
GPU-accelerated smoothed particle finite element

method for large deformation analysis in geomechanics

Wei Zhanga,b, Zhi-hao Zhonga, Chong Pengb, Wei-hai Yuanc, Wei Wub,∗

aCollege of Water Conservancy and Civil Engineering, South China Agricultural
University, Guangzhou 510642, China

bInstitut für Geotechnik, Universität für Bodenkultur, Feistmantelstrasse 4, Vienna 1180,
Austria

cCollege of Mechanics and Materials, Hohai University, Nanjing 210098, China

Abstract

Particle finite element method (PFEM) is an effective numerical tool for solv-

ing large-deformation problems in geomechanics. By incorporating the node

integration technique with strain smoothing into the PFEM, we proposed

the smoothed particle finite element method (SPFEM). This paper extends

the SPFEM to three-dimensional cases and presents a SPFEM executed on

graphics processing units (GPUs) to boost the computational efficiency. The

detailed parallel computing strategy on GPU is introduced. New compu-

tation formulations related to the strain smoothing technique are proposed

to save memory space in the GPU parallel computing. Several benchmark

problems are solved to validate the proposed approach and to evaluate the

GPU acceleration performance. Numerical examples show that with the new

formulations not only the memory space can be saved but also the computa-

tional efficiency is improved. The computational cost is reduced by ∼ 70%

for the double-precision GPU parallel computing with the new formulations.
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Compared with the sequential CPU simulation, the GPU-accelerated sim-

ulation results in a significant speedup. The overall speedup ranges from

8.21 to 11.17 for double-precision simulations. Furthermore, the capability

of the GPU-accelerated SPFEM in solving large-scale complicated problems

is demonstrated by modelling the progressive failure of a long slope with

strain-softening soil.

Keywords: Particle finite element method; Parallel computing; GPU;

Speedup; Geomechanics; Large deformation

1. Introduction

Many problems in geotechnical engineering involve large deformation,

e.g., sampling, in-situ penetration testing, pile installation, landslides and

debris flow, etc. Large-deformation numerical simulations can provide a cru-

cial perspective for these problems. However, they often pose some difficulties

for conventional numerical method, e.g. the finite element method (FEM).

The mesh distortion associated with large deformation may lead to reduction

of accuracy or even termination of the numerical calculations.

Many numerical frameworks have been presented to solve large-deformation

problems in geomechanics so far, such as Arbitrary Lagrangian-Eulerian

(ALE) method [1], remeshing and interpolation technique with small strain

(RITSS) method [2], Smoothed particle hydrodynamics (SPH) [3], mate-

rial point method (MPM) [4], particle finite element method (PFEM) [5],

etc. Among them, the PFEM attracts more and more attentions in re-

cent years. It inherits the solid theoretical foundation of FEM which can

guarantee the accuracy and convergence, whilst it possesses the flexibility of
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mesh-free methods for large deformation analysis. In the PFEM, the nodes

in traditional FEM are treated as Lagrangian particles. The Delaunay tri-

angulation technique is used to re-generate the mesh when it is too distorted

due to large deformation. Therefore, the PFEM is actually an updated La-

grangian FEM approach with remeshing technique to overcome the mesh

distortion problem. In the field of geomechanics, the PFEM has been devel-

oped and applied to solve many different types of problems, including the

ground excavation process [6, 7], granular flow [8–10], landslide and landslide-

generated wave [11–13], soil penetration problem [14, 15], hydro-mechanical

coupled problem [15–17], and progressive slope failure [18–20].

In the original PFEM, the numerical integration is carried out at Gasuss

points while the field information is stored at nodes/particles, As a result,

during the numerical computation, it is required to transfer information be-

tween Gasuss points and nodes/particles frequently, which inevitably intro-

duces errors and increases complexity. In view of this, the authors proposed

the smoothed particle finite element method (SPFEM) recently [21, 22]. In

the SPFEM, a strain smoothing technique for node integration is incorpo-

rated. Thanks to this node integration technique, all the field variables are

computed and stored at nodes/particles, making the method more like a La-

grangian particle-based method. There are also some extra advantages, such

as utilization of low order elements without volumetric locking and insensi-

tivity to mesh distortion. The former can assure the computational efficiency

while the latter is especially beneficial for large deformation analysis. Very

recently, the SPFEM has been extended to solve the fluid dynamics prob-

lem [23] and fluid–structure interaction problem [24], which has been termed
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’PFEM with Nodal Integration’ in their studies [25].

In recent years, using graphic processing units (GPUs) to achieve high-

performance computing has gained popularity rapidly. GPUs were initially

designed for three-dimensional image rendering that is not complex but

highly computationally intensive. In 2007, NVIDIA released the compute

unified device architecture (CUDA) programming platform which is designed

for general-purpose computing. Since then, GPUs have been successfully

used in many scientific fields for high-performance computing (e.g. [26–29]).

GPUs, which feature much more cores, lower thread-scheduling cost and

higher memory bandwidth than ordinary CPUs, are capable of executing

computations with thousands of independent threads, operating in Single-

Instruction-Multiple-Data (SIMD) mode. Here, SIMD is a terminology used

to describe a class of parallel computers with multiple processing elements

that perform the same operation on multiple data points simultaneously. In

the computational process of PFEM/SPFEM, there are many procedures

in which the same calculations need to be performed for all elements or

nodes/particles. Meanwhile, data dependence is local and usually only ex-

tends to a few surrounding elements or nodes. Therefore, most calculations

can be distributed into independent GPU threads and executed in paral-

lel. Compared with the PFEM, the computation process of SPFEM is much

simplified due to the adoption of node integration scheme. The computation

process of the explicit SPFEM [22] is especially simple because the accumu-

lation of global stiffness matrix in the implicit SPFEM is avoided. These

simplifications can undoubtedly greatly facilitate GPU parallel computing.

However, to the best of the authors’ knowledge, GPU parallel computing for
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PFEM has not been reported yet.

