑅𝑒̂  are tabulated in 

Table 6. While the values of 𝑃𝑒̂ are of 𝑂(1), 𝑅𝑒̂ values are of 𝑂(2). At higher pulse durations, 

deeper melt pools coupled with dominating thermocapillary flows result in significantly higher 

velocities of flows. However, the velocity scale assumed for thin film does not capture this effect 

and therefore violates the assumption of 𝑅𝑒̂~𝑂(1). Further, Table 6 also shows the value of 

parameter 𝜖 increases with pulse duration. It is also assumed that 𝜖 ≪ 1 ensures the thin film 

approximation validity. Therefore, the high value of 𝜖 indicates that, at the high pulse duration 
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values, thin film cannot approximate the surface height, and therefore significant 

underestimation is observed.  

 

Observation 3 

For intermediate pulse durations, 𝑡𝑝 = 1.2, 1.5 and 2 𝜇𝑠 values i.e., from Figure 5 (c), (d), 

(e), thin film approximation results closely estimate of final evolved surface height as predicted 

by numerical results. The RMSE errors are ~5%, ~4% and ~8% respectively with a flat meltfront 

geometry and ~6%, ~5% and ~7% for a parabolic meltfront. This demonstrates the immediate 

applicability of thin film solution at these intermediate pulse durations.  

Figure 6 shows the trend of both errors MAPE and RMSE for flat and parabolic melt front 

with respect to 𝑡𝑝. Figure confirms that MAPE and RMSE in the range of pulse duration of 1.2 to 

2 𝜇𝑠 are minimum. The maximum RMSE of 26.43% is captured at 5 𝜇𝑠 pulse duration and 

minimum MAPE 3.53% is captured at 1.2 𝜇𝑠 pulse duration for flat shape thin film from Figure 

5. It can be seen from the Figure 6 (a) and (b) that the solution with flat melt front approximation 

has a smaller error as compared to the parabolic melt front approximation. This is quite intuitive 

as at small pulse durations, the pools are very shallow, and the melt front is much closer to being 

flat than parabolic. Figure 6 (c) and (d) are also in agreement with lowest errors at intermediate 

pulse durations 1.2, 1.5 and 2 𝜇𝑠.  

 

 

 
(a) 𝑡𝑝 = 0.5 𝜇𝑠 

 
(b) 𝑡𝑝 = 0.8 𝜇𝑠 
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(c) 𝑡𝑝 = 1 𝜇𝑠 

 
(d) 𝑡𝑝 = 1.2 𝜇𝑠 

 
(e) 𝑡𝑝 = 1.5 𝜇𝑠 

 
(f) 𝑡𝑝 = 2 𝜇𝑠 

 
(g) 𝑡𝑝 = 3 𝜇𝑠 

 
(h) 𝑡𝑝 = 4 𝜇𝑠 
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(i) 𝑡𝑝 = 5 𝜇𝑠 

 

Figure 5: Comparisons for simulation and semi-analytical solution at different pulse durations 

Table 6: Parameter 𝝐, Peclet, Reynolds number from TFA analysis 

𝒕𝒑(𝝁𝒔) 𝝐 = 𝒛𝒄/𝒍𝒄 𝑷𝒆̂ 𝑹𝒆̂ 

0.5 0.037 0.716 5.37 

0.8 0.046 1.150 8.62 

1 0.052 1.434 10.76 

1.2 0.057 1.722 12.92 

1.5 0.064 2.153 16.15 

2 0.074 2.866 21.50 

3 0.090 4.301 32.26 

4 0.104 5.738 43.04 

5 0.116 7.163 53.72 

 

 
(a)  

 
(b)  
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(c)  

 
(d)  

Figure 6:  MAPE and RMSE for parabolic melt-front profile with respect to pulse duration  

7 Conclusion and future work 

 

 This paper presents a steady state semi-analytical solution to evaluate the evolved surface 

geometry under pulsed laser surface melting. The solution models the meltpool as a thin film 

motivated by the observation that typical ratio of meltpool diameters to melt depths, 𝜖 are very 

small. The thin film solution also assumes temperature independent material properties. Further, 

the thin film solution accounts for two geometries of the melt pool shapes, namely a flat lower 

boundary and a parabolic lower boundary. The paper also discusses a transient axisymmetric 

numerical solution for pulsed laser surface melting that accounts for temperature dependent 

properties to study the evolution of surface geometry. To validate the numerical model, the 

evolved surface heights were compared with results from literature and the results closely match 

each other. Finally, the thin film solution of evolved surface geometry was compared with that of 

the numerical model. The comparisons were carried for different pulse durations and pulse 

energies on initially flat surface surface under similar process conditions.  

