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A Two-stage Framework for Automated Operational Modal Identification 
 

Abstract: Automated operational modal analysis (OMA) is attractive and has been extensively used to 

replace traditional OMA, which involves much empirical observation and engineers’ judgment. However, 

the uncertainties on modal parameters and spurious modes are still challenging to estimate under the field 

conditions. For addressing this challenge, this research proposed an automated modal identification 

approach. The proposed approach consists of two steps: (1) modal analysis using covariance-driven 

stochastic subspace algorithm (SSI-cov/ref); (2) automated interpretation of the stabilization diagram. An 

additional uncertainty criterion is employed to initially remove as many spurious modes as possible. A 

novel threshold calculation for clustering is proposed with incorporating uncertainty of modal parameters 

and the weighting factor. An improved self-adaptive clustering with new distance calculation is used to 

group physical modes, followed by the final step of robust outlier detection to select outlying modes. The 

proposed automated approach requires minimum human intervention. Two field tests of the footbridge and 

a post-tensioned concrete bridge are used to verify the proposed approach. A modal tracking was used for 

continuously measured data for demonstrating the applicability of the approach. Results show the proposed 

approach has fairly good performance and be suitable for automated OMA and long-term health monitoring.  

Keywords: Operational modal analysis; Automated interpretation; Uncertainty criterion; Threshold 

calculation; Clustering; Minimum human intervention; Long-term health monitoring 

 

 

1. Introduction 

Over the last few decades, long-term structural health monitoring (SHM) using vibration 

responses has been applied to civil infrastructures such as bridges and buildings (Chen & Ni 2018). 

It is widely recognized that continuous monitoring is useful in tracking changes in dynamic modal 

parameters: frequencies, mode shapes, and damping ratios. In particular, operational modal 

analysis (OMA) is paid attention to because it can be implemented efficiently, economically, and 

safely, avoiding interruption to the normal operation of observed structure and requiring no 

artificial loadings (Brownjohn et al. 2010). Therefore, only ambient excitation (i.e., wind and 

traffic) is used to identify dynamic modal parameters by measuring vibration responses. Moreover, 
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dynamic modal parameters are beneficial for: (1) finite element model updating (Zeng & Kim 

2020); (2) vibration-based damage detection (Honfi et al. 2020); (3) real-time alarm systems for 

bridges and buildings (Chen et al. 2011). It can be incorporated with maintenance systems to 

observe variations of modal parameters over time and track abnormality to prevent disastrous 

failure at an early stage. However, it requires a huge amount of recorded data and data analysis in 

a short amount of time. Therefore, it is labor-intensive, even impractical, to process massive 

measured data and identify modal parameters by manual intervention and engineers’ experience. 

Much user intervention on a large amount of vibration data can be an obstacle in a real application. 

For overcoming this, it is essential to have an automated evaluation of structural conditions in 

almost real-time.  

In the last decades, there are many researches focusing on the development of automated OMA 

techniques. Generally, OMA techniques can be categories into two groups: direct methods and 

indirect methods. Direct methods directly measure vibration responses of observed structures to 

identify modal parameters, requiring networks of sensors installed on the target structures. Many 

system identification algorithms have been developed to be compatible with direct methods, such 

as stochastic subspace identification (SSI) (Cabboi et al. 2017), eigensystem realization algorithm 

(ERA) (Yang et al. 2019), poly-least squares complex frequency domain method (Poly-MAX) 

(Magalhães et al. 2009, May), fast Bayesian FFT method (Au 2011), etc. On the other hand, 

indirect methods are referred to as the primary use of mobile sensors installed inside in the passing-

by vehicles to perform modal identification. No sensors are needed to be deployed on structures 

as the indirect methods. Recently, much progress has been made in terms of system identification 

using networks of mobile sensors. For example, mass-modeled vehicle scanning method for 

bridges (Yang et al. 2004, Yang & Sun 2020), hybrid sensors based method (Marulanda et al. 
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2017), extended structural identification using expectation optimization (STRIDEX) (Matarazzo 

& Pakzad 2018), matrix completion method (Sadeghi Eshkevari et al. 2020), crowdsensing based 

method (Matarazzo et al. 2020). A detailed literature review on direct and indirect methods can be 

found (Malekjafarian et al. 2015, Yang & Yang 2018).   

The present work belongs to the class of direct methods. Vibration response is measured 

from sensors installed on investigated structures. Among various system identification algorithms 

in the direct methods, SSI has been widely applied to various structures to identify modal 

parameters. It offers accurate identification results and simple implementation, which are 

important attributes accounting for its popularity. In addition, due to SSI’s explicit mathematical 

nature, SSI tends to be more suited for automated modal identification. However, the major 

challenge in SSI is spurious modes inevitably appear in outputs.  

Commonly, spurious modes consist of pure mathematical (i.e., non-physical) and noise 

modes (Reynders et al. 2008). The most common strategy to deal with this challenge is to construct 

a stabilization diagram, a plot of model order vs. frequency for an extensive range of model order. 

In the stabilization diagram, physical modes are referred to as those poles that cross most of the 

model orders consistently. Therefore, physical modes should be graphically recognized and 

homogeneously distributed along vertical alignments in a stabilization diagram (Cabboi et al. 

2017). On the contrary, spurious modes appear in the stabilization diagram in a scattered way. 

Spurious modes are eliminated in a manual analysis depending on empirical discovery and 

engineers’ judgment, which is subjective, time-consuming, and leads to incorrect modal 

identification. For addressing this issue, most strategies are proposed in the literature to interpret 

stabilization diagram and remove spurious modes automatically. Among these methods, the 

process can be divided into three steps: 
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(1) Step 1: Apply the modal validation criteria to eliminate as many spurious modes as possible 

in the stabilization diagram 

(2) Step 2: Group modes with similar characteristics, i.e., frequencies, damping ratios, and 

mode shapes by clustering strategies  

(3) Step 3: Detect outliers in each cluster to improve the accuracy of modal parameters and 

select representative of each cluster 

Over the last decades, several methods aiming at minimizing human involvement in the 

interpretation of the stabilization diagram have been developed. For example, in step one, many 

modal validation criteria are proposed to detect spurious modes in the stabilization diagram. These 

criteria can be divided into hard criteria, which yield a binary answer, and soft criteria, which yield 

a certain range of values. Reynders et al. (2012) tthoroughly reviewed and summarized hard and 

soft criteria. However, conventional modal validation criteria limitedly remove a certain number 

of spurious modes; many spurious modes remain in the stabilization diagram that affects parameter 

estimates' accuracy and imposes a computational burden to the following step (clustering process).  

In step 2, various clustering strategies are widely employed in group modes with similar 

characteristics. For example, hierarchical clustering has been extensively applied by many 

researchers and is considered the most natural approach (Reynders et al. 2012, de Almeida 

Cardoso et al. 2017, Sarlo et al. 2018). Hierarchical clustering has a significant advantage of 

allowing a good selection of physical clusters. However, the main drawbacks include a user-

defined tree cutoff distance, which can be considered a significant human intervention, resulting 

in computationally demanding. Furthermore, the hierarchical clustering is sensitive to outliers. 

