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ABSTRACT

Computational modeling of the initiation and propagation of complex fracture is central to the disci-
pline of engineering fracture mechanics. This review focuses on two promising approaches: phase-
field (PF) and peridynamic (PD) models applied to this class of problems. The basic concepts
consisting of constitutive models, failure criteria, discretization schemes, and numerical analysis are
briefly summarized for both models. Validation against experimental data is essential for all com-
putational methods to demonstrate predictive accuracy. To that end, The Sandia Fracture Challenge
and similar experimental data sets where both models could be benchmarked against are showcased.
Emphasis is made to converge on common metrics for the evaluation of these two fracture mod-
eling approaches. Both PD and PF models are assessed in terms of their computational effort and
predictive capabilities, with their relative advantages and challenges are summarized.
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1 Introduction

Fracturing phenomena in natural and engineered systems
is studied extensively experimentally, theoretically, and
computationally. Here we focus on two promising ap-
proaches: phase-field (PF) and peridynamics (PD) for the
computational modeling of fractures in materials. Both
approaches are distinct from earlier ones as they seek to
predict crack path as functions of specimen loading and
geometry. Ideally, these approaches attempt the compu-
tational predictions after an initial calibration using engi-
neering constants such as Young’s modulus and fracture
toughness specific to the material. These ambitious ap-
proaches are called free fracture models. This review is
intended as a snapshot capturing in broad strokes the mod-
eling details, assumptions, experimental data sets, and
numerical simulations necessary for validation. These
methods have the potential to address fundamental issues
in complex fracturing with minimal introduction of phe-
nomenological modeling assumptions and numerical tun-
ing parameters. However, systematic comparative analy-
sis for these models, together with validation studies on
the set of experiments, are rare. In this review, we attempt
to initiate such a comparative analysis and, when possible,
invoke validation studies from the experimental literature.

As an example of an engineering fracture mechanics ap-
plication, Hattori et al. (2017) [1] presented a compre-
hensive comparison of various numerical approaches for
the hydraulic fracturing of shale and showed the advan-
tages as well as limitations of many numerical approaches
including peridynamics (PD) and phase-field (PF). How-
ever, this comparative analysis for various models lacked
validation studies on the same set of hydraulic fracturing
experiments in order to evaluate predictive capabilities of
numerical models. Our review is motivated by the recent
workshops on phase-field, peridynamics, and experimen-
tal fracture mechanics held at The Banff International Re-
search Station: Hydraulic Fracturing: Modeling, Simula-
tion, and Experiment1, and the Workshop on Experimen-
tal and Computational Fracture Mechanics2 [2].

1.1 Other review papers

One of the first overview papers of peridynamic and non-
local modeling was written by Du and Lipton3 in the
SIAM news, volume 47 (2014). However, this article
was quite brief. In 2019, Javili et al. [3] published a
review emphasizing the applications of PD. In the same
year Diehl et al. [4] published a review with the focus
on benchmarking PD against experimental data. In 2021,
Isiet et al. [5] published a review on the usage of PD for
impact damage. In the same year, Hattori et al. [6] pub-
lished a review on the usage of PD in reinforced concrete

1https://www.birs.ca/events/2018/
5-day-workshops/18w5085

2http://wfm2020.usacm.org/
3https://sinews.siam.org/Details-Page/

peridynamics-fracture-and-nonlocal-continuum-models

structures. Zhou and Wang [7] published a review on the
usage of PD in geomaterials in 2021. To summarize, ex-
cept for the first PD review in 2019, all reviews focused on
some specific topic. Hidayat et al. [8] published a review
on the connection of meshfree PD between other meshfree
methods in 2021. In addition, the following three books
about PD are available [9–11].