This study aims to develop a GPU-accelerated SPFEM for large defor-

mation analysis in geomechanics based on CUDA, with focus on the explicit

version of SPFEM [22]. The explicit SPFEM is first extended to three-

dimensional cases. Then the GPU parallel computing strategy is presented

after a brief view on the basic theory of SPFEM. To reduce the memory con-

sumption during the GPU parallel computing, which is crucial for increasing

the scale of problems analysed, new computation formulations related to the

strain smoothing technique are used. Several benchmark examples are solved

with sequential CPU simulations and GPU-accelerated simulations respec-

tively. The speedup of the presented GPU-accelerated SPFEM is carefully

evaluated.

2. Smoothed particle finite element method

2.1. Strain smoothing technique for node integration

In PFEM, the problem domain is discretized into a set of Lagrangian

particles, which carry mass, velocity and other state variables (e.g. stress,

hardening parameters related to constitutive models). The FEM computa-

tion mesh is generated based on this set of Lagrangian particles using the

Delaunay triangulation technique combined with the alpha shape algorithm.

Thus, nodes in traditional FEM correspond to particles in PFEM. The terms

’node’ and ’particle’ can be used interchangeably in PFEM.

In SPFEM, the strain smoothing technique for node integration is in-

corporated. The first step of this technique is to construct smoothing cells

associated with particles. In two-dimensional cases, the smoothing cell as-
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sociated with particle k is created by connecting sequentially the mid-edge

points to the centroid points of the surrounding triangular elements of the

particle. This approach can be easily extended to three-dimensional cases,

as shown in Fig. 1. Note that it is not required to explicitly calculate the

specific geometries during the computation process, which will be shown in

the following.

With this approach, the whole problem domain is discretized into finite

strain smoothing cells associated with particles. Thus, all the integration

over the whole problem domain can be performed by accumulating over the

smoothing cells associated with particles. Furthermore, all the field variables

can be calculated in these smoothing cells. In SPFEM, each particle repre-

sents a smoothing cell associated with it, which makes the SPFEM more like

a particle-based method.

In the smoothed strain technique, the volume of the smoothing cell asso-

ciated with node k is calculated by

Vk =

Ek∑
i=1

1

4
V i (1)

where Ek is the number of tetrahedral elements related to node k and V i is

the volume of the ith element. The smoothed strain matrix is calculated by

B̃k =
1

Vk

Ek∑
i=1

1

4
V iBi (2)

where Bi is the strain gradient matrix used in the standard FEM for the ith

element. It can be seen that the smoothed strain is actually the average of
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the strains of the elements related to node k weighted by volume. For more

details about the strain smoothing technique, readers are suggested to refer

to [31, 32].

2.2. Computational formulations of SPFEM

Similar to the FEM, there are two numerical solution strategies of SPFEM

with different time integration schemes: the implicit SPFEM [21] and the ex-

plicit SPFEM [22]. In this study, the explicit SPFEM is considered, which

has simpler formulations and thus is more suitable for GPU parallel comput-

ing.

In the computation domain, the motion of a continuum can be described

as

ρa = ∇ · σ + ρb (3)

where, ρ is the material density, a is the acceleration, σ is the Cauchy stress

tensor and b is the specific body force density. Considering the principle of

virtual displacement and the divergence theorem, the weak form is expressed

as ∫
Ω

δu · ρadΩ =

∫
S

δu · τSdS +

∫
Ω

δu · ρbdΩ−
∫

Ω

δu : σdΩ (4)

where u is the displacement vector, Ω represents the configuration domain,

S represents the boundary, and τS is the prescribed traction. After the

node-based discretization, the above equation reads

T∑
k=1

ρakVk =
T∑

k=1

∫
S

NkτSdS +
T∑

k=1

ρbkVk −
T∑

k=1

B̃T
k σkVk (5)

where T is the total number of nodes in the computation domain. The above
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Algorithm 1 Computational cycle of SPFEM
1. Generate mesh using Delaunay triangulation and alpha shape technique
2. Get basic data of elements and nodes
3. Calculate smoothed strains of nodes
4. Update stresses of nodes through constitutive integration
5. Calculate internal forces of nodes
6. Update velocities and positions of nodes

discrete form can be then written in the vector or matrix form as

Ma = F ext − F int (6)

in which

F ext =
T∑

k=1

∫
S

NkτSdS +
T∑

k=1

ρbkVk (7)

F int =
T∑

k=1

B̃T
k σkVk (8)

M =
T∑

k=1

ρVk (9)

where F ext and F int are termed as the external and internal forces, respec-

tively, and M is the diagonal mass matrix.

A typical computational cycle of SPFEM is shown in Algorithm 1. More

details are available in Ref. [21, 22].

2.3. Adaptive critical time step size

In utilizing the explicit time integration scheme, the incremental time

step size should satisfy the Courant stability restriction to ensure numerical
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stability. The incremental time step size is generally calculated by

∆tcr = α
lmin

c
(10)

where ∆tcr is the critical time step size, lmin is the characteristic length of

the mesh, c is the sound speed in the material and α is a scale factor. As the

characteristic length of the mesh varies during the computation, an adaptive

time step size is realized.

The determination of time step sizes greatly influences the computation

cost of a numerical method using explicit time integration. In the original

PFEM, the determination of time step sizes is the same as the standard FEM.

For example, the characteristic length of the mesh in Eq. (10) can be taken to

be the minimum radius of spheres inscribed in the tetrahedral elements [33].

As stated in [34], the Delaunay triangulation and the triangulation satisfying

the max-min angle criterion are identical in two-dimensional cases, while

in three-dimensional cases they are no longer identical in general and the

Delaunay triangulation in three-dimensional cases does not seem to satisfy

any optimal angle condition. Actually, many so-called silver elements may

occur after Delaunay triangulation [35]. As a result, with the criterion of the

minimum radius of spheres inscribed in the tetrahedrons, the time step size

may reduce by several orders of magnitude during the computation [33].