Another popular clustering strategy is partitioning methods, often referred to as K-means 

clustering (Neu et al. 2017, Yang et al. 2020). K-means clustering has the benefit of being fast 
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processing. However, the number of clusters has to be predefined, and it is sensitive to cluster 

seeds (initial centroid). By merging the benefits of hierarchical clustering and K-means clustering 

and overcome some of their limitations, self-adaptive clustering is recently proposed (Cabboi et 

al. 2017, Fan et al. 2019). The self-adaptive clustering has outstanding features: 1) simple 

implementation; 2) fast computation; 3) No need for the number of clusters; 4) Clustering 

threshold is iteratively trained during the clustering process.  

While it still starts with a user-defined clustering threshold, which requires some level of 

human intervention. Some methods are proposed to automatically calculate clustering threshold 

based on statistical properties, i.e., mean and standard derivation or median, of the distance 

between two closed poles in the stabilization diagram (Magalhães et al. 2009, May, Reynders et 

al. 2012, Sun et al. 2017, Yang et al. 2019). However, these methods do not consider uncertainty 

on modal parameters and inaccuracy of mode shapes. In practice, modal parameters' uncertainty 

is inevitable due to modeling error and measurement noise; it can be a more reasonable approach 

to consider uncertainty when calculating the clustering threshold. Also, measurement on mode 

shapes is less accurate than that on frequencies. Thus, a weighting factor can reduce the inaccuracy 

of mode shape difference on threshold calculation (Boroschek & Bilbao 2019).  

In step 3, some outliers are undesirably involved in identified physical clusters; this 

phenomenon is pronounced in a damping ratio with a scattered nature. Most outlier detection 

techniques need to define limit bounds, such as box-plot outlier detection (Yang et al. 2019, Wu 

et al. 2020). A bound-free outlier detection method is needed to improve the accuracy of parameter 

estimations. In summary, challenges to the current automated interpretation of the stabilization 

diagram are listed as follows: 
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1. Conventional modal validation criteria are not efficient enough, causing computational 

cost in the clustering process. 

2. The clustering threshold and distance calculation in the clustering process does not 

consider the uncertainty of parameters and the weighting factor. 

3. Uncertainties on identified modal parameters and physical clusters are unavailable. 

4. Outlier detection requires to define limit bounds. 

This paper attempts to address the aforementioned challenges. A two-stage framework for 

automated operational modal identification is proposed. Figure 1 shows the flowchart of the 

proposed framework: (1) modal analysis using covariance-driven reference-based SSI (SSI-

cov/ref); (2) two-stage automated interpretation of stabilization diagram. SSI-cov/ref is adopted to 

perform modal analysis and construct a stabilization diagram. Subsequently, a two-stage 

automated analysis for the stabilization diagram is carried out. At the pre-processing stage, besides 

applying conventional modal validation criteria, such as damping ratio check and modal 

complexity check, to eliminate spurious modes, a new supplementary criterion: uncertainty 

criterion, which is applied for further removal of spurious modes. At the clustering stage, a novel 

threshold calculation, which incorporates the uncertainty of modal parameters and weighting 

factor, is proposed. An improved self-adaptive clustering with new distance calculation is then 

employed to group modes with similar characteristics and identify physical clusters. Finally, robust 

outlier detection is implemented to exclude outliers. The average of each cluster's elements is 

chosen as representative frequency, damping ratio, and mode shape.  

Two field tests were used to evaluate the proposed approach. The first field example is the 

Dowling Hall footbridge located at Turfs University, a two-span steel frame bridge with 144 ft (44 

m) long and 12 ft (2.7 m) width having a reinforced concrete deck. The second field test example 
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is the Z24 bridge located in Switzerland, a post-tensioned concrete bridge with a main span of 100 

ft (30 m) and two sides span of 46 ft (14 m), which is considered as a benchmark in the research 

community. 

 
Figure 1. A framework of the proposed automated approach 

This paper is organized as follows: In Section 2, the background of SSI-cov/ref is briefly 

introduced. In Section 3, a two-stage approach for proposed automated modal identification is 

presented. In Section 4, the capability of the proposed approach is validated by two field tests 

along with the modal tracking results. Finally, the conclusion is presented in Section 5. 

2. Background of SSI  

SSI has been extensively spread over the field of OMA during the past few decades 

accounting for its quick implementation and high accuracy (Peeters 2000). In this paper, 

covariance-driven reference-based SSI (SSI-cov/ref) is employed to reduce the dimensions of the 

output matrix and computational cost. Theoretical fundamentals in detail of SSI-cov/ref is fully 

described in the literature (Peeters & De Roeck 1999). Briefly, SSI-cov/ref is developed based on 
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assuming a linear and stationary N degree of freedoms (DOFs) system with a dynamic motion 

characterized by the discrete-time state-space equation: 

𝑥!"# = 𝐴𝑥! + 𝜔! 
𝑦! = 𝐶𝑥! + 𝑣! (1) 

where subscript 𝑘 denotes time step; 𝐴 ∈ ℛ$×$ denotes system state matrix with (𝑛 = 2𝑁); 𝐶 ∈

ℛ&×$ is an output matrix, 𝑙 is defined as the number of measured signals; 𝑥! ∈ ℛ$×# and 𝑦! ∈

ℛ&×# are discrete-time state vector and measured response vector, respectively; 𝜔! ∈ ℛ$×# is a 

process white noise vector. 𝑣! ∈ ℛ&×# is the measurement of the white noise vector. It has been 

shown in (Peeters & De Roeck 1999) that modal parameters can be identified from system matrices 

𝐴 and 𝐶. 

Two main SSI preparation parameters significantly affect the accuracy of identification 

results: (1) model order; (2) time lag, 𝑖. Unfortunately, the value of model order and 𝑖, which yield 

the best identification results are never known (Ubertini et al. 2013, Fan et al. 2019). In practice, 

it is necessary to over-specify model order to cover weakly-excited modes, but spurious modes 

increase with increasing model order. These spurious modes must be singled out in the subsequent 

procedure. On the other hand, the value of 𝑖  determines the size of the response covariance 

function. The smaller 𝑖 may fail to identify the fundamental mode, but the larger value of 𝑖 yields 

many spurious modes and increases computational time. The value of 𝑖 may be chosen at least 

estimated value as follows (Fan et al. 2019): 

𝑖 ≥ 𝑇'/𝑡 (2) 

where 𝑇' denotes fundamental period, (unit: second); 𝑡 denotes sampling interval, (unit: second). 
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3. A two-stage automated modal identification  

 
Figure 2. A flowchart of the proposed two-stage approach of automated modal identification 

In this section, a two-stage framework for automated modal identification is proposed. Section 

3.1 presented the pre-processing stage for automated identification, including conventional modal 

validation criteria (Section 3.1.1) and a new additional uncertainty criterion (Section 3.1.2). 

