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Abstract—In FaceID era, large number of facial images could
be used to breach the FaceID system, which demands effective
FaceID privacy protection of the facial images for widespread
adoption of FaceID technique. In this paper, to our best knowl-
edge, we take the first step to systematically study such important
FaceID privacy issue, under the framework of Compressed
Sensing (CS) for fast facial image transmission. Specifically, we
develop the Face-IDentification Privacy (FaceIDP) approach to
protect the facial images from being used by the adversary to
breach some FaceID system. First, a Dictionary Learning neural
Network (DLNet) has been developed and trained with facial
images database, to learn the common dictionary basis of the
facial image database. Then, the encoding coefficients of the
facial images are obtained. After that, the sanitizing noise is
added to the encoding coefficients, which obfuscates the FaceID
feature vector that is used to identify the FaceID. We have
also proved that the FaceIDP is ε-differentially private. More
importantly, optimal noise scale parameters have been obtained
via the Lagrange Multiplier (LM) method to achieve better
data utility for a given privacy budget ε. Finally, substantial
experiments have been conducted to validate the efficiency of the
FaceIDP with two real-life facial image databases, i.e., the LFW
(Labeled Faces in the Wild) database and the PubFig database,
and the results show that it outperforms other commonly used
Differential Privacy (DP) approaches.

Index Terms—FaceID, Face Identification Privacy (FaceIDP),
Differential Privacy (DP), Compressed Sensing (CS), Dictionary
Learning Neural Network (DLNet).

I. INTRODUCTION

FACE recognition has been extensively used as a biometric
authentication method in many fields such as public

safety, finance, e-commerce, etc., due to its super convenience
[1]. Also, in the 5G and beyond era where images and videos
on the internet clouds can be transmitted and shared in real
time and faster speed than ever [2], [3]. This poses great threat
to the FaceID identification systems since the adversaries
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could combine a user’s multiple facial images to form the
3D feature point cloud and breaches the FaceID system to
identify the user of interest. This is especially true in the era
of Artificial Intelligence (AI): through training large number
of facial images of the users, face feature vectors could be
learned accurately; then the face identification of the user is
carried out through deep learning, leading to privacy leakage
from mining information of the publicly shared facial images
[4], [5], [6], [7]. Thus the FaceID systems face the real risk of
being breached and FaceID is forbidden in many cities, such
as San Francisco and Boston, in USA. Therefore, effective
FaceID privacy protection technique is urgent for widespread
adoption of FaceID applications.

However, there is lack of research on the privacy problem
of FaceID protection from falsified 3D feature cloud points
from machine learning of publicly released facial images.
However, research on other privacy problems other than the
FaceID privacy of publicly shared facial images exist. For
example, in order to protect the facial image privacy, image
obfuscation [8], [9], [10] such as pixelization and blurring, is
adopted to protect image features. Unfortunately, these meth-
ods could be re-identified. To fix this problem, a differentially
private pixelization is proposed [11]. Furthermore, under the
deep learning environment, adversarial perturbation generative
network is proposed to preserve image features [12], [13].
However, these privacy protection methods do not protect the
FaceID privacy.

What’s more, when facial images are released to the third
party such as cloud for public downloads, usually some kind
of compression technique is used to achieve fast image trans-
mission. The existing methods have to be optimized for the
particular image compression framework. One emerging image
compression technique is Compressed Sensing (CS), which
is an effective technique to increase the image transmission
speed through exploring the sparse property of the images
[14]. The CS technique can be implemented in both software
and hardware, and has already been widely used in optics
[15], [16], millimeter wave and terahertz imaging [2], [17],
[18], [19], [20], [21], [22], as well as wireless communication
[23], [24], [25], [26]. What’s more, since the total number of
significant sparsifying basis of the images database determines
the compression ratio of the CS technique, the facial image
basis has to be known to achieve the optimal CS image
transmission speed. Also, the facial image database is updated
in real time. Thus the sparsifying basis has to be learned
adaptively. All of these call for the Dictionary Learning neural
Network (DLNet), which can learns the sparsifying basis
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adaptively in real time [27], [28].
To deal with the FaceID privacy problem under the CS

framework, we propose a novel Face-IDentification Privacy
(FaceIDP) approach under the CS framework. Without loss of
generality, the 2D face identification, instead of the 3D FaceID
identification, is used to present the FaceIDP approach. Our
major contributions are summarized as follows,
• To our best knowledge, under the CS image transmis-

sion application scenario, we propose a novel FaceIDP
approach through adding the sanitizing noise at the face
encoding coefficients to protect the FaceID privacy, i.e.,
to prevent the adversary from using users’ facial images
to breach some FaceID systems.

• To achieve the optimal DP performance, a Dictionary
Learning neural Network (DLNet) has been developed
to adaptively learn the common dictionary facial image
basis of the facial image database so that only sanitizing
noise is added to those face encoding coefficients that
correspond to the important dictionary facial image basis.

• The Lagrange Multiplier (LM) method has been used to
obtain the mathematical formula of the optimized noise
scale parameters of the face encoding coefficients for the
constrained optimization problem of maximizing the data
utility for a given Differential Privacy (DP) budget ε.

• Extensive experiments have been conducted to test the
proposed FaceIDP approach with the Labeled Faces in
the Wild (LFW) database [29], and the result shows that
the FaceIDP approach outperforms other DP approaches
without optimization.