In this study, as the node integration technique of strain smoothing is

adopted, the integration domain for each node is the smoothing cell asso-

ciated with this node. The smoothing cells generally have a more regular

shape (See Fig. 1) and their volumes are generally much larger than those of

the silver elements, because their volumes are the summation of the volumes
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of elements related to the nodes divided by four (See Eq. (1)). The charac-

teristic length of a smoothing cell can be obtained in analogy to an element

in the standard FEM. In this study, one half of the minimum distance be-

tween the node and its related nodes is used. This value is generally much

larger than the value determined by the criterion of the minimum radius of

spheres inscribed in the tetrahedrons, and thus the computational efficiency

can be greatly increased as a result. This can be considered as a newly dis-

covered advantage of incorporating the strain smoothing technique for node

integration into an explicit PFEM.

2.4. Contact strategies in the explicit SPFEM

In the explicit SPFEM, as the solution strategy is similar to that of the

explicit FEM, the contact algorithm in the explicit FEM can be easily in-

corporated. Specifically, the slave node to master segment contact scheme

is utilized. A simple illustration is shown in Fig. 2. The frictional contact

condition can be written as:

gn ≥ 0, λn ≥ 0, λngn = 0

|λt| − µfλn ≤ 0
(11)

where gn is the gap between node and segment, λn is the normal contact force

which is positive corresponding to compression, λt is the tangential contact

force, and µf is the friction coefficient.

The penalty method is utilized to fulfil the frictional contact condition.

For the explicit time integration scheme, when a contact pair is detected, i.e.
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gn < 0, the contact force can be calculated as

Rcs = λ, for slave node

Rcm,i = −Niλ, for master nodes
(12)

where λ is the vector of contact force, i is the node number of contact segment

and Ni is the corresponding shape function of contact segment. For the vector

of contact force λ, the normal part λn is obtained as λn = −εgn while the

tangential part λt is obtained as λt = min(−εgt, µλn) when the Coulomb

friction model is used. The above contact forces are added into Fext in

Equation (6) and then the accelerations, velocities and positions of nodes

can be updated correspondingly.

In case that the node to rigid wall contact is considered, the numerical

implementation can be further simplified. When the penetration between

node k and a rigid wall occurs, i.e. gn < 0, the acceleration and velocity of

node k can be modified as follows to make the normal penetration gn to be

zero,

anew = aold − (aold · n)n

vnew = vold − (vold · n)n
(13)

where n is the unit normal vector of the rigid wall. When the Coulomb

friction model is used, the tangential contact force can be obtained as

λt = min(mk

√
vnew · vnew/∆t, µλn) (14)

in which mk is the mass of node k, ∆t is the time increment, and the normal
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contact force λn can be calculated by

λn = mk

√
vn
old · vn

old/∆t (15)

where vn
old is the normal velocity of node k before modification.

2.5. Mesh rebuilding technique in the explicit SPFEM

An important part of SPFEM is the mesh rebuilding technique to avoid

mesh distortion when large deformations occur in the continuum domain.

The mesh rebuilding technique in the explicit SPFEM is basically the same

with that in the original PFEM [5], which is generally based on the Delaunay

triangulation technique combined with alpha shape algorithm.

When the mesh rebuilding is required, the Delaunay triangulation tech-

nique, which is widely used in FEM mesh generation [36], is first performed

to rebuild the element connectivity on the basis of a cloud of nodes. Another

task of mesh rebuilding is the identification of computational domain. There

is generally no unique solution to this problem. The solution originally pro-

posed by Idelsohn [37] and subsequently adopted as a standard feature of

the PFEM is to use the alpha-shape method previously developed by Edels-

brunner [38] for computer graphics applications. The basic principle of the

alpha-shape method is that for a cloud of points with a characteristic spacing

h and a predefined value of parameter α, all nodes on an empty sphere with

a radius greater than αh are considered as boundary nodes.

When the alpha-shape method is combined with the Delaunay triangu-

lation technique, a simple two-step algorithm for mesh rebuilding is avail-

able [39]: First, Delaunay triangulation is performed to generate the convex
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domain on the basis of a cloud of nodes, and thus a mesh consisting of

tetrahedrons is obtained in three-dimensional case. Then, the radius of the

circumsphere of each tetrahedron is examined and the tetrahedrons with a

radius greater than αh are deleted, and hence the remain tetrahedrons cor-

respond to the computational domain.

Note that in the SPFEM, thanks to the node integration technique of

strain smoothing, more distorted mesh can be used without serious loss of

accuracy, i.e. the requirement of mesh quality is not as strict as the original

PFEM. Nevertheless, mesh smoothing technique is utilized here to improve

the mesh quality. To be specific, the Laplacian smoothing technique [40, 41]

is applied to a few nodes when they are too close to their neighbours. Some

other mesh smoothing technique can also be used (e.g. [33, 42]), however,

we choose the Laplacian smoothing technique due to its simplicity and high

efficiency. Moreover, with the Laplacian smoothing technique, the critical

time step size can be increased remarkably, which is useful for improving the

computational efficiency.

It should be pointed out that in some PFEM simulations, new particles

were introduced during the simulation to further improve the mesh qual-

ity (e.g. [14, 43, 44]). However, for the present approach, it seems that

introducing new particles is not necessary and thus no new particle is intro-

duced during the simulation for simplicity.
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3. GPU parallel computing strategy

3.1. GPU acceleration scheme

The GPU parallel computing is implemented based on the Compute Uni-

fied Device Architecture (CUDA), a toolkit developed by NVIDIA to perform

parallel computing using their graphics cards. The parallelisation scheme is

shown in Fig. 3. The whole computation consists of a CPU part and a GPU

part. The CPU part works as a process controller, which is used for loading

and saving data, initializing GPU data, and controlling the GPU computing

kernels to finish designated computation tasks, while the GPU part executes

the actual computing.