Subsequently, the clustering stage is introduced in Section 3.2. A newly proposed threshold 

calculation for clustering is provided in Section 3.2.1. An improved self-adaptive clustering is then 

employed to determine physical clusters in Section 3.2.2. Finally, robust outlier detection is 

performed to improve the accuracy of modal parameter estimates in Section 3.2.3. The pseudocode 

of the proposed automated framework is also provided in Appendix A. The flowchart of the entire 

automated process in detail is presented in Figure 2. 
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3.1. The pre-processing stage  

A full stabilization diagram looks very complex and contains the spurious modes. At the 

pre-processing stage, different validation criteria are utilized to initially screen spurious modes, 

clarifying the stabilization diagram and consequently accelerating automated interpretation of the 

stabilization diagram.  

3.1.1. Modal validation criteria  

First of all, for civil engineering structures, a negative or high damping ratio hardly appears 

in practice. Therefore, a damping ratio with less than 0 and higher than 10% is discarded (Cabboi 

et al. 2017, de Almeida Cardoso et al. 2017, Fan et al. 2019). On the other hand, two popular 

modal validation criteria are used to measure the complexity of mode shape vectors, namely, 

modal phase collinearity (MPC) and mean phase deviation (MPD). These two indicators have been 

utilized by various researchers to distinguish physical modes from spurious modes (Reynders et 

al. 2012, de Almeida Cardoso et al. 2017, Neu et al. 2017, Sun et al. 2017). The real (Re) and 

imaginary (Im) part of mode shapes display a linear correlation, which can be assessed by the MPC 

indicator. The value of MPC for the 𝑡th mode shape, 𝜙(, is expressed as (Reynders et al. 2012): 

MPC(	𝜙() =
=Re(	𝜙@()=

) + 1
𝛼 ReC	𝜙

@(*DIm(	𝜙@(*)(2(𝛼) + 1) sin) 𝛾 − 1)

=Re(	𝜙@()=
) + =Im(	𝜙@()=

)  (3) 

The 𝑘(+component of 𝜙@( is given: 𝜙@(,! = 𝜙(,! −
-!"#
$ .%,!
/

, 𝐿 is the number of components in 𝜙(. 

𝛼 =
=Im(	𝜙@()=

) − =Re(	𝜙@()=
)

2ReC	𝜙@(*DIm(	𝜙@(*)
 (4) 

𝛾 = arctan	(|𝛼| + sign(𝛼)S1 + 𝛼)) (5) 
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MPC values are dimensionless; they lie within the range of 0 and 1. MPC value closer to 1 indicates 

that mode shape, 𝜙(, is more collinear and ‘monophase,’ which is usually regarded as a physical 

mode. 

With regard to MPD, it represents the phase degree of each identified mode shape vector. 

The value of MPD/90 lies between 0 and 1. A smaller quantity of MPD implies that mode shape 

vector is more likely to be physical. A detailed discussion can be found in (Reynders et al. 2012). 

For the 𝑡th mode shape, 𝜙(, the mean phase (MP) is defined as: 

MP(𝜙() = arg0min	(
‖Im(	𝜙() − tan 𝜃 Re(	𝜙()‖)

1 + tan 𝜃 ) (6) 

where 𝜃 is phase angle in degree, Equation (6) can be solved by the least square as: 

MP(𝜙() = arctan V
−𝑉#)
𝑉))

X , 𝑈𝑆𝑉* = [Re(	𝜙()	Im(	𝜙()] (7) 

where 𝑈𝑆𝑉* is singular value decomposition, 𝑉#) and 𝑉)) denotes elements (1,2) and (2,2) of 𝑉   

matrix, respectively. Then, MPD can be determined as: 

MPD(𝜙() =
Σ!1#/ 𝜔!arccos	(ReC	𝜙(,!D𝑉)) − ImC	𝜙(,!D𝑉#))

Σ!1#2 𝜔!
 (8) 

where 𝜔! is a weighting factor that equals to the 𝑘(+component of the 𝑡th mode shape, 𝜙(. 

The selection of threshold values of MPC and MPD depends on measurement conditions 

and dynamic vibration properties. For a structure with clear linear behavior and high signal-to-

noise ratio, the threshold of MPC and MPD can be conservatively chosen as 0.7 and 0.3, which 

implies that modes whose MPC are less than 0.7 and MPD exceed 0.3 are regarded as spurious 

modes. Conversely, the threshold of MPC and MPD are chosen as 0.3 and 0.7 in the case of 

structures with complex behavior (Cabboi et al. 2017, Fan et al. 2019). Two representative field 

tests with complex measurement conditions are used to validate the methods. Thus, 0.3 and 0.7 

are selected as a threshold for MPC and MPD, respectively, in this study. 
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3.1.2. Uncertainty criterion 

Although conventional modal validation criteria remove certain spurious modes, many 

spurious modes remain in the stabilization diagram resulting in slowing down the following 

process (herein clustering process). More effective validation criteria should be adopted to delete 

as many spurious modes as possible. This study employed supplementary uncertainty criteria at 

the pre-processing stage to further eliminate spurious modes. 

Uncertainty on modal parameters by SSI mainly arise from five sources: (1) finite number 

of data sample; (2) unmeasured excitation and measurement noise modeled as white noise; (3) 

assumption of linear and stationary behavior ; (4) imperfect filter of data; (5) incorrect choice of 

model order (Reynders et al. 2008). Reynder et al. (2008) initially developed the uncertainty 

computation based on the propagation of first-order perturbation from measured data to modal 

parameters. Also, some validation and application are summarized in Reynders et al. (2016). Later, 

Döhler et al. (2013) significantly improved the computational efficiency of uncertainty at multiple 

model orders, which has been applied in various structures (Döhler et al. 2013, Mellinger et al. 

2016). Uncertainty quantification can provide information to measure the accuracy of identified 

modal parameters. It is only valid when the uncertainty of physical modes is smaller than those of 

spurious modes. Based on this information, coefficient of variation (COV) (standard 

derivation/mean) with respect to frequency may be used to distinguish physical modes from 

spurious modes (Döhler & Mevel 2013, Nord et al. 2019). Some research has introduced 

uncertainty features in the stabilization diagram (Döhler & Mevel 2013, Mellinger et al. 2016, 

Nord et al. 2019), but uncertainty criterion is not used or does not attribute to further automated 

modal procedure. General procedures of uncertainty computation are summarized as follows: 
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• Input parameters: the number of block rows in Hankel matrix, 𝑞; the amount of data 

blocks,𝑛3; the range of model order, (𝑛4'$, 𝑛456); 

• Compute Hankel matrix, 	𝐻 , system state matrix, 𝐴  and output matrix, 𝐶  in 

Equation (1), as well as observability matrix, 𝑂 , based on SSI-cov/ref, then 

compute transform matrix, 𝑇 

• Compute covariance and sensitivity of subspace matrix from SSI-cov/ref, given by 

Σc7'() and 𝐽8,7, respectively 

• Compute sensitivity and covariance of system state matrix, 𝐴, and output matrix, 𝐶 

from SSI-cov/ref, given by 𝐽9,8, 𝐽:,8 and Σ9,: ,  respectively 

• For each mode 𝑖 at successive modal order, compute sensitivity matrix: 𝐽;*,9, 𝐽<*,9 

and 𝐽.*,9. Finally, compute covariance of modal parameters, frequency,	𝑓', damping 

ratio, 𝜉'; mode shape, 𝜙': cov hi
𝑓'
𝜉'
j , i

𝑓=
𝜉=
jk and cov hiRe(𝜙')lm(𝜙')

j , m
Re(𝜙=)
lm(𝜙=)

nk 

Comprehensive derivation for uncertainty estimation can be found in Döhler and Mervel  

(2013). When the COV in the frequency is chosen as a threshold (herein, 2%), modes with the 

COV of frequency larger than the threshold will be discarded. 

