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Abstract—Firewall log classification is important to monitor 

network traffic. Most firewall log classification via machine 

learning has shown good result by network-related features and 

classifiers. However, feature with many dimensions take a lot of 

time to do classification. In this paper, we applied a method of 

feature selection using optimized bee swarm optimization with 

reinforcement learning. We evaluated average performance by 

accuracy, macro-averaged precision, macro-averaged recall, 

and macro-averaged F1 score in 5-stratified folds using a 

random forest, k-nearest neighbor, and naïve bayes classifier. 

As a results, it could be applied for an automatic firewall log 

analysis system. 
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I. INTRODUCTION 

Firewalls of computers are used to ensure that the network 
is functioning properly and safely. In particular, as the security 
of personal information [1] becomes more important and 
robust, it needs to be conscious to protect networks. Firewall 
logs are key evidence to identify intruder attacks, including 
insider and outsider threats [2]. In addition to the existing 
traditional classification methods, with the development of 
machine learning and deep learning, a study on log 
classification and intrusion prevention using it has been 
conducted [3–8]. Log analysis and intrusion detection defense 
should attempt to classify efficiently with fewer parameters 
for quick response. At this time, the number of features used 
for classification or regression is based on the researcher's 
experience. For this reason, research is also being conducted 
to intensively select the optimal feature and parameter via 
information gain, and genetic algorithms, and reinforcement 
learning, and optimization [9–13]. In this paper, we performed 
optimal feature search using the optimized bee swarm 
optimization algorithm along with reinforcement learning [14]. 

II. EXPERIMENT 

A. Data acquisition 

 We used Internet Firewall Data Data Set [15] in UCI 
Machine Learning Repository. The data have 11 features and 
4 labels. Total data points are 65532. Data profile and feature 
information are shown in Table 1 and Table 2. Four label is 
allow, deny, drop, reset-both, respectively. 

Table 1: Profile of Dataset 

Name Data points 

Allow 37640 

Deny 14987 

Drop 12851 

Reset-both 54 

Total 66532 

 

Table 2: Feature information 

Name 

bytes bytes 
received 

bytes sent destination 
port 

elapsed time NAT 
destination 

port 

packets packets 
received 

NAT source 
port 

packets sent source port  

 

  



B. Methods 

1. Bee swarm optimization algorithm 

bee swarm optimization algorithm (BSO) is an algorithm 
that is inspired by the social behavior of bees. Each bee is an 
object working together to solve the optimization problem, 
and they search for the fitness function using a feature 
combination in iterations. The fitness function of this research 
is set to average accuracy. 

2. Reinforcement learning  

Reinforcement learning (RL) refers to an algorithm in 
which an agent defined in the environment recognizes the 
current state and finds an action that maximizes the reward 
among actions. The RL algorithm applied in this paper is Q-
learning [16]. Local search and experience of bee replace Q-
learning.  In this process, the reward is given differently 
depending on the accuracy of the current and next states. The 
reward-setting condition is shown Table 3. 

Table 3: Reward-setting condition 

Condition Reward 

if the next state accuracy is 
higher than the current state 

next state accuracy 

if the current state accuracy 
is high 

next state accuracy - current 
state accuracy 

if the number of features in 
the current state is greater 
than the number of features 
in the next state 

1/4 * next state accuracy 

if the number of features in 
the current state is less than 
the number of features in 
the next state 

-1/4 *next state accuracy 

 As a result, the agent tries to get the best accuracy while 
getting fewer features. Moreover, to reduce the space in the 
search space, we applied the XOR operation on the best 
solution and the current state solution. 

3. Classifier 

In this paper, We compared performance using several 

classifier; random forest (RF), k-nearest neighbor (KNN), and 

naïve baye (Bernoulli NB). 

III. HYPER-PARAMETER SETTING 

Table 4 shows the hyper-parameters applied to this 
experiment. 

Table 4: Hyper-parameter lists 

Name Parameter Description 

Flip 5 To calculate Search 
Region space  

Max Chance 3 Number of chances to 
escape local minima 

Number of Bee 3 Worker to solve 

Max iteration 3 Number of total iteration 

Local iteration 2 Number of iteration in 
local search 

alpha 0.8 Learning rate of 
reinforcement learning 

gamma 0.3 Discount factor of 
reinforcement learning 

epsilon 0.05 Probability of doing 
random actions 

The machine learning classifier was used python library 
called scikit-learn (version 0.24.2). hyper-parameter of 
classifier was used default parameter. 

IV. RESULT 

The optimal combination list of features in training set 
selected by the feature selection method is shown Table 5. 

Table 5: Optimal feature lists 

Classifiers 
Optimal feature 

combination lists 

RF 

Destination port 

NAT Source Port 

NAT Destination Port 

Bytes 

Bytes Received 

Packets 

Elapsed Time 

Packets sent 

Packets received 

KNN 

Destination Port 

NAT Destination Port 

Bytes 

Bytes Sent 

Packets 

Elapsed Time 

Bernoulli NB Source Port  

Bytes  

Bytes Sent 

Elapsed Time 

Packets received 

And we evaluate accuracy performance each classifier. Table 
6 show the best accuracy among combination lists each 
classifiers. 

Table 6: Best accuracy (%) 

Classifiers Best accuracy among 
combination lists 

RF 99.87 

KNN 99.78 

Bernoulli NB 80.22 

 

And we measure random forest performance by average 
accuracy and average macro-averaged precision (Macro-
precision), average macro-averaged recall (Macro-recall), 
average macro-averaged F1 (Macro-F1) score. We compared 
the optimal selected feature results with the case of applying 
all features using random forest. The results are shown in 
Table 7.  

 

 



Table 7: Comparing all and optimal features using RF (%) 

 

Feature 

selected 

Average 

Accuracy 

Macro-

precision 

Macro-

recall 

Macro-

F1 

All 99.80 93.06 81.71 84.22 

Optimal 99.87 96.62 88.73 91.27 

 

V. CONCLUSION 

In this paper, we classified firewall logs using optimal 

feature via BSO with reinforcement learning feature selection 

method. The results of using optimal features outperformed 

using all features and it could be applied to a firewall log 

analysis. 
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