Ideally, all the steps are expected to be parallelised on GPU to maximise

the speedup of GPU parallel computing. However, in the SPFEM, the De-

launay triangulation technique is required to re-generate the computation

mesh. In this study, a state-of-the-art library for Delaunay triangulation,

CGAL [45], is adopted to obtain a robust Delaunay triangulation. So the

Delaunay triangulation is executed on CPU. However, the workload of De-

launay triangulation is minimal, because it is performed intermittently only

when the mesh is too distorted. Hence the CPU execution of the Delaunay

triangulation has only a small influence on the overall speedup. Except for

the Delaunay triangulation, all other calculations are executed on GPU in

a parallelised manner. To reduce memory transfer as much as possible, es-

pecially the transfer between CPU and GPU, all the data are stored in the

GPU global memory during the entire simulation, and they are transferred

to the CPU memory only when the Delaunay triangulation is required and

when the occasional data output is required.
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It can be seen from Algorithm 1 that the computation cycle of SPFEM

is generally quite simple, which greatly ensures the applicability of GPU

parallel computing. Especially for Steps 2, Step 4 and Step 6 in Algorithm 1,

the GPU parallel computing is straightforward. Because in these steps, the

computations at nodes are independent to each other, they can be executed

on GPU by parallelising over nodes with no race condition. The so-called

race condition is defined as the situation that 2 or more threads try to change

the same shared or global memory location at the same time. However, for

Step 3 and Step 5, the smoothed strain and the internal force contribution

of a node are related to its adjacent nodes. As a result, the race condition

occurs, which should be paid more attention to. Note that Step 3 and Step

5 are both related to the strain smoothing technique.

3.2. Parallelisation of the strain smoothing technique

A crucial feature of the SPFEM is the adoption of strain smoothing tech-

nique. From a computation perspective, the core of this technique lies in the

calculation of the smoothed strain matrix B̃ for all nodes. It is the premise

of the calculation of smoothed strains and internal forces of nodes. In three-

dimensional cases, the number of related nodes for a node is much higher than

that in two-dimensional cases, which leads to a big smoothed strain matrix

for each node and greatly increases the memory requirement during the com-

putation of SPFEM. For example, in the kernel function for calculating the

internal forces of nodes, we need either to calculate the smoothed strain ma-

trix B̃ or to read it calculated before. In both approaches, the smoothed

strain matrices can be quite memory-consuming, which is a bottleneck for

the application to large-scale problems.
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To reduce the GPU memory consumption related to the strain smoothing

technique, new formulations are used in this study. The meaning of reducing

memory consumption is twofold. First, the main function of GPU parallel

computing is to solve large-scale problems. Reducing memory consumption

can increase the scale (i.e. number of nodes) of the problem to be simulated

with the same hardware. Please note that the memory of a GPU is constant

and not easy to be extended as a CPU. Meanwhile, reducing memory con-

sumption is also meaningful for improving efficiency. As the global memory

used to store the smoothed strain matrices is a high-latency memory, accesses

to the global memory are time-consuming and should be reduced as much as

possible to improve the efficiency.

Let’s start from the original formulation. The smoothed strain of a node

k is calculated by

ε̃k = B̃uk (16)

where uk is the vector assembled by the displacements of all the nodes in the

smoothing cell associated with node k. By substituting Eq. (2) into Eq. (16),

the smoothed strain of the node k is calculated as

ε̃k = (
1

Vk

Ek∑
i=1

1

4
V iBi)uk (17)

When calculating the smoothed strains of nodes with the original formu-

lation (Eq. (17)), parallelization over nodes is performed. In the thread of a

specific node k, looping over the elements related to this node is performed.

Noting the equivalence between the vector assembled by the displace-

ments of the nodes related to node k and that assembled by the displace-
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ments of the elements related to node k, the above equation can be re-written

as

ε̃k =
1

Vk

Ek∑
j=1

1

4
V jBjuj (18)

where Ek is the number of elements related to node k, V j is the volume of

element j, Bj is the strain matrix of element j in standard FEM, and uj

is the vector assembled by the displacements of element j. Please note the

difference between the original formulation (Eq. (17)) and the new formula-

tion (Eq. (18)). With the new formulation (Eq. (18)), parallelization over

elements can be easily performed to obtain the smoothed strains of all the

nodes.

The new formulation for the calculation of internal forces related to the

strain smoothing technique is a bit more complicated. In the original for-

mulation of SPFEM, the internal forces applied on its neighbour nodes for a

node k can be calculated as,

F int
k =

Nk∑
i=1

B̃T
k σkVk (19)

where Nk is the number of the neighbour nodes of node k. By substituting

Eq. (2) into Eq. (19), we have

F int
k =

Nk∑
i=1

Ek∑
j=1

1

4
V jBjσk (20)

where Ek is the number of elements related to node k. Since the two sum-

mations in Eq. (20) are both carried out on the elements related to node k,
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Eq. (20) can be re-written as

F int
k =

Ek∑
j=1

4∑
m=1

1

4
V jBj

mσk (21)

in which Bj
m is the strain matrix related to node m of element j.

Let us make a comparison between the original formulations (Eqs. (17)

and (19)) and the new ones (Eqs. (18) and (21)) from the perspective of

GPU memory consumption. In three-dimensional cases, the strain matrix

of node k related to a specific node consists of 18 floating-point numbers.

Hence, using the original formulation, a total of (Nk + 1)× 18 floating-point

numbers should be stored to obtain the smoothed strain matrix of a partic-

ular node k. As the number of the neighbour nodes Nk of a specific node

is undetermined, it is sensible to allocate a memory of equal size which is

slightly larger than needed. As stated above, the possible maximum value of

Nk in three-dimensional cases is much larger than that in two-dimensional

cases. In this study, Nk is taken to be 64 to guarantee robustness. Bearing

in mind that the smoothed strains and internal forces of all the nodes are

calculated in a parallelised way. As a result, M× (Nk +1)×18 floating-point

numbers should be saved during the computation, where M is the concur-

rent thread number in GPU, which generally ranges from several thousands

to tens of thousands for a common GPU. One may save memory by only

saving the derivatives of shape functions instead of the strain matrix. This

approach will surely reduce the memory requirement, but it is not an es-

sential improvement. However, with the new formulations, if we calculate

and store the strain matrices of all the elements before, which is sensible to
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avoid unnecessarily repeated computation, only the strain matrix variable

Bj
m is required to be loaded. Thus, in the kernel function for calculating the

smoothed strains of nodes and the kernel function for calculating the inter-

nal forces of nodes, the memory occupation related to the strain matrices is

greatly reduced from M × (Nk + 1) × 18 floating-point numbers to M × 18

floating-point numbers. The memory occupation can be further reduced by

only saving the derivatives of shape functions.