3.2. Clustering stage  

The clustering stage is sequentially performed to assemble modes based on similarities in 

modal parameters in this section. A novel method is proposed to calculate the clustering threshold; 

an improved self-adaptive clustering is then used to identify physical clusters. Finally, robust 

outlier detection is implemented, and each representative of modal parameters is determined. 
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3.2.1. Automated computation of clustering threshold 

Typically, two kinds of thresholds are usually adopted for clustering: (1) static threshold; (2) 

automatically computed threshold. A static threshold relies on the engineers’ judgment. Also, 

during long-term health monitoring, a well-defined static threshold may be suitable for some initial 

datasets; however, there is no guarantee that the static threshold will be keeping appropriate for all 

datasets. This is more challenging in the case of handling massive datasets. In this study, a novel 

method is proposed to calculate the clustering threshold based on possible physical modes at the 

pre-processing stage. First, the mutual distance between the two modes is defined as:  

distance =
p𝐹' − 𝐹=p

max	(𝐹' , 𝐹=)
+ 𝜔(1 −

(Φ'
*Φ=))

(Φ'
*Φ')(Φ=*Φ=)

) (9) 

where 𝐹' = 𝑓' + 2𝜎;* , 𝐹= = 𝑓= + 2𝜎;+ , 𝑓'  and 𝑓=  are 𝑖(+  and 𝑗(+  identified frequency at a pre-

processing stage, respectively; 𝜎;*  and 𝜎;+  are corresponding standard derivation, respectively; 

Φ' = 𝜙' + 2𝜎.* , Φ= = 𝜙= + 2𝜎.+ , 𝜙'  and 𝜙=  are 𝑖(+  and 𝑗(+  mode shapes at a pre-processing 

stage, respectively; 𝜎.*  and 𝜎.+  are corresponding standard derivation, respectively. 𝜔  is a 

weighting factor of mode shape difference, 𝜔 =
(?,*"?,+)

)
. 

Equation (9) does not consider the damping ratio difference because it is difficult to 

accurately measure the damping ratio in practice. In addition, there is a high probability of two 

different modes with a similar damping ratio. A weighting factor, 𝜔, in Equation (9) represents 

different participation for frequency difference and mode shape difference. Generally, mode shape 

is measured with limited sensors, yielding missing components of mode shape; frequency is 

usually measured with an accurate level. Therefore, the use of 𝜔  can reduce the effect of 

measurement inaccuracy of mode shapes on distance calculation (Boroschek & Bilbao 2019). An 

uncertainty quantification using standard derivation is used to form a weighting matrix for Finite 
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Element Model Updating (Lam et al. 2014, Yang & Lam 2018). Similarly, this work adopted the 

average of the standard derivation of mode shapes to define 𝜔. Furthermore, as uncertainty on 

modal parameters is inevitable in practice, it is more reasonable to incorporate uncertainty in 

distance calculation. Here, two standard derivations are considered in Equation (9).  

At the next model order, the mutual distance between one mode and all other modes is 

computed by Equation (9), then the minimum distance is determined. Assuming 𝑛 modes have 

been identified at the pre-processing stage, each mode has its minimum mutual distance with 

forming a minimum distance vector, 𝑉 = (𝑑4'$# , 𝑑4'$) , 𝑑4'$A ⋯𝑑4'$$ ), (𝑛 denotes the number of 

modes, 𝑑4'$ denotes the minimum distance between one mode and all other modes). Finally, the 

sum of mean and two standard derivations of 𝑉 are used to compute the clustering threshold, �̅� 

(Reynders et al. 2012, Sarlo et al. 2018): 

�̅� = �̅� + 2𝜎z (10) 

Typically, modal features are usually assumed to follow Gaussian normal distribution, such as 

frequency, damping ratio and mode shape (MAC value) (Au 2011). In this study, Equation (9) 

defines modal distance which is the sum of frequency difference and mode shape difference 

between two modes. Therefore, modal distance turns out to be Gaussian normal distribution. Two 

standard derivations in Equation (10) guarantee the distance between two modes should be 

captured within a 95% confidence interval with the assumption of Gaussian distribution. 

It is worth mentioning that conventional threshold calculation for clustering does not 

consider the uncertainty of modal parameters and weighting factor. A newly proposed threshold 

calculation in Equation (9) incorporates both uncertainty and weighted factor, which is considered 

a contribution of this study to the advancement of automated OMA. 
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3.2.2. Mode clustering 

  Mode clustering starts with a calculated threshold in Section 3.2.1. to group individual 

physical modes with similar modal characteristics. This study adopts self-adaptive clustering 

(Cabboi et al. 2017) to accomplish automated process. But different from original Cabboi et al.’s 

work, a weighted distance with an uncertainty of modal parameters is proposed. The 𝑖th weighed 

distance at model order, 𝑛, is defined as: 

𝑑$,' = h
p𝐹@B − 𝐹$,'p

𝐹@B
k + 𝑐C1 −𝑀𝐴𝐶(Φ} B , Φ$,')D (11) 

where 𝐹@B = 𝑓~B + 2𝜎;C- , Φ}B = 𝜙@B + 2𝜎.D- , 𝐹$,' = 𝑓$,' + 2𝜎;.,* , Φ$,' = 𝜙$,' + 2𝜎..,* . 𝑓~B  and 𝜙@B  are 

mean frequency and mean mode shape at the 𝑧𝑡ℎ  cluster, respectively; 𝜎;C-  and 𝜎.D-  are 

corresponding mean standard derivation at the 𝑧𝑡ℎ cluster. 𝑓$,' and 𝜙$,' are the 𝑖𝑡ℎ frequency, and 

mode shape at model order, 𝑛, respectively; 𝜎;.,* and 𝜎..,* are corresponding standard derivation, 

respectively. 	𝑀𝐴𝐶  represents the modal assurance criteria (Allemang & Brown 1982). 𝑐  is a 

weighting factor to reduce the effect of inaccurate mode shape on distance calculation (𝑐 =

?,/-"?,.,*
)

). 

Figure 3. The flowchart of an improved self-adaptive clustering 
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Equations. (9) and (11) are similar; both consider the uncertainty of parameter estimates and the 

importance of mode shape difference. Figure 3 shows the flowchart of an improved clustering 

strategy. A more detailed introduction of self-adaptive clustering is referred to Cabboi et al. (2017).  

3.2.3. Robust outlier detection 

The number of physical poles in the stabilization diagram has trends with the increase of 

model order, exhibiting variability of modal estimates (Neu et al. 2017). The phenomenon more 

frequently appears in the damping ratio because the damping ratio has a high scattered nature. 