II. RELATED WORK

FaceID as an important technology, has been widely used.
Meanwhile, its privacy problem is also very important and
challenging. Works have been done on the cryptography-based
FaceID problems [1], [10]. These cryptography-based methods
can deal with facial image data securely. But the facial image
data collection center and the third party need to exchange
secrets/keys in a secure channel. It does not fit into our non-
interactive setting.

To the best of our knowledge, little research has been
conducted on the privacy problem of FaceID protection.
However, research on other privacy problems of the facial
images have been conducted. For example, to protect image
privacy, researchers used pixelization [8] and blurring methods
to achieve image obfuscation. Unfortunately, McPherson et
al.[9] studied pixelization and YouTube face blurring and
concluded that the obfuscated images using those methods can
be re-identified. Furthermore, in order to deal with such prob-
lem, Fan [11] proposed the differentially private pixelization
method to protect image features. However, it doesn’t focus
on differentially private FaceID problem.

Furthermore, regarding the deep learning, Tong and Zheng
[12] proposed an adversarial perturbation generative network
to generate perturbation to preserve image privacy. Yang et
al.[13] proposed a facial image privacy protection method by
adding perturbation in the principal components of the facial
images.

TABLE I
NOTATIONS AND DEFINITIONS

Symbol Description
F A facial image.

(A,B) A neighboring facial image pair.
F {F}: A FaceID that contains a facial image set of an individual.

(A,B) Neighboring FaceIDs of a pair of individuals.
F ′ A noisy facial image.
FM The 1D coding coefficients vector of length M .
F

{
FM

}
: the facial image coding coefficients dataset.

Fm {Fm}: the coding coefficient data subset.
DN×M The N ×M dictionary basis matrix.
V L The feature vector of a facial image F with length L.
PN A 1D pixel vector of a facial image F of length N .
P A set of facial image 1D pixel vectors

{
PN

}
.

f Probability Distribution Function (PDF).
Lap Laplace PDF.
CDF Cumulative distribution function of Laplace distribution.

Ω Probability space.
Pr Probability over a probability space Ω
U Data utility.
S Local sensitivity.
bM Laplace noise scale parameter vector of FM .
εm Locus privacy budget.
ε Loci privacy budget.

Therefore, it is necessary to study the optimal FaceID
privacy approach in order to achieve better data utility while
still protecting the FaceID system from being attacked by the
adversaries, which is the focus of this paper.

Fig. 1. The FaceIDP problem: the cloud server responds to the smartphone
clients’ request for face images and starts the CS face images transmission;
then the CS app in the smartphone clients receives and reconstructs the
face images, which could be used by the adversary to intrude some FaceID
identification system (left scenario); so the FaceIDP mechanism runs on the
cloud server side to sanitize the face images before the CS face images
transmission to protect the FaceID privacy of the face images (right scenario).

III. PROBLEM STATEMENT

To start, Table I lists some key variables used across this
paper with their explanations.

A. System Model

The typical working scenarios of the FaceIDP problem are
shown in Fig 1: the smartphone client initiates the request
for face images; then the cloud server responds to the request
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and sends the CS face images, with or without the FaceIDP
protection; upon receiving of the CS face images, the CS app
on the smartphone client reconstructs the 3D feature point
cloud from the face images, which could be used to intrude
some FaceID identification system by the adversary; without
the FaceIDP protection, the adversary could break the FaceID
identification system; while with the FaceIDP protection, the
FaceID identification system is intact.

B. Facial Images and FaceID

A facial image is any facial image of any individual, which
is characterized by its 1D pixel vector denoted as PN of length
N .

Definition III.1 (Facial Image Set). The facial image set P
consists of all individuals’ facial images,

P =
{
PN |N = 0, 1, · · ·

}
. (1)

Definition III.2 (FaceID). The FaceID F is the unique identi-
fication of an individual: it consists of a set of an individual’s
facial images F ,

F =
{
F : PN

}
. (2)

C. The Facial Images CS

Under the CS framework, sparse facial images can be
decomposed in some basis D. So only partial measurements
of the image are required for transmission, greatly increasing
the image transmission speed.

1) Facial Image Decomposition: A facial image can be
decomposed into some N ×M dictionary basis DN×M with
its coding coefficient vector FM of length M ,

PN = DN×MFM . (3)

2) The CS Framework: Assuming the basis D is known or
learned through the DL-NN, the CS performs the following
partial measurements,

yM = ΦM×NPN = ΦM×NDN×MFM , (4)

where PN is a facial image pixel vector and an M ×N mea-
surement matrix ΦM×N is used to generate the measurement
vector yM of length M . Also, the N ×M dictionary basis
matrix DN×M has a coefficient coding vector FM of length
M .

D. Facial Image Data

1) Facial Image Data Records: A facial image data record
is a set of facial images of an individual defined as Definition
III.3.

Definition III.3 (Data Record). A data record of the FaceIDP
is for all facial images F of an individual, identified by the
FaceID F and represented by the coding coefficients vector
FM , {

FM
}

: F ∈ F . (5)

2) FaceID Datasets: A FaceID dataset of the FaceIDP
consists of facial image sets of all users,

Definition III.4 (Dataset). The dataset of the FaceIDP is given
by,

F = {F} . (6)

Fig. 2. Feature vector spaces for FaceID A: all FaceIDs other than FaceID A
are neighboring face images sets of FaceID A; also, the closest neighboring
FaceID is the FaceID with the minimum separation distance d from the FaceID
A, i.e., FaceID B; Finally, the closest face images pair is the face images in
the closest FaceID pair that has the minimum separation distance, i.e., the
face pair (A,B).