Note that as parallel computing is performed with GPU threads, the so-

called race condition may occur. With the new formulations, the smoothed

strain of a particular node may be changed by all the threads of the elements

related to it at the same time, and the internal force of a particular node

may also be changed by all the threads corresponding to its neighbour nodes

at the same time. So race condition occurs for both the calculations of the

smoothed strains and the internal forces. With the original formulations, the

former race condition does not occur while the latter race condition exists.

To deal with the race condition problem, the so-called atomic operations,

which are provided by CUDA, are used to calculate the smoothed strains

and the internal forces of nodes. With the atomic operations, we are capable

of reading, modifying, and writing a value back to the same memory address

while avoid interferences between different threads.

Please note that the time cost of atomic operations is generally notable.

However, in the present approach, because atomic operations are only per-

formed to accumulate the smoothed strains and the internal forces of nodes

whereas the intensive computations of the smoothed strains and the inter-

nal forces are still parallelized, the time cost of waiting in atomic operations
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is not so notable. Taking the computation of the smoothed strains as an

example, although atomic operations are performed with the new formula-

tion, the time cost is still slightly lower than that with the original formula-

tion. The main reason is that for each thread the computational workload is

much heavier with the original form although atomic operations are avoided.

With the original formulation, parallelization over nodes is performed. In

the thread of a specific node k, looping over the elements related to node k

is required. Moreover, the identification of the sequential number of node k

in its surrounding elements is also required. On the contrary, with the new

formulation, parallelization over elements is performed with a rather simple

procedure for each thread.

3.3. Parallelisation for getting the indices of elements and nodes related to

nodes

Another crucial step in the SPFEM is to get the indices of elements and

nodes related to all the nodes, although this step is not so time-consuming in

the entire simulation. This step should be performed in Step 2 in Algorithm

1, before the calculation of smoothed strains. A naive method is to loop

over all the elements for each node to determine if the element is related

to this node. However, this method is both time-consuming and memory-

consuming. A more efficient algorithm is used instead in this study.

As shown in Fig. 4, a kernel function in GPU is executed to perform the

same calculation for all the elements with parallelised GPU threads. For the

element i, its index i is recorded respectively to the four nodes of the element.

A key step is to accumulate the serial number of current element related to

each node. The so-called atomic operations are used again to do this. As
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the sequence of the related elements for each node does not matter in the

SPFEM, desired results can be obtained by the parallelisation over elements

with GPU threads.

It is more straightforward to get the indices of nodes related to nodes

once the indices of elements related to nodes are obtained. Parallelisation

over nodes with GPU threads can be performed without the so-called race

condition. For each node, all the nodes of the elements related to this node

are picked out and the unique indices of nodes are records as the indices of

nodes related to nodes.

4. Numerical examples

To validate the proposed approach and to evaluate the speedup of the

GPU parallel computing, three benchmark examples are numerically solved.

The first example is the vibration of an elastic continuum bar. This prob-

lem has an analytical solution and is suitable for validating the proposed

approach, especially for investigating the new formulations related to the

strain smoothing technique in terms of correctness and efficiency. In the sec-

ond example, the laboratory experiment of soil collapse is simulated. The

experiment was carried out by Bui [3] to validate their SPH approach for

geo-materials. The third example is the progressive failure of a long strain-

softening soil slope. Since the geometry of the problem is complicated during

the whole simulation, and a strain softening constitutive model is used, it is

suitable to validate the application capability of the proposed approach on

an actual engineering problem.

The GPU parallel computing was conducted on a personal computer with
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an NVIDIA GeForce GTX 1080Ti GPU. On this card, 3584 cores are avail-

able and the global memory is 11 GB. For comparison purpose, the first and

the second example were also solve by sequential CPU simulation. The CPU

is Intel i7-8650U with a frequency of 1.90 GHz. Different meshes with various

number of nodes are used for the first and the second examples to evaluate the

speedup thoroughly. In the first example, both single-precision and double-

precision simulations are performed for comparison. For other examples, only

double-precision simulations are performed, because single-precision simula-

tion is not suitable for complicated problems, such as the strain-softening [46]

and other specific behaviour of soil (e.g. [47–53]). Furthermore, the results

of the first example show that the efficiency of single-precision simulation is

only slightly higher than that of double-precision simulation.

4.1. Axial vibration of an elastic continuum bar

The first example considers the axial vibration of an elastic continuum

bar. As shown in Fig. 5, the length, width and height of the continuum

bar are 10 m, 1 m and 1 m respectively. The bar is linearly elastic and the

material parameters are: Young’s modulus E = 100 Pa, Poisson’s ratio ν =

0 and the density ρ = 1 kg/m3. The left end (x = 0 m) of the bar is fixed

while all other surfaces of the bar are free. Free vibration of the bar along

the axial direction (i.e. x-direction) is considered.

This problem may be solved using separation of variables [54]. The bar

is found to oscillate in modes that are dependent on the initial conditions. A

specific mode can be excited by using initial conditions which are multiples

of this natural mode of the system. Here, the first mode is considered, and
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thus the analytical solution of this problem is given by [54, 55]:

v(x, t) = v0cos(ω1t)sin(β1x)

u(x, t) = v0sin(ω1t)sin(β1x)/ω1

(22)

where v(x, t) is the velocity at time t and u(x, t) is the displacement at time

t. The eigenvalue is β1 = π/2L, and the frequency of oscillation related to

the eigenvalue is ω1 = β1c where c =
√
E/ρ is the speed of elastic wave. The

corresponding initial velocity and displacements are given by

v(x, 0) = v0sin(β1x)

u(x, 0) = 0
(23)

A total of 5 meshes with different numbers of nodes (12221, 88641, 289261,

674081, 1303101) are utilized in the simulations. For each mesh, both se-

quential CPU simulation and GPU accelerated simulation are conducted,

and both single-precision and double-precision simulations are performed.