Outlier detection is applied to penalize undesirable modes in the final clusters for reducing 

identification variance from different measurements. In this study, robust outlier detection based 

on the minimum covariance determinant (MCD) is employed to identify outlying values from 

physical clusters as described in Hubert et al. (2017). A robust distance (RD) is defined as: 

RD(𝑥) = d(𝑥, �̂�E:F , ΣcE:F) (12) 

where observation sample, 𝑥,	is either frequency or damping ratio in a physical cluster in our case. 

�̂�E:F is the MCD estimates of location;  ΣcE:F is the MCD covariance estimate. Explicit derivation 

and introduction can be found in Hubert et al. (2017). 

A robust MCD estimator based on Equation (12) is very powerful to flag outliers, as RD 

in Equation (12). It is not sensitive to diagnostic tools' masking effect compared to statistical 

distance and Mahalanobis distance (Cerioli 2010). Also, MCD has a high resistance to outliers and 

are more robust and efficient (Hubert et al. 2017). Furthermore, MCD has the advantage of 

requiring no user-defined threshold, like a box-plot method that needs to define limit bounds (Sarlo 

& Tarazaga 2019). Robust outlier detection in this work can be done by the function ‘robustcov’ 

in MATLAB.  
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After outlier removal, the average frequency, damping ratio, and mode shape in each 

physical cluster are taken as a representative. For evaluating the quality of each identified cluster, 

uncertainty on the 𝑧𝑡ℎ physical clusters is quantified by Euclidean norm of uncertainty on modal 

parameters: 

𝜎B = �(𝜎�;,B) + 𝜎�.,B) + 𝜎�<,B) ) (13) 

where 𝜎B is the standard derivation of the 𝑧𝑡ℎ clusters; 𝜎�;,B, 𝜎�.,B, and 𝜎�<,B are the average values 

of standard derivations of all frequencies, damping ratios, and mode shapes in the 𝑧𝑡ℎ clusters.  

4. Application 

In this section, the performance of the proposed approach is validated by two field tests on the 

bridge, namely, the Dowling Hall footbridge located at Turfs University in the U.S. and the Z24 

bridge benchmark located in Switzerland. The data are open sources, and many researchers used 

these data to test the algorithms in the research community.  

4.1. Application 1:  Steel frame footbridge 

Dowling Hall footbridge is located at Tufts University, as shown in Figure 4 (a). The bridge 

is a two-span steel frame bridge, 144 ft (44 m) long and 12 ft (2.7 m) wide, and has a reinforced 

concrete deck. A continuous health monitoring was designed and performed on Dowling Hall 

footbridge from January 2010 to May 2010. The layout of eight accelerometers is shown in Figure 

4 (b). More details of Dowling Hall footbridge's information can be found in Moser and Moaveni 

(2013). In this study, the first six modal characteristics are used as baseline results that are obtained 

from the literature (Moser & Moaveni 2011) to evaluate the performance of the proposed approach.
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 (a)   (b) 
Figure 4. Description of Application 1: (a) Dowling Hall footbridge; (b) Sensor layout 

(Moser & Moaveni 2011) 

The acceleration data used in this study are obtained from vertical measurement under 

ambient excitation collected in the first week at 1:00 P.M. on January 7th, 2010. The frequency 

range of interest is 0-30Hz. The sampling frequency is 128Hz. Preparation parameters for SSI-

cov/ref in this application are: 𝑖 = 60 , model order 𝑛 = 40~150 , reference sensor =

(1,2,3,4,5,6,7,8).  

4.1.1. Identification results 

The proposed approach described in Section 3 is utilized to analyze measured data. Figure 

5 (a)-(c) show modal identification results at the pre-processing stage. The singular value spectrum 

(appeared in the curves in Figure 5) is plotted below the stabilization diagram. The standard 

derivation (±𝜎) uncertainty bounds of the frequency are shown as horizontal bars. Figure 5 (a) 

displays all possible physical modes remaining in the stabilization diagram after applying 

conventional validation criteria, e.g., damping ratio check and modal complexity check. Figure 5 

(b) shows the stabilization diagram filtered by a supplementary uncertainty criterion. It is observed 

only using conventional validation criteria, the stabilization diagram still looks busy, including 

some scattered poles, which are spurious modes. However, uncertainty criterion can eliminate as 

many spurious modes as possible compared to conventional validation criteria, which will speed 
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up later automated processes. The pre-processing stage's identification results demonstrate that the 

uncertainty criterion is more effective than conventional validation criteria. 

  
(a)   (b) 

 
(c) 

          Figure 5. Identification results: (a) after conventional validation criteria; (b) after uncertainty 
criterion (c) after improved self-adaptive clustering  

The clustering stage then starts with a calculated clustering threshold using Equations. (9) 

and (10) based on the remaining modes in Figure 5 (b). The proposed method's calculated threshold 

in this example is 0.022, while without the weighting factor, 𝜔,it is 0.0488. It implies the stricter 

threshold by Equations. (9) and (10) that allows removing more spurious modes with keeping 

physical modes. Furthermore, the updated threshold by improved clustering with Equation (11) is 

0. 0086. Still, the original work (distance calculation without weighting factor) gives the updated 

threshold as 0.0304, indicating that the weighted distance tends to give a smaller value of the 
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updated threshold. The identified modes are more consistent and stable. It may be attributed to the 

use of 𝜔 can improve the accuracy of measured mode shapes by distance calculation. Figure 5 (c) 

shows the modal identification results after performing the improved self-adaptive clustering. It is 

observed that clustering procedures remove spurious modes, the stabilization diagram is clarified 

with only remaining stable modes (vertical alignments). The first six modes in the reported work 

(Moaveni & Behmanesh 2012) are used as a baseline for comparison, marked as M# to MG (A total 

of six clusters) in Figure 6. It is noted that MH and MG are closely spaced modes, which are a 

common challenge in the OMA. The robust outlier detection is to remove outlying frequencies and 

damping ratios. As seen in Figure 6 (b), damping ratios are tighter and more consistent.  

    
    (a)                                   (b) 

Figure 6. Damping ratio vs frequency: (a) before outlier detection; (b) after outlier detection 

 Table 1 presents identified frequencies and damping ratios along with the baseline data. Identified 

frequencies in this work agree well with those in the literature; the maximum relative difference 

(2.05%) is observed in the third mode. While larger variation is found in terms of damping ratio. 