The final evolved surface height from both the models demonstrate a reasonable match with 

the root mean square errors ranging from ~4% to ~25%. Larger errors are observed at 

comparatively lower and higher pulse duration and smaller errors are observed for intermediate 

pulse duration values. It was observed that at lower pulse duration, the steady state assumption 

may be violated as the time required for the flows to reach a steady state may be larger than the 

time required for resolidification. At larger pulse durations the melt depths become larger, thus 

resulting in higher values of 𝜖. Further, it was also observed that thin film solution with a flat 

boundary predicts better at lower pulse duration and that with a parabolic shape is more suitable 

for higher pulse durations.  

Overall, the thin film solution is a a reasonable and useful approximation of the of the 

evolved surface geometry through pLSM process, thus saving significant computational costs. 

This paper clearly articulates the limitations of thin film approximations for pLSM and thus 

motivates for further modelling improvements and considerations of higher orders of 𝜖.  
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Appendix A. Derivation of Non-dimensional Process Model  

 

To non-dimesionalize the process model, length, velocity and temperature are scaled with 

appropriate characteristic values as follows:  

 𝑢𝑟 =
𝑢𝑟
∗

𝑈𝑅
 , 𝑢𝑧 =

𝑢𝑧
∗

𝑈𝑧
, 𝑟 =

𝑟∗

𝑙𝑐
, 𝑧 =

𝑧∗

𝑧𝑐
, 𝜖 =

𝑧𝑐
𝑙𝑐

 

(A. 1) 

 𝜃 =
𝑇∗ − 𝑇𝑙
𝛥𝑇

 

where, 𝜃 is nondimensional temperature, 𝑇𝑙 is liquidus temperature, 𝛥𝑇 =  (𝑇𝑣 − 𝑇𝑙) is 

difference between ablation, 𝑇𝑣 and liquidus temperature, 𝑇𝑙. The choice of length scales is 

discussed in Section 5.3 and the velocity scales will emerge from the non-dimetionalization in 

the following.  

Continuity equation 

  

Using the scaling in Equation (A. 1), the non-dimesional continuity equation can be written 

as follows: 

  
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟) +

𝜕𝑢𝑧
𝜕𝑧

= 0, 𝑈𝑧 = 𝜖𝑈𝑅   
(A. 2) 

It can be seen that the reatio velocity scales is same as the ratio of length scales, 𝜖. This is 

rather intuitive given the assumption of steady state.  

Energy equation 

 

Upon steady state condition of temperature and the scaling in Equation (A. 1) on the 

dimestional energy equation in Equation (1), the non-dimensional energy equation is derived as,  

 

 
𝜖2𝑃𝑒 [(𝑢𝑟

𝜕𝜃

𝜕𝑟
) + (𝑢𝑧

𝜕𝜃

𝜕𝑧
)] = [𝜖2 (

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝜃

𝜕𝑟
)) + (

𝜕2𝜃

𝜕𝑧2
)]   

(A. 3) 

where, 𝑷𝒆 is the Peclet number, defined as 𝑼𝑹𝒍𝒄/𝜶. 