Moreover, the original formulations and the new formulations related to the

strain smoothing technique are used respectively. A total time of 10.0 s is

simulated. The incremental time step size remains constant during each sim-

ulation. However, for different mesh density, the incremental time step size is

different to maintain numerical stability. Correct results are obtained with all

the simulations. The numerical results obtained by the single-precision GPU

simulation with the coarsest mesh and the new formulations are compared

with the analytical solution, as shown in Fig. 6. They are almost identical

to each other.
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Figure 7 shows the comparison of the computational time cost spent with

the original formulations and with the new ones. The time cost ratio, which

is defined as the ratio between the time cost with the original formulations

and that with the new formulations, is defined here to make a clear compar-

ison. It can be seen that less time cost is spent with the new formulation

during all the simulations. The ratio between the time cost with the original

formulation and that with the new formulation ranges from 1.71 to 2.54 for

single-precision GPU computation and ranges from 3.69 to 4.20 for double-

precision GPU computation. It is clear that adopting the new formulation

can not only save memory occupation but also greatly improve computa-

tional efficiency. Therefore, the new formulations are adopted throughout all

the following simulations due to their superiority.

The computational costs for different meshes with different simulation

measures are listed in Table 1. The double-precision CPU simulation with

the largest number of nodes is taken as a reference to evaluate the distribution

of the workload across the steps of the present approach. As shown in Fig. 8,

for this example, most of the computational effort is allocated to Step 3 and

Step 5 (please see Algorithm 1), which respectively account for 29.89% and

64.87% of the total workload. The computational effort of Step 1 and Step

2 is minimal because no re-meshing is performed. The computational effort

of Step 4 is low because a simple elastic constitutive model is used.

The speedup ratios between the GPU simulation and CPU simulation are

plotted in Fig. 9. The overall speedup ranges from 7.82 to 10.89 for single-

precision computation and ranges from 8.40 to 12.30 for double-precision

computation. It is clear that with the GPU-accelerated approach, a speedup
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around 10 can be achieved. Moreover, the speedup with finer mesh is gen-

erally slightly higher than that with coarser mesh. As shown in Fig 9, the

performance of GPU simulation varies for different steps in Algorithm 1. The

speedup of Step 4 is the largest because all the threads can be executed with-

out mutual effect. For Step 3 and Step 5, the speedup is smaller. However,

the speedup performance is still rather obvious. The speedup for Step 6 is

the lowest, which may be due to the algorithm complexity related to bound-

ary condition application and the relatively low computation intensity. Note

that since Step 1 is executed on the CPU, no speedup is recorded. Moreover,

Step 2 only takes a minimal time even for the finest mesh, which increases

the randomness of the value of speedup, so the speedup of Step 2 is also not

plotted in Fig 9.

4.2. Laboratory experiment of soil collapse

Bui et al. [3] conducted a simple laboratory experiment of soil col-

lapse to validate their SPH approach for large-deformation analysis of geo-

materials. Besides the SPH simulation [3], the experiment was also simulated

by MPM [56] and two-dimensional SPFEM [22], so it can serve as a good

benchmark. In the laboratory experiment, the soil continuum was modelled

by a large number of small aluminium bars, which is a common approach to

model cohesiveless soil physically. Two types of aluminium bars were used

with a diameter of 1 mm and 1.5 mm respectively and a length of 50 mm.

These aluminium bars were piled upon a flat surface in parallel, and thus

a plane-strain condition is mimicked. The soil continuum was modelled by

arranging the aluminium bars into a rectangular area (200 mm x 100 mm)

which is generated by standing two flat solid walls on the flat surface. The
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soil collapse was triggered by quickly removing the right supporting wall. A

reference grid was set behind the soil continuum, out of contact with the

aluminium bars, to measure surface configuration of soil continuum after

collapse. Moreover, square grids (20 mm x 20 mm) were plotted on the soil

continuum to visualize the failure pattern.

A critical problem is to determine the mechanical parameters of the soil

continuum modelled by aluminium bars that can be used in the following

numerical simulations. In the laboratory experiment, a shear box test appa-

ratus was designed to perform tests on a group of aluminium bars, and then

four experiments under different normal loading conditions were conducted

to obtain the parameters of the soil continuum.

A total of 5 meshes with different number of nodes (10999, 25535, 50338,

75720, 100072) are utilized for simulation (Fig. 10). For each mesh, double-

precision GPU simulation and sequential CPU simulation are conducted re-

spectively. The soil is treated as an elastic perfect plastic material with

Mohr-Coulomb yield criterion. A zero dilation angle is assumed, correspond-

ing to a non-associated flow rule. The following model parameters are used

according to [3]: shear modulus G = 0.7 MPa, Poisson’s ratio ν = 0.3, density

ρ = 2650 kg/m3, cohesion strength c = 0 kPa and friction angle ϕ = 19.8◦.

Before the simulation of soil collapse, the initial stress due to gravity is gen-

erated by a dynamic relaxation simulation, in which the bottom boundary

is fully fixed and the four side boundaries are constrained at their normal

directions. Then the soil collapse is triggered by removing the restraint of

the right boundary. A Coulomb contact model between soil and ground is

used, in which no tangential relative motion is assumed. A total time of 1.0
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s is simulated, after which a stable slope is formed. Adaptive time step size

is utilized during the simulation, and the scale factor α in Eq. (10) is taken

to be 0.9.

The final surface configurations after collapse obtained with different

mesh densities are compared with the experimental result, as shown in Fig. 11(a).