3) The Neighboring Data Records: The neighboring data
records are a user’s facial image set and all other users’ facial
image set, represented by their coding coefficients vectors,

Definition III.5 (The Neighboring Facial Image Sets). The
neighboring facial image sets are the face image set of a user
(A ∈ A) and the face image set of all other users (B ∈ B),({

F
(A)

M : A ∈ A
}
,
{
F

(B)

M : B /∈ B
})

: B ∪ A = ∅. (7)

4) The Closest Neighboring Face Image Pair: The closest
neighboring face images are a pair of most similar face images
of the neighboring face image sets in Definition III.5, under
the measure of M,

Definition III.6 (The Closest Neighboring Face Images). The
cloest neighboring face image pair is,

(A,B) : argmin
B

{|M (A)−M (B)|} . (8)

E. The FaceIDP under the CS Framework

In this paper, we study the privacy problem of the FaceID
under the CS framework: to protect the user’s FaceID from
being attacked by the adversary while still providing the
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optimal data utility for the face image CS application to
achieve fast face image transmission.

F. The DP Framework

Definition III.7 (Differential Privacy). Let M be a random-
ized query measure function, A be any output ofM, A and B
be two neighboring datasets.M will be ε-differential private,
if the following is satisfied

exp(−ε) ≤ Pr(M(A) ∈ A)

Pr(M(B) ∈ A)
≤ exp(ε).

Under the scenario of FaceID, we are interested only in
whether the FaceID system can distinguish between two
closest face images, the neighboring datasets are the the closest
neighboring face images given in Definition III.6.

1) The FaceID Query Measure Function: The FaceID
query measure functionM is to identify a user’s identification
based on all noisy face images of the user. The measured
outcomes are either “1” if the measure function M can
identify the user’s identification or “0” if the measure func-
tion M cannot identify the user’s identification, above some
confidence probability level.

G. Adversary Model

The goal of the FaceIDP is to prevent the adversary from
using a set of sanitized facial images of a user to pass the
FaceID identification system. Thus the sanitizing noise has to
be added in such a way that the FaceID identification system
cannot distinguish if a set of noisy facial images belong to a
user or not, with some confidence probability level.

IV. CONCEPTS

In this section, some basic concepts are given.

A. The Locus Differential Privacy

The Locus Differential Privacy (Locus-DP) is defined at
each locus of a loci [4], [5], [6],

Definition IV.1 (The Locus Differential Privacy). The random
obfuscating measure function M′ for a data subset Fm of a
given data set FM : Fm ∈ FM ,m = 1, · · ·M , is said to be
εm-deferentially private if the following probability condition
is satisfied after the sanitizing noise is added to Fm,

exp (−εm) ≤
Pr
{
M′

(
F

(i)
m

)}
= F ′m

Pr
{
M′

(
F

(j)
m

)}
= F ′m

≤ exp (εm) ,

where in this paper, the random obfuscating measure function
M′ is the Euclidean norm distance measure M given below
that is sanitized by the Laplace noise,

M
(
F

(A)

M − F (B)

M

)
≡
∣∣∣∣∣∣F (A)

M − F (B)

M

∣∣∣∣∣∣
2

=

√√√√ L∑
`=1

(
F

(A)
m − F (B)

m

)2

. (9)

B. The Loci DP or DP

The loci DP or simply DP [30], [31] is defined on the
data set FM : {Fm|m = 1, · · · ,M} in such as way that the
sanitizing noise added to Fm according to Definition III.7
will satisfy the following probability relation,

Definition IV.2 (Loci DP or DP).

exp (−ε) ≤
Pr
{
M
(
FM

)}
= F

′
M

Pr
{
M
(
FM

)}
= F

′
M

≤ exp (ε) .

C. Joint Probability Bounds

From Definition IV.2, it is clear that the privacy budget ε
is closely related to the lower and upper bounds of numerator
and denominator. The joint Probability Distribution Function
(PDF) of multivariate random variables vector FM of length
M , denoted as f(FM ), has its lower and upper bounds on a
domain Ω given as follows,

Lemma IV.1 (Bounds of the Joint Probability). The lower and
upper bounds of the joint probability of f(FM ) on a domain
Ω is given by

Pr(FN ∈ Ω)

 ≥ max
ΩFm

{
M∏
m=1

Pr(Xm ∈ ΩFm
)

}
,

≤ Pr(FM ∈ Ω) ≤ minm {Pr(Fm ∈ Ω)},

where Ω = I −Ω is the complementary domain with I being
the entire domain of interest; and ΩFm is the sub-domain in
which all FM belongs to Ω.