In what follows, we now list PF review papers and mono-
graphs. The first summary on variational modeling of
fracture was by the founding authors Bourdin, Francfort
and Marigo [12]. Although they explicitly state on page
7 that they are not attempting to review and access ex-
isting literature, their work describes on 148 pages the
current state-of-the-art in the year 2008. The first review
papers (that have explicitly this purpose) with regard to
computational/engineering aspects of phase-field (varia-
tional) fracture were published by Rabczuk [13] and Am-
bati, Gerasimov, and De Lorenzis in 2015 [14]. In the
latter study, despite review aspects, a new formulation for
stress splitting is proposed therein. Due to the ongoing
increasing popularity, shortly after, various other reviews,
monographs, and news articles appeared. A short SIAM
news article about the latest developments and future per-
spectives was published by Bourdin and Francfort in 2019
[15]. An extensive review paper on theoretical and com-
putational aspects was done by Wu et al. in the year
2020 [16]. The authors also discuss the success or fail-
ures of several benchmark problems for quasi-static, dy-
namic brittle/cohesive fracture. Only considering phase-
field (variational) fracture, this review paper certainly ex-
ceeds in topics, modeling details and numerical aspects
and examples of our current work. In the same year, a
monograph on multiphysics phase-field fracture was pub-
lished by Wick [17]. Therein, the focus is briefly on
modeling of classical variational phase-field fracture, er-
ror estimation and adaptivity, and including other physics
phenomena via volume or interface coupling techniques.
Most recently in 2021, one of the original authors, namely,
Francfort, published an article entitled with ‘Variational
fracture: Twenty years after’ [18].

1.2 Purpose and value of this review paper

In view of existing (recent) reviews on both approaches,
we shall explain the purpose and value of the current re-
view paper. First and most importantly, both PD and PF
are appearing to be the most prominent approaches for
free fracture modeling. Other notable approaches are the
displacement-discontinuity method [19], cohesive-zone
models [20], boundary elements [21], XFEM/GFEM [22–
24], and the eigen-erosion framework [25–28]. A compar-
ative review between XFEM (extended finite elements),
mixed FEM, and phase-field models appeared in [29].

The present paper provides for the first time a comparison
between both approaches (PD and PF). For this reason, the
mathematical descriptions remain rather short while fo-
cusing on the key ingredients that allow for comparison of
PD and PF. It is through this lens we reference the existing
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models and numerical methods from the literature. The
Sandia fracture challenge is chosen for validation against
experimental data. The first part of the challenge is to cal-
ibrate a free fracture model to simple prototypical prob-
lems, e. g. a tensile test, and use this calibration to sim-
ulate the crack and fracture phenomena. Thus, the model
parameters can not be fitted to the complex scenario and
have been instead calibrated using the simple scenario.
This additional step of calibration makes the Sandia frac-
ture challenge an excellent problem to benchmark phase-
field models and peridynamic models to assess their per-
formance on different kinds of crack and fracture phenom-
ena. These numerical, computational, and experimental
side-by-side comparisons allow us to identify similarities,
common challenges, and specific aspects to each method.

1.3 Outline

The paper is structured as follows: Section 2 introduces
the two models and provides a basis on which the mod-
els can be compared and contrasted. This summary is an
adaptation and extension of the review papers and mono-
graph [3, 4, 16, 17] of the two models. Section 3 addresses
the fracture physics perspective from the macroscale view.
Section 4 attempts to compare the predictive accuracy of
the two models for validation against the experimental
data. To that end, the Sandia Fracture Challenges data
sets were analyzed and computed, the R2 correlation of
relative errors between the simulations and the experiment
are presented. Section 5 compares computational aspects
of the two models as well as pointing out challenges and
opportunities for development. Finally, Section 6 summa-
rizes the modeling capabilities of PD and PF.

2 Overview of models and numerical
methodology

This section briefly introduces the two methods, peridy-
namics (PD) and phase field (PF), respectively. A brief
overview of the governing equations, material models,
discretizations, numerical analysis, and advanced visual-
ization methods is given. We introduce the ingredients
for the comparison of these two models and provide ref-
erences to the extended literature for the interested reader.