It is because two tests were performed at a different time. Moaveni and Behmanesh (2012) reported 

baseline data, measured on April 4, 2009. In this study, measured data was collected on January 7, 

2010. When considered the effect of environmental variables such as temperature, it is not 

surprising to have these differences. The frequency is less sensitive to environmental effects than 

the damping ratio.  
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Table 1. Identification results 

Modes 
Frequency (Hz) Damping ratio (%) 

Baseline* The proposed approach Baseline* The proposed approach 
1st (M#) 4.63 4.63 1.0 0.8 
2nd (M)) 6.07 6.04 0.6 0.1 
3rd (MA) 7.07 7.21 0.7 0.6 
4th (MI) 8.90 8.95 0.3 0.1 
5th (MH) 13.13 13.24 0.8 0.1 
6th (MG) 13.56 13.46 1.1 1.1 

Note: *: Moaveni & Behmanesh, 2012;  

  
   (a)     (b) 

Figure 7.  error bar of frequency (left, ±	2𝜎) and damping ratio (right, ±	𝜎) 
   
  Table 2. Uncertainty of physical clusters 

No. cluster 1 2 3 4 5 6 
STD (%) 0.184 0.001 0.430 0.010 0.119 2.712 

  Note: STD denotes standard derivation 

The uncertainty on modal parameters and physical clusters are also investigated in this 

example. The frequency and damping ratio in each mode are plotted as an open circle overlapping 

the standard derivation (𝜎) error bar in Figure 7. And the uncertainty of modal frequencies is much 

smaller than those of damping ratios. It is often more difficult to accurately measure the damping 

ratio in practice. The uncertainty of identified physical clusters is also quantified by Equation (13) 

and shown in Table 2. And the uncertainty of the sixth cluster is much larger than those of others, 

suggesting it is more challenging to identify the sixth cluster because this cluster contains weakly-

excited and closely spaced modes. 
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Mode 1: Frequency=4.632Hz, 𝜉=0.808% Mode 2: Frequency=6.042Hz, 𝜉=0.069% 

  
Mode 3: Frequency=7.215Hz, 𝜉=0.631% Mode 4: Frequency=8.948Hz, 𝜉=0.056% 

  
Mode 5: Frequency=13.244Hz, 𝜉=0.117% Mode 6: Frequency=13.464Hz, 𝜉=1.113% 

  

Figure 8. Identified mode shapes by the proposed approach and ±2𝜎  uncertainty bounds (blue 
dashed lines) 

Overall, the proposed approach successfully identifies six modes under ambient vibration, 

as shown in Figure 8. The first six global mode shapes with corresponding uncertainties are 

presented; ±2𝜎 uncertainty bounds are plotted as blue dashed lines. Identified mode shapes have 

good agreement with those identified in the reported work (Moaveni & Behmanesh 2012). Modes 

3 and 4 are bending-torsional mode with evident rotational motion, while only vertical deformation 

is found on other modes. In addition, uncertainty bounds for all modes are narrow, which concludes 

that the identification of mode shapes is accurate. 

For continuous SHM, it is crucial to track the change of modal parameters over time. In 

this example, the proposed approach is applied to modal tracking with measured data collected at 

every 1:00 P.M. from January 5th to February 28th, in 2010 (total 55 datasets). The same 

procedures as the former data analysis are applied for modal tracking. As shown in Figure 9, solid 
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black lines indicate frequency estimates, and grey areas cover ±2 standard derivations. All six 

modes are identified and tracked for all datasets by the proposed approach. It is not surprising that 

frequencies varied over time, mainly because of environmental change and ambient excitation's 

randomness. The frequency at mode 6 has a relatively larger variation for two months, as this mode 

is not excited well and unstable to environmental change. The results illustrate the proposed 

approach can analyze massive datasets with minimum human intervention.  

Mode 1 Mode 2 

  
Mode 3 Mode 4 

  
Mode 5 Mode 6 

  
Figure 9. Identified frequency of modes 1-6 with two-month data. Black solid lines: frequency 

estimates; grey shaded areas: ±two standard derivations 
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4.1.2. Sensitivity analysis  

  
    (a)        (b) 

Figure 10. Frequencies at different parameters: (a) model order range sensitivity (fixed 𝑖 = 60); 
(b) time lag range sensitivity (fixed 𝑛456 = 100) 

Two preparation parameters in SSI, e.g., maximum model order, 𝑛456, and time lag, 𝑖, 

significantly affect identification results as described in Section 2. The influence of 𝑛456 and 𝑖 is 

investigated to demonstrate the proposed approach is robust to their choice. 𝑛456 and 𝑖 are varied 

from 70 to 160 and 30 to 120 in intervals of 10, respectively. As shown in Figure 10, identified 

frequencies are almost invariant to a different choice of 𝑛456  and 𝑖 , suggesting the proposed 

approach is robust and not sensitive to these two preparation parameters. It is very difficult to 

identify the best 𝑛456 and 𝑖 in practice (Ubertini et al. 2013, Neu et al. 2017). Thus, insensitivity 

to them allows to more conveniently perform automated OMA and continuous health monitoring.  

 
Figure 11. Frequencies at different COV threshold: (𝑖 = 60; 𝑛456 = 100) 
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On the other hand, a different choice of uncertainty threshold (COV of frequency) is utilized to 

evaluate its effect on identification results. The uncertainty threshold is varied from 1% to 5% in 

the interval of 1%. As shown in Figure 11, the proposed approach yields the same frequencies 

regardless of COV thresholds, indicating a COV threshold can be safely chosen in the range of 

1% ≤ COV ≤ 5%. 

4.2. Application 2:  Concrete box girder bridge 

 

 

                         (a)                                                                             (b) 
  Figure 12. Description of the Z24 bridge: (a) Front and Top view (Maeck & De Roeck 2003); (b)  

sensor layout (Döhler et al. 2013)  

The proposed approach is also applied to the Z24 bridge benchmark to validate its 

performance. The Z24 bridge was built in 1963 and located in Switzerland, serving to connect 

Koppigen with Utzenstorf and crossing over the A1 highway (See Figure 12 (a)). It is a post-

tensioned concrete box-girder bridge with a main span of 100 ft (30 m) and two sides span of 46 

ft (14 m). Detailed Introduction of the Z24 bridge can be found in Maeck and De Roeck (2003). 

The Z24 bridge was demolished at the end of 1998. Before the complete demolition, a short-term 

progressive damage test was implemented on the bridge to investigate the effect of simulated 

damage on the safety of the bridge. A total of 17 different damage scenarios were designed under 

full forced and ambient excitation (Reynders & Roeck 2009). In this work, acceleration response 

data from the scenario of No.8 for the new reference condition under ambient excitation is used to 
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assess the proposed approach. A total of 291 DOFs were measured (See Figure 12 (b)). Due to the 

limited number of sensors, only at most 33 DOFs were measured for each set-up. Therefore, nine 

measurement set-ups were recorded with most 33 sensors to have full location coverage of the 

whole bridge, containing five reference sensors that are common to each set-up and 28 moving 

sensors whose location changes with different set-ups. For the No.5 set-up, only 22 moving sensors 

were used. Samples of 65536 data were recorded at each set-up at a 100 Hz sampling rate. 

For each dataset, preparation parameters in SSI-cov/ref are defined as: time lag is 𝑖 = 50, 

model order ranges from 2 to 120, to create stabilization diagrams. Reference sensors are selected 

as No. 29-33 (for set-up No.5, as No. 23-27). After the stabilization diagram is created, the 

proposed approach in Section 3 is applied to automatically interpret the stabilization diagram.  

4.2.1. Identification results 

Nine stabilization diagrams corresponding to each set-up are created; results of the fifth 

set-up are only presented in Figure 13 due to space limitation in this paper. The singular value 

spectrum (appeared in curves in Figure 13) is also plotted below the stabilization diagram. ±𝜎 

(standard derivation) uncertainty bounds of frequency are plotted as horizontal bars. Figure 13 (a) 

displays modal identification results using conventional validation criteria, many scattered poles 

which are definitely spurious modes, still retain in the stabilization diagram. However, the 

uncertainty criterion can remove most spurious modes, demonstrating that the uncertainty criterion 

is more effective than conventional validation criteria (See Figure 13 (b)). 