Proof: The joint probability distribution can be expressed in
terms of the conditional probability distribution,

f(F ) = f(Fm)f (· · ·Fm−1, Fm+1, · · · |Fm) ≤ f(Fm),

where the following conditional probability property has been
used,

f (· · ·Fm−1, Fm+1, · · · |Fm) ≤ 1.

from which the probability in domain Ω is given by,

Pr(F ∈ Ω) =

∫
F1

· · ·
∫
FM

f(F )dF1 · · · dFM (10)

≤
∫
F1

· · ·
∫
FM

f(Fm)dF1 · · · dFM = Pr(Fm ∈ Ω),

and the upper bound on the right hand side of Lemma IV.1
is proved,

Pr(F ∈ Ω) ≤ min
m
{Pr(Fm ∈ Ω)} . (11)

The lower bound of the left hand side of Lemma IV.1 can
be obtained by finding the sub-domains of all Fn, denoted as
ΩFm

, in which all FM belongs to Ω and the probability is
given by,

Pr(FM ∈ Ω) ≤ min
m

{
Pr(Fm ∈ Ω)

}
, (12)
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from which the lower bound of the probability in domain Ω
is given by,

Pr(F ∈ Ω) ≥
∫
F1

· · ·
∫
FN

f(F )dF1 · · · dFM

≥
∫

ΩF1

· · ·
∫

ΩFM

f(Fm)dF1 · · · dFM =

M∏
n=1

Pr(Fm ∈ ΩFm
),

where independence has been assumed for all elements of FM
and the lower bound is thus obtained as,

Pr(F ∈ Ω) ≥ max
ΩFm

{
M∏
m=1

Pr(Fm ∈ ΩFm)

}
,

from which Lemma IV.1 is proved. �

D. Data Utility in the CS Framework

When the coding coefficients noise nM is added to a face
image’s coding coefficients FM , the noisy image is thus
obtained as,

P
′
N = PN +DN×MnM . (13)

Then, the data utility under the CS framework is thus
defined as follows,

Definition IV.3 (Data Utility). The data utility is defined as
the visual quality of the image [12]: here the expectation of
the variance of the reconstructed noisy image from the original
image,

U = E
{∣∣∣P ′N − PN ∣∣∣2

2

}
. (14)

Substituting Eq. (13) into Eq. (14), the data utility is
obtained,

U = E
{
nTM

[
D
T

N×MDN×M

]
nM

}
=

M∑
m=1

Wmσ
2
m, Wm =

N∑
n=1

D2
n,m, (15)

where σm is the standard deviation of the noise component
nm, which is assumed to be independent from each other.

E. Differential Privacy for FaceID

FaceID can be considered as a special classification method.
FaceID takes the human face as input and extract the feature
vector, denoted by F , of the human face and then adopts
some judgement metrics, denoted by M, to identify which
individual the human face will be assigned to, denoted by A.
The privacy budget ε for FaceID is defined as follows,

Definition IV.4 (Privacy Budget). The privacy budget for the
DP problem of FaceID is defined as the negative logarithmic
value of the maximum ratio between the probabilities of the
assigned FaceID A of any pair of human face images (A,B)

that belong to two different FaceIDs A ∈ A, B ∈ B after the
sanitizing noise is added,

ε = − ln

max


Pr
(
P

(B′)

N : B′ ∈ A
)

Pr
(
P

(A′)

N : A′ ∈ A
)

 , (16)

where P
(B′)

N is the noisy face image B′ that belongs to the
FaceID B and P

(A′)

N is the noisy face image A′ that belongs
to the FaceID A.

F. Optimal Noise Scale Parameters

The data utility in Definition IV.3 and the privacy budget
in Definition 16 are a balanced pair: if the data utility is high
(U is low), the privacy is low (ε is high) and vice versa. Also
they are both functions of the noise scale parameter of nM ,
denoted as bM . So it is desire to optimize the data utility U
for the given privacy budget ε = ε0, which is the constraint
optimization problem,

Lemma IV.2. The constraint optimization of the data utility U
for a given privacy budget ε can be done through the Lagrange
Multiplier (LM) method,

∂

∂bM
L(bM ) = 0; ε(bM ) = ε0, (17)

L(bM ) = U(bM ) + λ
[
ε(bM )− ε0

]
,

Proof: The constraint optimization problem can be expressed
as follows,

min
{
U(b)

}
, s.t. ε(b) = ε0, (18)

The optimization is achieved when the derivatives of L(bN )
with respect to both bN and the Lagrange multiplier λ and
Lemma IV.2 is proved.

�

Fig. 3. The working principle of the DLNet to learn the sparse dictionary
basis of the face images.

V. OUR APPROACH

In this section, we present the details of our proposed
FaceIDP approach. Under the CS framework, the face images
are represented as the coding coefficients vectors under some
face images’ dictionary basis. So we first build the DLnet
to learn the face images’ dictionary basis. Then the sanitizing
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noise is added to the coding coefficients vectors. After that, the
probabilities of the noisy neighboring face image pair (A,B)
that are assigned the FaceID A are calculated. Finally, the
privacy budget’s lower and upper bounds are obtained.

A. The DLNet

Fig. 3 shows the working principle of the DLNet for face
images’ dictionary basis learning [28]: the DLNet consists of

multiple layers with their basis denoted as D
(k)

Mi+1×Mk
, k =

1,K and the corresponding coding coefficients denoted as

F
(k)

Mk
; Both the dictionary basis and the coding coefficients

can be trained through minimizing the two error functions,
i.e., the mean square error of the reconstructed image E,

E =
∣∣∣P ′N − PN ∣∣∣2 , (19)

as well as the `1 norm of the sparse codes
∣∣∣∣F (k)

Mk

∣∣∣∣
1

.

The DLNet is trained through two sequential steps: 1) updat-
ing of the parameters through the Stochastic Gradient Descent
(SGD) method; and 2) performing the `1 norm operation on
the updated parameters.