Fluid flow equation 

   

For simplicity, Navier-Stokes equation in Equation (2) can be separated into the 𝑹-

momentum and 𝒁-momentum equations, with the steady state assumption imposed as,  

R-momentum 𝑢𝑟 
∗
𝜕𝑢𝑟

∗

𝜕𝑟∗
+ 𝑢𝑧 

∗
𝜕𝑢𝑟

∗

𝜕𝑧∗
= −

1

𝜌

𝜕𝑝∗

𝜕𝑟∗
+ 𝜈 [

𝜕

𝜕𝑟∗
(
1

𝑟∗
𝜕

𝜕𝑟∗
(𝑟∗ 𝑢𝑟

∗)) +
𝜕2𝑢𝑟

∗

𝜕𝑧∗2
] 

(A. 4) 

Z-momentum 𝑢𝑟 
∗
𝜕𝑢𝑧

∗

𝜕𝑟∗
+ 𝑢𝑧 

∗
𝜕𝑢𝑧

∗

𝜕𝑧∗
= −

1

𝜌

𝜕𝑝∗

𝜕𝑧∗
+ 𝜈 [(

1

𝑟∗
𝜕

𝜕𝑟∗
(𝑟∗

𝜕𝑢𝑧
∗

𝜕𝑟∗
)) +

𝜕2𝑢𝑧
∗

𝜕𝑧∗2
] 

Using the scaling given in Equation (A. 1), these are simplified to, 
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R-momentum 𝜖2𝑅𝑒 [(𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟
) + (𝑢𝑧

𝜕𝑢𝑟
𝜕𝑧
)] = −

𝜕𝑝

𝜕𝑟
+ 𝜖2

𝜕

𝜕𝑟
(
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟)) +

𝜕2𝑢𝑟
𝜕𝑧2

 
(A. 5) 

Z-momentum 𝜖4𝑅𝑒 [(𝑢𝑟
𝜕𝑢𝑧
𝜕𝑟
) + (𝑢𝑧

𝜕𝑢𝑧
𝜕𝑧
)] = −

𝜕𝑝

𝜕𝑧
+ 𝜖2 [𝜖2 (

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝑧
𝜕𝑟
)) + (

𝜕2𝑢𝑧
𝜕𝑧2

)] 

where 𝑹𝒆 is Reynolds number defined as 𝑼𝑹𝒍𝒄/𝝂. Note that in non-dimesionalizing the 𝑹-

momentum equation, a pressure scale emerges and is given by, 𝒑𝒄 =
𝝁𝑼𝑹𝒍𝒄

𝒛𝒄
𝟐  .  

Interfacial normal stress balance 

 

Equation (4) balances normal stresses and consists of pressure, viscous stress tensor and 

curvature terms. The viscous stress tensor and normal to surface are given by,  

 𝜏∗ = 𝜇 [(𝛻∗ 𝑉∗) + (𝛻∗ 𝑉∗)
𝑇
]  (A. 6) 

 

 
𝑛̂ =

𝛻∗(𝑧∗ − ℎ∗(𝑟))

|𝛻∗(𝑧∗ − ℎ∗(𝑟))|
= 𝑒𝑧̂ − 𝜖

𝜕ℎ

𝜕𝑟
𝑒𝑟̂  

(A. 7) 

where ℎ∗(𝑟) is dimensional interfacial surface height as a function of the radial coordinate, 

which is subject of our interest as it decides the final evolution of interfacial surface. ℎ∗(𝑟) is 

nondimensionalized by scale parameter 𝑧𝑐. Substituting Equations (A. 5) & (A. 6) in Equation 

(4) and scaling the dimensional quantities appropriately results in the non-dimensional normal 

stress balance equation as follows, 

 
− 𝑝 + 𝑂(𝜖2)   =

𝜖3𝛾∗

𝜇𝑈𝑅
(
𝜕2ℎ

𝜕𝑟2
) 

(A. 8) 

The surface tension 𝛾∗ can be assumed to vary linearly with temperature and is given by [23], 

 𝛾∗ = 𝛾0 − (𝜕𝛾
∗/𝜕𝑇∗)(𝑇∗ − 𝑇𝑙)  

      = 𝛾0 [1 −
(𝜕𝛾∗/𝜕𝑇∗)𝜃Δ𝑇

𝛾0
]   (A. 9) 