Based on the remaining poles in the stabilization diagram after the pre-processing stage, 

the clustering threshold for each measurement set-up is calculated using Equations. (9) and (10). 

As shown in Figure 14 (a), all threshold values are significantly reduced compared to those 

calculated without weighting factor, as weighting factor can offset the effect of mode shape 



 29 

difference. Manual clustering thresholds in commercial OMA software are usually below 0.06 

(Neu et al. 2017). The threshold derived from the newly proposed method is closer to the one from 

manual analysis, indicating proposed method’s rationality and feasibility in practice. Mode 

clustering described in Section 3.2.2 is then implemented to group physical modes. The number 

of scattered poles is greatly removed by the proposed approach, only remaining obvious vertical 

alignments in the stabilization diagram in Figure 14 (b). 

  
  (a)     (b) 

  Figure 13. Pre-processing stage for No. 5 set-up: (a) after validation criteria; (b) after uncertainty 
criterion 

  
(a) (b) 

Note: 𝜔 is weighting factor in Equation (9)        
   Figure 14. The clustering stage: (a) calculated clustering threshold; (b) after improved self-

adaptive clustering for No. 5 set-up 
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                 Note: c is the weighting factor in Equation (11) 

Figure 15. Updated threshold 

   
(a) (b) 

      Figure 16. Damping ratio vs frequency: (a) before outlier detection; (b) after outlier detection 

In addition, an improved self-adaptive clustering that considers the weighting factor of 𝑐  in 

Equation (11) tends to give a smaller updated threshold, implying identified modal parameters are 

more stable and consistent with each other (See Figure 15). The use of the weighting factor can 

improve the performance of clustering. Because only the first six modes are present in baseline 

work (Reynders et al. 2012), the first six clusters are presented in Figure 14 (b), marked as P# to 

PG. Robust outlier detection is used to identify outlying modes (See Figure 16). Finally, the average 

of modal parameters in each cluster is selected as representative. Table 3 shows the sample mean 

and sample standard derivation of frequency and damping ratio over nine measurement set-ups 

obtained from the proposed approach. The standard deviation in Table 3 represents the setup-to-

setup sample statistics among all set-ups. The calculation of sample standard derivation in Table 
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3 only considers the environmental change among different set-ups rather than uncertainty sources 

summarized in Section 3.1.2. It is seen from Table 3 that the damping ratio has more significant 

variability than frequency, implying it is more challenging to identify damping ratio in practice, as 

the damping ratio is sensitive to environmental change. Overall, the proposed approach's identified 

frequencies and damping ratios are almost identical to those from baseline work, demonstrating 

low demand for human intervention. 

Table 3. Identification results 

Modes 
Frequency (Hz) Damping ratio (%) 

Baseline* STD The proposed 
approach STD Baseline* STD The proposed 

approach STD 

1st (P#) 3.86 0.01 3.86 0.01 0.8 0.1 0.74 0.11 
2nd (P)) 4.90 0.01 4.91 0.02 1.4 0.2 1.38 0.15 
3rd (PA) 9.76 0.02 9.77 0.04 1.4 0.2 1.34 0.21 
4th (PI) 10.3 0.09 10.28 0.03 1.3 0.2 1.30 0.19 
5th (PH) 12.41 0.19 12.44 0.19 2.8 0.4 2.91 0.53 
6th (PG) 13.22 0.15 13.25 0.14 3.4 1.1 3.54 0.66 

Note: *: Reynders et al. (2012);     

  
(a) (b) 

Figure 17. ±	2𝜎 standard derivation error bar ratio across nine setups: (a) frequency; (b) 
damping ratio 

Uncertainties of modal parameters airing from assumptions made in SSI, such as linear, 

stationary structural behavior, white noise, etc., are also studied. Figure 17 shows the variability 
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of frequency and damping ratio from modes 1 to mode 6 across nine measurement set-ups, 

respectively, with open circles representing the parameter estimates and error bars covering ±	2𝜎 

standard derivations. Both frequencies and damping ratios change over time, while the damping 

ratios have larger uncertainties. The negative damping ratio is immaterial in Figure 17 (b), such as 

mode 5 at No. 4 set-up and mode 6 at No. 1 set-up, merely because of the Gaussian distribution 

approximation and the larger standard derivation. Mode 6 has relatively larger uncertainty since 

the mode is not excited well. Table 4 presents the average of standard derivation for each cluster 

over nine measurement set-ups using Equation (13). As expected, the sixth cluster has the highest 

uncertainty, implying it is relatively harder to identify this cluster, which is also reflected in Figure 

14 (b) that the sixth vertical alignments from the left form at a very ambiguous peak. Generally 

speaking, quantities of identified frequency and damping ratio are consistent from one to another 

set-up numbers., suggesting robust and fair performance on modal analysis.  

  Table 4. Average of standard derivation (STD) for physical clusters among nine setups 
No. cluster 1 2 3 4 5 6 
STD (%) 0.56 1.37 3.06 5.25 10.19 17.61 

The global mode shapes are directly assembled from a local one in a single dataset by 

multiplying by a scaling factor so that their common DOFs, at the location of reference sensor,  

agree well with each other through data fitting, namely, the method of least squares (Au 2017). 

For the sake of article spaces, detailed procedures for calculating scaling factors are referred to Au 

(2017). As seen in Figure 18, the entire six modes are successfully identified from vibration 

response in all the nine measurement set-ups, which are in good accordance with those in Reynders, 

Houbrechts and De Roeck (2012). Mode 1 is a typical bending mode with a symmetric shape that 

has the maximum deflection at midspan. Mode 2 is the first torsional mode with a slight rotational 

dynamic behavior along y-axis (transverse direction). Similar to mode 2, but more significant 
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rotation is observed on modes 3 and 4; they are another two torsional modes. Modes 5 and 6 are 

vertical modes with asymmetric shapes. Furthermore, five mode shapes at the only vertical 

direction (corresponding z-axis in Figure 18) and one mode shape at the only transverse direction 

(corresponding y-axis in Figure 18) are also presented in Figures. 19 and 20, ±2𝜎 uncertainty 

bounds are plotted as blue dashed lines. Figure 19 shows only mode 6 has relatively wider 

uncertainty intervals since it is weakly-excited, while others have narrow bounds, implying mode 

shapes are identified with an accurate level. 