1) The SGD Updating: First, the gradient of parameter x,
denoted as ∇xE, can be obtained through the train rule,

∇xE = −
N∑
n=1

(Pn − P ′n)∇xP ′n, (20)

and the parameter x is updated as follows

x = x− η∇xE, (21)

with η being the learning rate and the parameter x is either
the dictionary bases or the coding coefficients,

x =

{
DMk×M , F

(k)

Mk

}
. (22)

2) The `1-norm Operation: Then, the `1-norm Operation

is performed on the SGD updated coding coefficients F
(k)

Mk

through the Iterative Soft Thresholding Algorithm (ISTA) to
achieve the sparsity of the coding coefficients,

F
(k)

Mk
= sign

{
F

(k)

Mk

}
max

{
0, F

(k)

Mk
− λ
}
, (23)

where λ is the thresholding value.
Finally, after the training of the DLNet, the total dictionary

basis DN×M is obtained as follows,

DN×M = DN×MK

(
K∏
k=1

DMk+1×Mk

)
DM1×M . (24)

B. Data Utility

For joint Laplace distribution of FM , the data utility U in
Definition IV.3 is reduced to the following,

U =

M∑
m=1

2Wmb
2
m, (25)

where the variance of the Laplace distribution σ2
m = 2b2m has

been used.

Fig. 4. PDF spaces and sensitivities of the FaceIDP shows the relation
between the PDF space of the feature vector and the PDF space of the coding
coefficients vector for the closest neighboring face image pair (A ∈ A, B ∈
B). Both the origin of the feature vector space and the coding coefficients
space are set to the center of FaceID A.

C. Privacy Budget

According to the definition of the privacy budget in Defini-
tion 16, the lower bound and upper bound of two probabilities
have to be computed: 1) the probability that a noisy face image
B′ of FaceID B is mistakenly assigned to FaceID A; and 2)
the probability that a noisy image A′ of FaceID A ∈ A is
still assigned the correct FaceID A. These probabilities are
related to two inter-correlated provability spaces, as shown in
Fig. 4: 1) the FaceID feature vector space; and 2) the face
coding coefficients space. First, the FaceID A is assigned to
a face image F through the Euclidean norm measure M on
the feature vector V L of length L,

F ∈ A :M
(
V L
)

=
∣∣∣∣V L∣∣∣∣2 ∈ ΩA =

∣∣∣∣V L∣∣∣∣2 ≤ R,∣∣∣∣V L∣∣∣∣2 ≡
√√√√ L∑

`=1

(VL)
2
, (26)

where R is the radius of FaceID A as shown in Fig. 4.
Then, the probability of a face F assigned FaceID A is

given by,

PF = Pr
(
M
{
V L
}
∈ ΩA

)
. (27)

Also, the feature vector space V L is related to the face
coding coefficients vector FM . For example, when the change
of a single face coding coefficients element Fm corresponds
to a provability curve

∣∣∣∣V L∣∣∣∣2 in the feature vector space V L,
as shown in Fig. 4.

Definition V.1 (Probability Boundary Edges). The probability
boundary edges define the probability space within which
the noisy image B′ is assigned the FaceID A, while other
coefficients elements are set to zeros, i.e., F (B′)

m′ = 0,m′ 6= m,(
s−m, s

+
m

)
≡ F (B′)

m ∈
(
s−m, s

+
m

)
∈ ΩA. (28)
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1) Probability of the Noisy Face B Assigned FaceID A:
The probability that a noisy face image from its original face
image B of FaceID B is mistakenly assigned to FaceID A is
given by,

PB ≡ Pr
(
F

(B′)

M : B′ ∈ A
∣∣∣ bM) = Pr

(
M
{
F

(B′)

M

}
∈ ΩA

)
=

∫
· · ·
∫

M
{
F

(B′)
M

}
∈ΩA

fbM

(
F

(B′)
1 , · · · , F (B′)

M

)
dF

(B′)

M ,

where fbM is the joint Laplace PDF of F
(B′)

M with the noise
scale parameter vector of bM ,

fbM

(
F

(B′)
1 , · · · , F (B′)

M

)
= Lap

(
F

(B′)

M

∣∣∣ bM) , (29)

Lap
(
F

(B′)

M

∣∣∣ bM) =

M∏
m=1

Lap
(
F (B′)
m

∣∣∣ bm) ,
where independence has been assumed for FM .

Now look at the lower bound and upper bound of the
probability according to Lemma IV.1. First, the probability
upper bound is given by,

P+
B ≡ max

{
Pr
(
M
{
F

(B′)

M

}
∈ ΩA

)}
(30)

= min
m

∫
· · ·
∫

Fm∈ΩA

Lap
(
F (B′)
m − F (B)

m

∣∣∣ bm) dF (B′)
m ,

= min
m

{
CDF

(
s+
m − F (B)

m

)
− CDF

(
s−m − F (B)

m

)}
,

where CDF is the cumulative distribution function of the
Laplace distribution; and s−m and s+

m are the left and right
probability boundary edges of coding coefficients element m
in ΩA given in Definition V.1.

Similary, according to according to Lemma IV.1, the prob-
ability lower bound is given by,

P−B ≡ min
{
Pr
(
M
{
F

(B′)

M

}
∈ ΩA

)}
= max

ΩA,m

{
M∏
m=1

Pr
(
F (B′)
m ∈ ΩA,m

)}
, (31)

where the local probability space ΩA,m can be obtained as
follows,

Definition V.2 (Local Probability Domain). The local prob-
ability domain is defined as the maximum linear scaling of
space bounded by the probability boundary edges such that
the noisy image B′ is assigned the FaceID A,

ΩA,m = α
(
s−m, s

+
m

)
: α = argmax

α
{B′ → A} , (32)

for all coding coefficients elements m = 1, · · ·M and α is the
linear scaling parameter.