2.1 The governing equation of peridynamics

Peridynamics (PD), is a non-local adaptation of contin-
uum mechanics (CCM). In PD, each material point X in-
teracts with its neighbors inside a finite interaction zone
Bδ(X) with the length δ, see Figure 1. This type of non-
local interaction principle is also seen in molecular dy-
namics (MD) [30] and smoothed particle hydrodynamics
(SPH) [31, 32] simulations. The important feature of PD
fracture modeling is that the interaction between the in-
tact material and fractured material is modeled implicitly
through a non-local field equation that remains the same
everywhere in the computational domain. Material dam-

Bδ(X)

D

Figure 1: Sketch for the principle of peridynamics where
a material point X interacts with its neighbors inside a
finite interaction zone Bδ(X) with the length δ.

age and fracture phenomena are captured through a force
versus strain constitutive model. Because of this, PD is
able to capture fracture as an emergent phenomena aris-
ing from the non-local equation of motion. This contrasts
with classic fracture theory where, off the crack, the elas-
tic interaction is modeled by the equation of elastodynam-
ics and the fracture set is a free boundary with motion cou-
pled to elastodynamics through a physically motivated ki-
netic relation. Other recently developed non-local models
exhibiting emergent behavior include the Cucker Smail
equation, where swarming behavior emerges from leader-
less flocks of birds [33–36].

The equation of motion for bond-based peridynamics pro-
posed by Silling [37, 38] reads as

%(X)ü(t,X) =∫
Bδ(X)

f(u(t,X′)− u(t,X),X′ −X)dX′ + b(t,X),

(1)

where % ∈ R is the material density, ü ∈ Rn is the ac-
celeration at time t ∈ R of the material point X ∈ Rn,
f : Rn × Rn × [0, T ] → Rn is the pair-wise force func-
tion, b ∈ Rn is an external force density, and u ∈ Rn is
the state of deformation at a point in space time, (t,X).
The constitutive model for the pair-wise force function f
is material dependent and defines how the internal forces
react to the displacement u. For the elastic regime the
force interaction between a pair of points X and X′ is a
so-called bond and contributes to the name of bond-based
PD. The pair-wise interaction leads to a constraint on the
Poisson ratio [39, 40].

To overcome the Poisson ratio constraint more general
non-local interactions are included in the “state-based”
peridynamic model. The generic state-based peridynamic
equation of motion introduced by Silling et al. [41] reads

3
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as

%(X)ü(t,X) =∫
Bδ(X)

(T [X, t]〈X′ −X〉 − T [X′, t]〈X−X′〉)dX′ (2)

+ b(t,X),

where the pair-wise force function f is exchanged with the
so-called peridynamic force state T : Rn×Rn× [0, T ]→
Rn. The usage of PD states lead to the name state-based
PD. A peridynamic state relates to second order tensor and
they assign each point in a neighborhood a tensorial quan-
tity. However, in general, it is not a linear or continuous
function with respect to X − X′. For more details, we
refer to [41, Section 2].

In peridynamics material damage is part of the consti-
tutive modeling and the material is viewed as damaged
when the force state at a point X no longer influences a
material point X′ and vice versa. Damage occurs when
the difference between deformation states at each point X
and X′ surpass a threshold. The specifics of how this oc-
curs depends on the material model used. For example,
for pairwise force functions f the force acting between
two points is often referred to as a bond. When the pair-
wise force is zero, it is said that the bond is broken. Bonds
can break irreversibly, or alternatively they can heal under
the right conditions, this depends upon the material model
used.

To fix ideas, we illustrate the constitutive law given by the
prototype brittle microelastic (PMB) model introduced in
[38]. The deformation of a point X is u(t,X) and its
position in the deformed configuration is X+u(t,X). In
this model, the pair-wise force function depends on the
strain between two points in the deformed configuration
given by

S(t,X,X′) :=

‖(X′ + u(t,X′))− (X + u(t,X))‖ − ‖X′ −X‖
‖X′ −X‖

.