All numerical results show a similar response, and they all match well with

the experimental results. With the increase of the number of nodes, the

runout distance increases slightly. The failure line, which is defined as the

line between motionless soil and the moved soil, is also compared against

the experimental result and good agreement can also be found. As shown

in Fig. 11(b), the numerical results are compared with the results obtained

by other numerical methods (i.e. SPH [3] and MPM [56]), as well as two-

dimensional SPFEM [22]. All the numerical methods can well capture the

experimental result. The run-out distance obtained by this study is slightly

shorter than the two-dimensional SPFEM [22]. The reason may be that the

nodes in the three-dimensional case interact with more nodes in comparison

to two-dimensional cases. The final mesh configuration with the coarsest

mesh is chosen to make a visual comparison with the experimental result, as

shown in Fig. 12. It is clear that the three-dimensional SPFEM is capable of

reproducing the experimental result.

The computational costs of double-precision GPU simulation and sequen-

tial CPU simulation are listed in Table 2. The latter with the largest number

of nodes is taken as a reference to evaluate the distribution of the workload

across the steps of the present approach. As shown in Fig. 13, the time-

consuming steps are Step 2, Step 3 and Step 5, which respectively account
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for 19.33%, 20.84% and 36.66% of the total workload, while the computa-

tional effort of Step 6 is minimal. The above workload distribution may be

considered as a typical case for geotechnical applications.

As shown in Fig. 14, an overall speedup ranging from 8.21 to 11.17 is

achieved by GPU parallel computing. A speedup from 35.31 to 66.49 can

be achieved for the constitutive integration associated with plastic problems,

which is the highest in all the steps, because the parallel operations over

nodes are independent of other nodes. The speedup of Step 6 is the lowest

among all the steps, which is similar to the first example, i.e. the axial vibra-

tion of a continuum bar. Compared with the first example, more Delaunay

triangulation operations are performed in Step 1, which are not accelerated

by GPU parallel computing. Meanwhile, the constitutive integration in Step

4 achieves a higher speedup. These two factors together lead to an overall

speedup similar to the first example.

4.3. progressive failure of a long strain-softening soil slope

This example considers the progressive failure of a long strain-softening

soil slope. As shown in Fig. 15, the slope is initially 25 m long and 5 m

high and has a slope angle of 45◦. A width of 5 m is chosen to generate

a three-dimensional computation domain. The soil is considered to be a

strain-softening soil to mimic the progressive failure of a sensitive clay slope,

which is commonly found in nature. A main feature of sensitive clay is the

decrease of undrained shear strength with the increase of plastic strain. This

feature can be captured by a simple strain-softening Tresca model. As shown

in Fig. 16, the cohesion equals to its peak value (cp) at the beginning and

decreases proportionally to the equivalent plastic strain invariant defined by
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ε̄ =
√

2/3ep : ep. where ep is the deviatoric part of the plastic strain tensor.

When the invariant achieve a certain value (ε̄pr), the cohesion reduces to

its residual value (cr). This example, feature by the complicated geometry

during the whole simulation process and the strain-softening constitutive

model, has been well simulated by two-dimensional MPM [57], PFEM [18]

and SPFEM [13].

For the long strain-softening soil slope, the failure mode, run-out dis-

tance and retrogression distance are greatly influenced by the degree of the

strength reduction (i.e. cr/cp). As stated in Ref. [59], lower residual strength

corresponds to more times of retrogression failure, longer run-out distance

and longer retrogression distance. In this study, a relatively severe strength

reduction (i.e. 0.2) is considered to generate multiple retrogression failure.

It should be pointed out that the utilization of the strain-softening model

may result in the solution becoming mesh dependent. This stems from the

fact that the related boundary value problem is no longer elliptic in statics

or hyperbolic in dynamics [58]. Special regularisation techniques, such as

nonlocal theory or gradient plasticity, have to be incorporated to overcome

this issue. As this study focuses on the GPU acceleration of SPFEM, the

regularisation is not involved.

Double-precision GPU simulation is conducted to validate the capability

of the GPU-accelerated SPFEM on solving large-scale geotechnical problems.

A total number of 250584 nodes are used in the simulation. The following

model parameters are used: Young’s modulus E = 1.0 MPa, Poisson’s ratio

ν = 0.33, density ρ = 2000 kg/m3, peak cohesion cp = 20 kPa, residual

cohesion cr = 4 kPa, and the softening modulus H = -50.0 kPa. A Coulomb
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contact model between soil and ground is used and the friction coefficient is

taken to be 0.3. As shown in Fig. 15, the bottom boundary is fully fixed and

the left side boundary is constrained at x-direction. All the motions along

y-direction are constrained to mimic a plane strain response. The soil is first

assumed to be elastic and the initial stress due to gravity is generated by

a dynamic relaxation simulation. After the initial stress is generated, the

soil plasticity is considered. Since the slope can not maintain stability with

these material parameters, the landslide is triggered. A total of 10 seconds

are simulated to reproduce the whole progressive failure process. Adaptive

time step size is utilized and the scale factor α in Eq. (10) is taken to be 0.9.

The simulation is completed in around 5.66 hours. The initial vertical

stress is shown in Fig. 17(a). The development process of the progressive

failure is shown in Fig. 17(b)-(g), with coloured contours representing the

equivalent plastic strain invariant ε̄. Many shear bands occur during the

whole simulation process due to the adoption of the strain-softening soil con-

stitutive model. As shown in Fig. 17(b), the first major shear band (MS1)

initiate from the bottom and propagate towards the top surface. During the

sliding, two crossed shear bands (S1, S2) occur in the middle of the landslide

body. One (S1) propagates towards the top surface and the other (S2) prop-

agates towards the front inclined surface, resulting in a graben (Fig. 17(c)).

With the advancement of the landslide body, a new major shear band (MS2)

initiate from the bottom and propagate towards the top surface due to lack of

support, leading to the second retrogressive failure (Fig. 17(d)). And then,

a new shear band (S3) forms in the middle of the second landslide body,

which initiates from the bottom and propagate towards the front inclined
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surface (Fig. 17(e)). Then a new shear band (S4) initiates from the bottom

of the landslide body and propagates towards the top surface (Fig. 17(f)).