Now the probability lower bound in Eq. (31) reduces to the
following,

P−B =

M∏
m=1

{
CDF

(
αs+

m − F (B)
m

)
− CDF

(
αs−m − F (B)

m

)}
.

(33)

2) Probability of the Noisy Face A Assigned FaceID A:
Similarly, the probability that a noisy image A′ from a FaceID
A ∈ A is still assigned the correct FaceID A has the following
uppper bound and lower bound,

PA ≡ Pr
(
M
{
F

(A′)

M

}
∈ ΩA

)
P+
A ≡ max

{
Pr
(
M
{
F

(A′)

M

}
∈ ΩA

)}
= min

m

{
CDF

(
s+
m

)
− CDF

(
s−m
)}
,

P−A ≡ min
{
Pr
(
M
{
F

(A′)

M

}
∈ ΩA

)}
=

M∏
m=1

{
CDF

(
αs+

m

)
− CDF

(
αs−m

)}
. (34)

3) Privacy Budget Bounds: With the above probability
bounds, the privacy budget bounds can be obtained.

Lemma V.1. The privacy budget has the lower bound and
upper bound of

ε−
(
bM
)
≤ ε

(
bM
)
≤ ε+

(
bM
)
, (35)

where ε− and ε+ are the lower bound and upper bound given
below.

Proof: The privacy budget ε is obtained from Definition 16,

ε
(
bM
)

= − ln

(
max
(A,B)

{
PB
PA

})
. (36)

From Eq. (30) and Eq. (34), the lower bound of the privacy
budget is given by,

ε− = max
(A,B)

{
ln

(
P−A
P+
B

)}
= max

(A,B)

{
ln

(
P−A

min
{
P+o
B , P+i

B

})} , (37)

where

P−A =
∏
m

1−
exp

(
−αs

+
m

bm

)
+ exp

(
αs−m
bm

)
2

 ,

P+o
B = min

FB
m /∈(s−m,s+m)


∣∣∣exp

(
−S

+
m

bm

)
− exp

(
−S

−
m

bm

)∣∣∣
2

 ,

P+i
B = 1− max

FB
m∈(s

−
m,s

+
m)

exp
(
−S

+
m

bm

)
+ exp

(
−S

−
m

bm

)
2

 ,

and S−m and S+
m are the distances from the left and right

probability boundary edges given below,

S−m =
∣∣FBm − s−m∣∣ ; S+

m =
∣∣FBm − s+

m

∣∣ . (38)

Similarly, from Eq. (33) and Eq. (34), the upper bound of
the privacy budget is given by,

ε+ = max
(A,B)

{
ln

(
P+
A

P−iB P−oB

)}
, (39)
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where

P+
A = min

m

1−
exp

(
−S

+
m

bm

)
+ exp

(
−S

−
m

bm

)
2

 , (40)

P−oB =
∏

FB
m /∈(s−m,s+m)


∣∣∣exp

(
− S̃

+
m

bm

)
− exp

(
− S̃

−
m

bm

)∣∣∣
2

 ,

P−iB =
∏

FB
m∈(s

−
m,s

+
m)

1−
exp

(
− S̃

+
m

bm

)
+ exp

(
− S̃

−
m

bm

)
2

 ,

where S̃+
m and S̃−m are defined as follows,

S̃+
m =

∣∣FBm − αs+
m

∣∣ , S̃−m =
∣∣FBm − αs−m∣∣ .

After some mathematics calculation, the upper bound of the
privacy budget can be expressed as follows,

ε+ = δ +
∑

FB
m /∈(s−m,s+m)

Sm
bm

,

with

δ = max
(A,B)

{
ln

(
P+
A∏

P−iB
∏
P̃−oB

)}

P̃−oB =
∏

FB
m /∈(s−m,s+m)


∣∣∣∣1− exp

(
−|S̃

+
m−S̃

−
m|

bm

)∣∣∣∣
2

 ,

where the local sensitivity Sm is defined as follows,

Definition V.3 (Local Sensitivity). The local sensitivity is de-
fined as closest distance from the coding coefficients elements
to their probability boundary edges,

Sm = min
{
S̃−m, S̃

+
m

}
. (41)

�

VI. ANALYSIS

In this section, the FaceIDP noise mechanism is proved to
satisfy the ε-deferentially private guarantee.

Theorem VI.1. The noise mechanism of the FaceIDP satisfies
ε-differential privacy,

exp (−ε) ≤
Pr
(
F

(B′)

M : B ∈ A
)

Pr
(
F

(A′)

M : A ∈ A
) ≤ exp (ε) ,

with

ε = δ +
∑

FB
m /∈(s−m,s+m)

Sm
bm

.