As there is no significant effect of (𝜕𝛾∗/𝜕𝑇∗)𝜃Δ𝑇/𝛾0 term in final solution [23], it can be 

neglected. Using capillary number defined as 𝐶𝑎 = 𝜇𝑈𝑅/𝜎0 and parameter 𝛿 = 𝐶𝑎/𝜖3, 

nondimensional Equation (A. 7) is rewritten as follows,  

 
𝑝 = −

1

𝛿
(
𝜕2ℎ

𝜕𝑟2
) 

(A. 10) 

Interfacial tangential stress balance  

 

On the same lines of normal stress balance, the tangential stress balance in Equation (5) can be 

normalized, wherein, the unit vector in the tangential direction at of the curved surface is given 

by 

 𝑡̂ = 𝑒𝑟̂ + 𝜖
𝜕ℎ

𝜕𝑟
𝑒𝑧̂ 

(A. 11) 
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where, <𝑒𝑟̂ , 𝑒𝑧̂ > are the unit vectors in the 𝑟 and 𝑧 directions. Equation (5) is then non-

dimesionalized using Equations (A. 1), (A. 6) and (A. 11), non-dimensional normal stress 

balance equations is given by,  

 𝜕𝑢𝑟
𝜕𝑧

+ 𝑂(𝜖2) =
𝜖(𝜕𝛾∗/𝜕𝑇∗)𝛥𝑇

𝜇𝑈𝑅
[
𝜕𝜃

𝜕𝑟
+
𝜕𝜃

𝜕𝑧

𝜕ℎ

𝜕𝑟
] (A. 12) 

 

Heat flux boundary condition 

 

The incident laser beam is modelled as heat flux applied on top surface of material. This is given 

in Equation (6) and is non-dimensionalised as,  

 

  (−𝜖2
𝜕ℎ

𝜕𝑟
)
𝜕𝜃

𝜕𝑟
+
𝜕𝜃

𝜕𝑧
= 𝑞 (A. 13) 

This also results in a characteristic flux scale, 𝑞𝑐 = 𝑘Δ𝑇/𝑧𝑐 that is used to non-dimensionalize 

the incident Gaussian flux in Equation (7). The resulting non-dimension flux, 𝑞, is given by,  

 
𝑞 = [

4𝛼𝑃𝑧𝑐

𝑘𝛥𝑇 𝜋𝑅𝑏
2] 𝑒

(−
2𝑟∗

2

𝑅𝑏
2 )

= 𝐶𝑒(−8𝑟
2)  

 

(A. 14) 

wherein 𝑙𝑐 = 2𝑅𝑏 is used as the chanracteristic value in the 𝑟-direction.  
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Appendix B. Thin film solution of surface height  

 

 

The leading order temperature solution is arrived simply by integrating Equation (19). This 

solution is given in Equation (27). Similarly, Equation (20) can be integrated to get a general 

solution for the leading order velocity term, 𝑢𝑟
(0)

 as,   

 
𝑢𝑟
(0)
=
𝜕𝑝(0)

𝜕𝑟

𝑧2

2
+ 𝐹𝑧 + 𝐺 

(B. 1) 

The constant 𝐹 and 𝐺 can be solved for by imposing (i) no-slip boundary condition at melt-front 

and (ii) interfacial tangential stress balance condition. There are re-written as follows for ease fo 

reading, 

 
@𝑧 = 𝑓(𝑟); 𝑢𝑟

(0)
= 0  ⇒ 0 =

𝜕𝑝(0)

𝜕𝑟

𝑓(𝑟)2

2
+ 𝐹 𝑓(𝑟) + 𝐺 

(B. 2) 

 
@𝑧 = ℎ(𝑟); 

𝜕𝑢𝑟
(0)

𝜕𝑧
= (

𝜕𝜃(0)

𝜕𝑟
+
𝜕ℎ

𝜕𝑟
 
𝜕𝜃(0)

𝜕𝑧
) 

(B. 3) 

Thus, Equation (B. 1) results in Equation (28), wherein the pressure gradient is given by 

Equation (30) and is re-written here for convenience.  