The retrogressive failure finally stops with the help of the friction between

the landslide bodies and the ground. Fig. 17(g) shows the final configuration

of the slope. Eventually, the retrogressive failure results in a deposit with a

run-out distance of 12.0 m and a retrogression distance of 13.6 m (Fig. 17(g)).

A crucial factor affecting the run-out distance and the retrogression dis-

tance is the friction coefficient between soil and ground. To investigate this,

a new simulation is conducted with a friction coefficient of 0.1. The com-

parison of the final configuration of the slope with different friction coef-

ficients is shown in Fig. 18. A smaller friction coefficient corresponds to

larger run-out distance and retrogression distance. The final run-out dis-

tance is 21.0 m while the retrogression distance is 18.4 m. Taken together,

the GPU-accelerated SPFEM is capable of solving large-scale complicated

large-deformation problem in geomechanics.

5. Conclusions

PFEM is an attractive numerical framework for large deformation anal-

ysis in geomechanics. By incorporating the strain smoothing technique for

node integration, the authors proposed an improved PFEM, i.e. SPFEM.

The primary advantages of SPFEM is that all the field viables are computed

and stored at nodes/particles. Some additional advantages include no volu-

metric locking when low order elements are used, and insenstivity to element

distortion. The objectives of the present work are twofold. First, the explicit

SPFEM is extended to three dimensional cases. Then, a GPU accelerated
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SPFEM is developed.

A GPU parallelisation strategy for the three-dimensional explicit SPFEM

is presented in detail. All the steps are executed on GPU except that the De-

launay triangulation is executed on CPU with a state-of-the-art library. Since

the numerical implementation of the operations related to strain smoothing

technique is crucial to memory consumption, new formulations to accumu-

late the smoothed strains and the internal forces of nodes are proposed. The

computational time cost ratio between the original formulation and the new

formulation ranges from 1.71 to 2.54 for single-precision GPU computation

and from 3.69 to 4.20 for double-precision computation. Compared with

the sequential CPU simulation, the GPU-accelearted simulation results in a

significant speedup. The overall speedup ranges from 7.82 to 10.89 for single-

precision computation for elastic problems and from 8.40 to 12.30 for double-

precision computation. A speedup from 35.31 to 66.49 can be achieved for

the constitutive integration associated with plastic problems, which is the

highest in all types of calculations in the SPFEM. Finally, the developed

GPU-accelerated SPFEM is employed to model the progressive failure of a

long strain-softening soil slope. It is found that the presented method can

model large-scale complex problems efficiently and delivers reliable results.
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Table 1: Computation time cost for the problem of axial vibration of a continuum bar
(second)

Simulations number
of

nodes

number
of time

step

Step
1

Step
2

Step
3

Step
4

Step
5

Step
6

Total

12221 2000 2.36 0.02 13.40 1.54 27.38 1.24 45.93
sing-precision 88641 4000 8.22 0.75 375.39 32.71 728.99 24.12 1170.18

CPU 289261 6000 25.25 7.70 2063.50 165.82 4111.97 122.75 6496.98
simulation 674081 8000 66.94 25.82 6498.63 510.78 13145.04 372.83 20620.04

1303101 10000 154.29 134.80 16296.07 1240.30 34079.17 919.40 52824.02
12221 2000 2.81 0.02 18.11 2.81 36.54 1.86 62.15

double-precision 88641 4000 9.89 0.51 424.05 47.22 841.97 31.81 1355.44
CPU 289261 6000 25.48 5.20 2278.51 238.39 4591.31 162.28 7301.16

simulation 674081 8000 74.94 20.70 7406.92 754.28 15675.08 512.34 24444.26
1303101 10000 142.11 43.24 19435.08 1920.80 42176.64 1296.54 65014.41
12221 2000 2.36 0.01 1.01 0.22 2.00 0.28 5.88

sing-precision 88641 4000 8.22 0.03 22.05 1.39 83.27 5.92 120.89
GPU 289261 6000 25.25 0.19 107.80 4.96 459.48 27.06 624.73

simulation 674081 8000 66.94 0.54 377.90 14.74 1676.92 93.64 2230.68
1303101 10000 154.29 0.94 807.00 32.52 3662.06 194.78 4851.59
12221 2000 2.81 0.03 1.14 0.16 2.71 0.55 7.40

double-precision 88641 4000 9.89 0.05 22.29 2.17 109.12 6.36 149.88
GPU 289261 6000 25.48 0.20 101.90 7.04 516.84 25.02 676.49

simulation 674081 8000 74.94 0.58 326.66 21.86 1701.70 78.44 2204.18
1303101 10000 142.11 1.14 784.38 50.34 4121.88 184.04 5283.89
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Table 2: Computation time cost for the problem of laboratory experiment of soil
collapse (second)

Simulations number
of

nodes

number
of time

step

Step
1

Step
2

Step
3

Step
4

Step
5

Step
6

Total

10999 54024 112 862 660 532 1221 118 3506
double-precision 25535 74025 320 2645 2234 1470 3708 401 10777

CPU 50338 93215 772 5265 6030 4021 10138 1045 27271
simulation 75720 112842 5559 29744 11923 8382 21327 1969 78904

100072 122841 6244 15548 16760 9733 29484 2665 80434
10999 54024 62 106 29 15 72 29 314

double-precision 25535 74025 244 253 102 36 477 70 1183
GPU 50338 93215 742 599 259 61 1323 126 3110

simulation 75720 112842 4260 955 491 108 2549 220 8583
100072 122841 2422 1228 721 140 3642 307 8459
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Figure 1: Smoothing cell construction (after [30]): (a) two-dimensional case; (b)
three-dimensional case
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Figure 3: GPU acceleration scheme of SPFEM
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Figure 18: Final deposit of the slope for various friction coefficients: (a) µ = 0.3; (b)
µ = 0.1
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