(3)

The direction vector between two points in the deformed
configuration is given by

e =
(X′ + u(t,X′))− (X + u(t,X))

‖(X′ + u(t,X′))− (X + u(t,X))‖
. (4)

The force directed between the two points in the deformed
configuration is given by the constitutive law

f(u(t,X′)−u(t,X),X′ −X) := (5)

µ(t,X,X′)cS(t,X,X′)e, (6)

where c > 0 is the material dependent stiffness constant,
and the scalar damage function µ is given by

µ(t,X,X′) :=

{
1, S(t,X,X′) ≤ sc
0, otherwise

(7)

where sc > 0 is the material dependent critical bond
stretch. Once the force between the two points goes to
zero it stays zero. It is noted that there are several other
definitions for the damage function µ using strain-based
criteria [38, 42], as well as stress-based [43], or energy-
based damage criteria [44, 45], see Figure 4.

In numerical implementations crack path evolution is re-
covered as a post-processing step after simulation. To
identify the crack we introduce the damage field d :
[0, T ] × Rn → R given by the density d(t,X) defined
by

d(t,X) = 1−

∫
Bδ(X)

µ(t,X,X′)dX′∫
Bδ(X)

dX′
(8)

where the scalar function µ : [0, T ] × Rn × Rn → R in-
dicates if the bond between X and X′ at time t is broken
(µ = 0) or active (µ = 1). Locations where d = 0 indi-
cate the crack set. The set where d = 0 is highly localized
and indicates the evolving crack path. This damage local-
ization has been demonstrated mathematically by Lipton
[46, 47] for peridynamic fracture evolution correspond-
ing to the small deformation bond based models. The
method uses Gronwall’s inequality together with methods
from the non-local image approximation of the Mumford
Shah model [48] introduced by Gobbino [49]. For more
theory of peridynamic states, we refer to [41, Section 2].
For additional references, we refer to [9, 10]. For reviews
about PD and the comparison with experimental data, we
refer to [3, 4].

2.1.1 Material models for PD

Figure 2 shows the tree of different peridynamic mate-
rial models. The root are state-based material models,
with the two subclasses of ordinary state-based and non-
ordinary state-based material models. Note that bond-
based models [38, 47, 63–75] are a special case of state-
based models. However, the bond-based PD was pre-
sented in 2000 and state-based PD in 2007. For ordinary
state-based PD, the following material models are avail-
able: Elastic brittle [41, 50–52], Plasticity [53–56], Com-
posite [57], Eulerian fluid [58], position-aware linear solid
(PALS) [79], and Viscoelastic [59–62]. For non-ordinary
state-based PD the correspondence model [41, 77], the
beam\plate model [76], and a model for cementitious
composites [78] are available. For more details, we refer
to [3].

Figure 3 shows the schematics of the three different mod-
els. All of these three models conserve linear momentum.
However, only the bond-based model and the ordinary-
state-based model conserve angular momentum. For more
mathematical details, we refer to [41, Definiton 8.4].

2.1.2 Discretization methods for PD

Continuous and discontinuous finite element methods
[80–82], Gauss quadrature [83], and spatial discretization

4
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State-based

Ordinary

Elastic brittle [41, 50–52]
Plasticity [53–56]

Composite [57]

Eulerian fluid [58]
Viscoelastic [59–62]

Bond-based [38, 47, 63–75] Non-ordinary

Beam\Plate [76]

Correspondence[41, 77]

Cementitious Composites [78]

Figure 2: The classification of the different peridynamic material models visualized as a tree. The material models
are classified in two major classes: bond-based and state-based material models, respectively. State-based material
models are distinguished as ordinary and non-ordinary models. The following ordinary state-based models are avail-
able: elastic-brittle, plasticity, composite, Eulerian fluid, and viscoleastic. For non-ordinary state-based models the
Beam\Plate, the correspondence model, and a model for cementitious composites are available. Adapted from [3, 4]
and extended for this work.