 
𝜕𝑝(0)

𝜕𝑟
=

𝐴 (𝑓(𝑟) −
ℎ
2
)

(−
ℎ2

3
−
𝑓(𝑟)2

2
+ ℎ𝑓(𝑟))

 
 

(B. 4) 

Finally, after differentiating normal stress balance condition Equation (22) with respect to 𝑟-

coordinate gives, 

 𝜕𝑝(0)

𝜕𝑟
= −

1

𝛿
(
𝑑3ℎ

𝑑𝑟3
) 

(B. 5) 

Substituting for 𝜕𝑝(0)/𝜕𝑟 in Equation (30) results in a third order differential equation in surface 

height ℎ(𝑟) (as shown in Equation (31)), 

 
𝑑3ℎ

𝑑𝑟3
=
𝛿 [ 𝑞′(𝑟)(ℎ − 𝑓(𝑟)) + 𝑞(𝑟)(−𝑓′(𝑟)) +

𝑑ℎ
𝑑𝑟
 𝑞(𝑟)] (𝑓(𝑟) −

ℎ
2
)

(−
ℎ2

3
−
𝑓(𝑟)2

2
+ ℎ𝑓(𝑟))

 
(B. 6) 

Analytical solution to Equation (B. 6) cannot be obtained. However, in the limit of 𝜖 ≪ 1, the 

deformation is small enough to obtain an approximate solution in the form of, 

 ℎ(𝑟) = ℎ(0)(𝑟) + 𝜖ℎ(1)(𝑟) + 𝜖2ℎ(2)(𝑟)+..   (B. 7) 

 

By substituting Equation (B. 6) in Equation (B. 7), we have, 
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𝑑3ℎ(0)

𝑑𝑟3
+ 𝜖

{
 
 

 
 
𝑑3ℎ(1)

𝑑𝑟3
−
𝛿 [ 𝑞′(𝑟) (ℎ(0) − 𝑓(𝑟)) + 𝑞(𝑟)(−𝑓′(𝑟)) +

𝑑ℎ(0)

𝑑𝑟
 𝑞(𝑟)] (𝑓(𝑟) −

ℎ(0)

2
)

(−
ℎ(0)

2

3
−
𝑓(𝑟)2

2
+ ℎ(0)𝑓(𝑟))

}
 
 

 
 

+ 𝑂(𝜖2) = 0 

(B. 8) 

where, ℎ(0) is given by, 
𝑑3ℎ(0)

𝑑𝑟3
= 0.  

Assuming a generation solution of ℎ(0)(𝑟) = 𝑐1𝑟
2 + 𝑐2𝑟 + 𝑐3 and imposing the boundary condition 

that the surface height does not change at the endges of the meltpool, i.e., ℎ(0)(0.5) =

ℎ(0)(−0.5) = 1, results in a 𝑐1 = −𝑐2,    𝑐3 = 1. 

Because there is no change in fluid mass or density, a constant-volume integral condition can be 

imposed within the melt pool as, i.e., ∫ ℎ(0)
0.5

−0.5
𝑑𝑟 = 1. This yields, 𝑐1 = 𝑐2 = 0. Therefor, the leading 

order trivial solution is given by,  

 ℎ(0)(𝑟) = 1 (B. 9) 

Subsequently, the governing equation for ℎ(1)(𝑟) from Equation (B. 8) can be written as,  

 𝑑3ℎ(1)

𝑑𝑟3
= 6𝛿𝐶𝑒−8𝑟

2
[16𝑟(1 − 𝑓(𝑟)) + 𝑓′(𝑟)] 

(𝑓(𝑟) − 0.5)

(3𝑓(𝑟)2 − 6𝑓(𝑟) + 2)
 

(B. 10) 

Although a close form solution for Equation (B. 10) does not exting, it can be numerically solved 

by mposing the same boundary conditions as those for ℎ(0)(𝑟), i.e. ℎ(1)(−0.5) = ℎ(1)(0.5) = 1 and 

∫ ℎ(1)
0.5

−0.5
𝑑𝑟 = 0. 

Finally, the leading order and the first order surface height values can be combined using in (B. 

7) and ignoring higher order terms, the evolved surface geometry in pLSM can be predicted.  