Proof: From Lemma V.1, the privacy budget has its upper
bound of

ε
(
bM
)
≤ δ +

∑
FB

m /∈(s−m,s+m)

Sm
bm

,

from which Theorem VI.1 is proved. �

VII. OPTIMAL NOISE FOR BETTER DATA UTILITY

From Lemma IV.2, the data utility U can be optimized
to obtain the optimal noise scale parameter bM , for a given
privacy budget ε,

min
bM

{
U =

M∑
m=1

2Wmb
2
m

∣∣∣∣∣ ε(bM ) = ε0

}
. (42)

With the probabilities given in Eq. (40), the LM optimiza-
tion problem in Eq. (42) can be solved numerically. Under
the approximation that P+

A , P−iB and P−iB are constants, the
privacy budget factor δ is also a constant and an effective
privacy given budget ε′0 can be defined according to Theorem
VI.1

ε′0 = ε0 − δ =
∑

FB
m /∈(s−m,s+m)

Sm
bm

, (43)

and the LM optimization problem in Eq. (42) reduces to the
following,

∂

∂bM
L(bM ) = 0;

∑
FB

m /∈(s−m,s+m)

Sm
bm

= ε′0 = ε0 − δ, (44)

L(bM ) =
∑

FB
m /∈(s−m,s+m)

2Wmb
2
m + λ

 ∑
FB

m /∈(s−m,s+m)

Sm
bm
− ε′0

 .
Theorem VII.1 (Optimal Noise Scale Parameters). The opti-
mal noise scale parameters vector b∗m is given by,

b∗m =
Sm
ε′m

, (45)

with

ε′m = pmε
′
0

pm =
W

1/3
m S

2/3
m∑

FB
m /∈(s−m,s+m)

W
1/3
m S

2/3
m

.

Proof: From Eq. (44),

∂

∂bM
L(bM ) = 0→ bm =

(
λSm
4Wm

)1/3

, (46)

from which the constraint of the privacy budget is given by,∑
FB

m /∈(s−m,s+m)

S
2/3
m (4Wm)

1/3

(λ)
1/3

= ε′0, (47)

and

λ =


∑

FB
m /∈(s−m,s+m)

S
2/3
m (4Wm)

1/3

ε′0


3

. (48)

Substituting Eq. (48) into Eq. (46), the noise scale param-
eters are obtained and Theorem VII.1 is proved. �

VIII. ALGORITHM

The algorithm for the FaceIDP is shown in Algorithm 1.
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Algorithm 1 FaceIDP
Input: Face images P and privacy budget ε.
Output: Sanitized face images P′ satisfying DP.

1: P′ = ∅
2: Learn the sparse dictionary basis D of the face images

data set through the DLNet.
3: for each face image PN ∈ P do
4: Decompose the face image PN into the product of the

selected dictionary basis DN×M and coding coefficients
vector FM .

5: Compute the weight vector WM according to Eq. (15).
6: Calculate the sensitivity vector SM according to Eq.

(41).
7: Compute the optimal noise scale parameters bM ac-

cording to Theorem VII.1.
8: Obtain the coding coefficients noise through the joint

Laplace distribution: δM =
∏M
m=1 Lap(Fm|bm).

9: Obtain the sanitized noisy image P
′
N according to Eq.

(13).
10: Update the sanitized image dataset: P′ = P′ ∪ P ′N .
11: return P′.

IX. EXPERIMENTAL RESULTS

During the FaceIDP experiment, the pre-trained model of
Dlib, a ResNet based neural network, is used in Python
3.7 to perform the face recognition. The has been trained
and tested with two databases: 1) LFW database [29] and
2) PubFig database [32]. On one hand, LFW is a database
of face photographs designed for studying the problem of
unconstrained face recognition. On the other hand, unlike most
other existing face databases, these images of the PubFig
database are taken in completely uncontrolled situations with
non-cooperative subjects.

The face recognition consists of 4 common stages:
face detection, face align, face encodings representation
and face verification. The facial landmark detector file
is “shape predictor 68 face landmarks.dat” and the ResNet
model file is “dlib face recognition resnet model v1.dat”
[33]. The face encoding feature vector V L has a dimension of
L = 128 and the Euclidean distance is used to recognize the
faces with a threshold of 0.6.

To show the efficiency of our optimal FaceIDP method,
we compared it to the standard-DP method and the partial-
DP method where sanitizing noise is added to partial coding
coefficients that lie outside of the Probability Boundary Edges
according to Definition V.1 : FBm /∈ (s−m, s

+
m), i.e., sanitizing

noise is added to coding coefficients that have the most
significant effect on the face encoding feature vectors, as
shown in Theorem VI.1.

A. The DLNet

First, the common bases of the face images DN×M are
learned through the DLNet in Section V-A. 1000 face images
of the LFW database are used to train the DLNet to obtain
100 face dictionary bases. During the training, the learning

Fig. 5. (LFW Database) The closest neighboring Face A and Face B for a
given data utility U = 13: 1st column) original faces; 2nd column) Standard-
DP noisy faces; 3rd column) Partial-DP noisy faces; and 4th column) the
optimal FaceIDP noisy faces.

Fig. 6. (PubFig Database) The closest neighboring Face A and Face B for a
given data utility U = 13: 1st column) original faces; 2nd column) Standard-
DP noisy faces; 3rd column) Partial-DP noisy faces; and 4th column) the
optimal FaceIDP noisy faces.

rate of the SGD η and the ISTA thresholding value λ are set
as follows,

η = 0.01; λ = 0.01 max

{
F

(k)

Mk

}
, k = 1, 2, · · · ,K.