Mode1: Frequency=3.86Hz, 𝜉=0.737% Mode2: Frequency=4.91, 𝜉=1.376% 

  
Mode3: Frequency=9.77Hz, 𝜉=1.338% Mode4:Frequency=10.28Hz, 𝜉=1.305% 

  
Mode5: Frequency=12.44Hz, 𝜉=2.908% Mode6: Frequency=13.25Hz, 𝜉=3.540% 

  
Figure 18. Mode shapes of the Z24 bridge 
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Mode1 Mode3 

  
Mode4 Mode5 

  
Mode6 

 
Figure 19.  Mode shapes at X-Z plane with  ±2𝜎 uncertainty bounds 

 
 

Mode 2 

 

Figure 20.  Mode shape at X-Y plane with ±2𝜎 uncertainty bounds (not visible) 

Table 5. The first eight damage scenarios during the progressive damage test in 1998 (Maeck & 
De Roeck 2003) 
Measurement No Date Scenario 

1 04, August First reference measurement 
2 09, August Second reference measurement 
3 10, August Settlement of pier, 20mm 
4 12, August Settlement of pier, 40mm 
5 17, August Settlement of pier, 80mm 
6 18, August Settlement of pier, 95mm 
7 19, August Tilt of foundation 
8 20, August Third reference measurement 

To further investigate the performance of the proposed approach for continuous health 

monitoring. As seen in Table 5, the proposed approach is applied to eight different damage 

scenarios during the short-term progressive damage test.  A total of 72 datasets consists of nine 

individual measurement setups for each damage scenario. The tracked frequencies, damping ratios, 

and associated uncertainty are plotted in Figures. 21 and 23, with sample mean (solid black lines) 
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and two averages of standard derivation (grey shaded areas) among all measurement set-ups. It is 

observed that the maximum frequency happened at scenario No. 1 corresponding to undamaged 

condition; the minimum frequency happened at modes 1, 3 ,4 and 5 in scenario No. 6 and modes 

2 and 6 in scenario No. 7 for corresponding to 95mm settlement of pier and tilt foundation.  As 

seen in Figure 22, damage scenarios in Table 5 have significant effect on frequency, especially 

when the pier is settled, and foundation is tilted. For example, frequency reduction at modes 1, 3, 

4 and 5 reaches the maximum magnitude when the pier has the maximum settlement, 95mm, 

ranging from 5.93% to 8.08%. On the other hand, modes 2 and 6 have the maximum frequency 

reduction of 9.06% and 3.66%, respectively, due to foundation’s tilt, respectively. In contrast, 95-

mm pier settlement still impairs on frequency, suggesting pier and foundation may be paid more 

attention during SHM. Figure 23 shows the variability of damping ratio is smaller than of 

frequency, implying damping ratio is not sensitive to global damage scenarios in Table 5, but the 

damping ratio has much larger uncertainty. The results demonstrate potential benefits to handle a 

large amount of data with an acceptable level of performance while reducing human involvement. 

Therefore, the proposed approach is suitable for continuous health monitoring and modal tracking.  
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Figure 21. Identified frequencies for different damage scenarios 

 
 

 
Figure 22. Frequency change due to damage 
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Figure 23. Identified damping ratio for different damage scenarios 

4.2.2. Sensitivity analysis 

  
  (a)    (b) 

Figure 24. Frequencies at different parameters: (a) model order range sensitivity (fixed 𝑖 = 50); 
(b) time lag range sensitivity (fixed 𝑛456 = 90) 

To examine the performance of the proposed approach in case of a different combination 

of preparation parameters in SSI-cov/ref, e.g., the maximum mode order, 𝑛456, and time lag, 𝑖, 

the sensitivity analysis is conducted for No. 5 measurement setup in this example. 𝑛456 and 𝑖 

range from 70 to 160 and from 30 to 120, respectively. As seen in Figure 24, the proposed approach 

has consistent behavior for identifying six modes using different SSI-cov/ref preparation 

parameters. Similar to Application 1, Figure 25 shows that any threshold between 1	and	5% yields 

the same outcomes. The sensitivity analysis demonstrates that the proposed approach is insensitive 

to two crucial parameters in SSI-cov/ref: model order and time lag. Generally, model order is over-

estimated to identify weakly excited modes, yielding more spurious modes; a small value of time 

lag may fail to generate enough stable poles in the stabilization diagram. It is very difficult to 
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determine the best model order and time lag in real test. The proposed approach provides more 

flexibility for the selection of the two parameters, significantly facilitating automated modal 

identification in practice. 

 
Figure 25. Frequencies at different COV threshold: (𝑖 = 50, 𝑛456 = 120) 

4.3. Discussion and recommendation 

The proposed approach accurately identifies the modes of interest and concurrently eliminates 

spurious modes. The weakly excited and closely spaced modes are identified on two bridges under 

ambient vibration. The procedures only require a few initial parameters setting, e.g., model order 

range, time lag, the threshold of MPC/MPD, and uncertainty criterion. In short, the proposed 

approach is insensitive to these parameters, especially, two crucial parameters: model order and 

time lag. Finally, recommendations are summarized in Table 6. Both 𝑛456 and 𝑖 are over-defined, 

but the proposed approach will remove spurious modes. MPC and MPD can be regarded as 

standard values, with no need for adjustment. Uncertainty threshold, COV, can also be safely 

chosen in the range of 1-5%. In addition, two-month period data (55 datasets: Application 1) and 

short-term progressive damage test (72 datasets: Application 2) demonstrates the feasibility of 

automated OMA and modal tracking of massive data for continuous health monitoring.  
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Table 6 Recommendations on initial parameters for structures under complex test condition 
Initial parameters 𝑛456 𝑖 MPC MPD COV 

Recommendation 100-160 2-3 times  
of Equation (2) 0.3 0.7 1%-5% 

Note: 𝑛!"# is the maximum model order; 𝑖 is time lag; MPC is modal phase collinearity; MPD is mean 
phase deviation; COV is coefficient of variation of frequency. 

5. Conclusion 

A two-stage framework for automated operational modal identification based on SSI-

cov/ref is proposed in this study. Firstly, a stabilization diagram is created by SSI-cov.ref. Two-

stage framework, e.g., pre-processing stage and clustering stage, is then implemented to interpret 

the stabilization diagram with low demand of user intervention. Two field tests on the bridge are 

employed to validate the capability of the proposed approach. The main contributions are 

summarized as follows: 

• This uncertainty criterion is efficient in eliminating many undesired modes at the 

processing stage, which speeds up the later automation process.   

• A novel distance calculation with the uncertainty of modal parameters and weighting 

factor yields a reasonable threshold for clustering.  

• An improved self-adaptive clustering is proposed based on weighted distance 

calculation with the uncertainty of modal parameters.  

• The uncertainty on modal parameters and identified physical clusters are also 

quantified and providing additional information about quality of identified results.  

• A robust outlier detection requiring no setting of threshold improves modal parameters' 

accuracy.  

In short, the proposed framework has a minimal user’s involvement to achieve sufficient accuracy. 

Therefore, the proposed work can be suitable for long-term health monitoring, e.g., modal tracking. 

Some limitations should be further investigated. For example, both steel frame pedestrian bridge 
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and highway concrete bridge have a relatively wider frequency range (e.g., 0-15Hz), including few 

weakly-excited modes and closed spaced modes. In contrast, long span or suspension bridges 

exhibit low frequency range (e.g., 0-1Hz) and multiple extremely closed-spaced modes (Zhang et 

al. 2016, Brownjohn et al. 2018). Therefore, the further verification as the future study is needed. 

Another is the optimized sensor location should be determined to improve computational 

efficiency.   
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Appendix A. The pseudocode of an improved self-adaptive clustering 
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