B. The Sanitized Face Images

Then, we obtained the closest neighboring face image pair
according to Definition III.6, i.e., the minimum Euclidean
distance difference. For the LFW database, the obtained closest
neighboring face images are shown in the 1st column of Fig. 5,
which are labeled as Face A and Face B. Next, the sanitizing
noise for a given data utility U = 13 in Eq. (25) is added to
the closest neighboring face images with the 3 DP methods,
i.e., the Standard-DP sanitized face images in the 2nd column;
the Partial-DP sanitized face images in the 3rd column; and
the optimal FaceIDP sanitized face images in the 4th column.
To show the difference clearly, Fig. 7 zooms in the left eye of
Face A and mouth of Face B, from which we can see that the
optimal FaceIDP method obtain the most significant difference
from the original face images, providing better protection for
the FaceID privacy or smaller privacy budget ε, for a given
data utility U . Similarly, for the PubFig database, Fig. 6 shows
original and noisy face images of the 3 approaches, for a data
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Fig. 7. (LFW Database) The zoom-in view of (left) eye and mouth of the
closest neighboring Face A and Face B of Fig. 5, for a given data utility
U = 13: 1st column) original (left) eye and mouth; 2nd column) Standard-
DP noisy (left) eye and mouth; 3rd column) Partial-DP noisy (left) eye and
mouth; and 4th column) the optimal FaceIDP noisy (left) eye and mouth.

Fig. 8. (PubFig Database) The zoom-in view of (left) eye and mouth of the
closest neighboring Face A and Face B of Fig. 5, for a given data utility
U = 13: 1st column) original (left) eye and mouth; 2nd column) Standard-
DP noisy (left) eye and mouth; 3rd column) Partial-DP noisy (left) eye and
mouth; and 4th column) the optimal FaceIDP noisy (left) eye and mouth.

utility U = 15. Also, Fig. 8 shows the zoom in views of
the left eye and mouth respectively, from which one can see
that the privacy budget ε is smaller for the optimal FaceIDP
method, as expected. In particular, it can be noticed that the
quality of the facial images of the PubFig database (Fig. 8) is
not as good as those of the LFW database (Fig. 7) due to the
uncontrolled situations with non-cooperative subjects.

C. The Sanitized Coding Coefficients and Feature Vectors

After that, to show the quantified results of the privacy
protection, both the sanitized coding coefficients and the
feature vectors are calculated. For the LFW database, the
coding coefficients difference (dimension of 100) between
Face A and Face B is obtained, as shown in Fig. 12. Also,
the feature vector difference (dimension of 128) between Face
A and Face B is obtained, as shown in Fig. 10, from which
we can see that the sum of the feature vector difference of
the optimal FaceIDP (red triangles) is the smallest for a given
data utility U , indicating better FaceID privacy protection or
smaller ε. Similarly, for the PubFig database, Fig. 9 and Fig.
11 show the the coding coefficients differences and the feature
vector differences for the original face images and noisy face
images of the 3 approaches respectively, from which one can
see better FaceID privacy protection has been achieved for the
optimal FaceIDP method.

D. The Privacy Budget and Data Utility

To show the performance of the optimal FaceIDP, the
privacy budgets ε for different data utilities have been obtained.

Fig. 9. (PubFig Database) The coding coefficients difference between Face A
and Face B: original value, Standard-DP noisy value, Partial-DP noisy value
and the optimal FaceIDP noisy value.

Fig. 10. (LFW Database) The feature vector difference between Face A and
Face B: original value, Standard-DP noisy value, Partial-DP noisy value and
the optimal FaceIDP noisy value.

For the LFW database, ε is calculated for U = [5, 30]
and the result is shown on the left plot of Fig. 13, from
which it can be seen that the FaceID privacy protection of
the FaceIDP method is the best among all methods, i.e., it has
the smallest privacy budget ε (green stars). Also, the Partial-
DP method is better than the Standard-DP method, which
is because that only the most significant coding coefficients
are used in the Partial-DP method to achieve better privacy
protection with smaller data utility U . Also, on the right plot
of Fig. 13, the data utility U is plotted against the privacy
budget ε, which again shows that the optimal FaceIDP has the
smallest data utility (the best data utility) for a given privacy
budget ε = (2.2, 2.9). Also, the Partial-DP method shows
better performance than the Standard-DP method, i.e., for a
given privacy budget ε, the data utility U is smaller (better).

Similarly, for the PubFig database, the left and right plots
of Fig. 13 show the privacy budget ε for different data utility
U and vice versa respectively, from which again it can be seen
that the optimal FaceIDP outperforms the other 2 approaches.

X. CONCLUSION

In this paper, the differential privacy problem of FaceID,
i.e., the FaceIDP, has been studied. Under the CS framework,
a DLNet is built to learn the dictionary basis of the face
images. After that, the sanitizing noise is added to the coding
coefficients of the face images. Then the FaceIDP is proved to
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Fig. 11. (PubFig Database) The feature vector difference between Face A
and Face B: original value, Standard-DP noisy value, Partial-DP noisy value
and the optimal FaceIDP noisy value.

Fig. 12. (LFW Database) The coding coefficients difference between Face A
and Face B: original value, Standard-DP noisy value, Partial-DP noisy value
and the optimal FaceIDP noisy value.

be ε-differentially private and the lower and upper bounds of
the privacy budget are obtained. What’s more important, the
formulas of the optimal noise parameters to achieve better data
utility have been derived. Also, experiment has been carried
out with 2 facial images database, i.e., the LFW and the
PubFig databases, to confirm the efficiency of the FaceIDP
to protect the FaceID privacy while still achieving good data
utility. Although only 2D face identification privacy problem
is studied in this paper, the FaceIDP approach can be readily
extended to the 3D FaceID privacy problem. At last, the
FaceIDP can be deployed in many scenarios, including face
images transfer between the cloud server and the smartphones,
point-to-point face images transmission, as well as face-to-face
real-time video chat.
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