f(u(t,X′)− u(t,X),X′ −X)

−f(−(u(t,X)− u(t,X′)),−(X−X′))

(a) Bond-based model

T [X, t]〈X′ −X〉

T [X′, t]〈−(X−X′)〉

(b) Ordinary state-based model

T [X, t]〈X′ −X〉

T [X′, t]〈−(X−X′)〉

(c) Non-ordinary state-based model

Figure 3: Schematics of the (a) bond-based model, (b) the ordinary state-based model, and (c) the non-ordinary state-
based model. Note that the blue text in the Equations highlights the different assumptions for each model. This figure
was adapted from [41].

Damage models

Strain-based [38, 42]

Stress-based [43]

Energy-based [44, 45]

Figure 4: The classification of different peridynamic dam-
age models visualized as a tree. The majority of the dam-
age models are based on strain, and only a few are based
on energy or stress.

[38, 84, 85] were utilized to discretize the peridynamic
equation of motion. ever, the most common discretiza-
tion approach is the EMU nodal discretization, a colo-
cation approach, introduced by Silling in [38]. In this
approach, the domain D is discretized with the discrete

points X = {xi ∈ Rn|i = 1, . . . , N} with the surround-
ing volumes V = {vi ∈ R|i = 1, . . . , N}. The fol-
lowing assumptions are made: all the volumes are non-
overlapping vi ∩ vj 6= ∅ for i 6= j and the sum of all
surrounding volumes is equal to the volume of the refer-
ence configuration

∑
vi ≈ VD. The discrete interaction

zone is defined as Bδ(xi) := {j| ‖xj − xi‖ ≤ δ}. The
discrete bond-based equation of motion reads as
%(xi)ü(t,xi) =∑
j∈Bδ(xi)

f(u(t,xj)− u(t,xi),xj − xi)dVj + b(t,xi)

(9)

and the state-based equation of motion reads as
%(xi)ü(t,xi) =∑
j∈Bδ(xi)

(T [xi, t]〈xj − xi〉 − T [xj , t]〈xi − xj〉)dVj

+ b(t,xi). (10)

5



A PREPRINT - JANUARY 26, 2022

The following implementations are available: Peridigm
[86, 87] and PDLammps [84] based on the Message Pass-
ing Interface (MPI), NonLocal models/PeriHPX [88, 89]
based on the C++ standard library for parallelism and con-
currency (HPX) [90, 91], PeriPy [92] based on the Python
programming langugae, and GPU-based codes [93–95].
Four open source implementations of peridynamic PD-
Lammps4, Peridigm5, PeriPy6, and PeriHPX7 are avail-
able. One commercial code is available. LS-DYNA
provides a bond-based peridynamics implementation dis-
cretized with the discontinuous Galerkin FEM [96]. Not
to forget one of the first peridynamic implementations,
EMU by Stewart Silling using FORTRAN 90 [97].

2.1.3 Numerical analysis for PD fracture models

In this section, we summarize the issues that arise in the
numerical analysis of PD fracture models and list the nu-
merical results. The following basic questions for PD
fracture models are:

1. Are peridynamic fracture models well-posed,
such that unique solutions exist?

2. What is the relation between non-local contin-
uum peridynamic fracture models and their dis-
cretizations used in the numerical implementa-
tion?

3. How do PD solutions to fracture mechanics
problems relate to local fracture models with
sharp cracks? Particularly, how does PD relate
to the more classical Linear Elastic Fracture Me-
chanics of continuum mechanics?

These are natural questions to ask, and analogous ques-
tions have been investigated and answered for several
nonlocal and PD models in the absence of fracture, for
this case there is now a vast literature; see [98–116]. This
work provides the foundation for the numerical analysis
of the PD fracture problem.

For the case of fracture, the analysis for PD fracture mod-
els is still in the initial stages, but meaningful progress has
been made, and one can begin to address the three funda-
mental questions raised in the first paragraph:

First, the answer to question 1) is addressed. The exis-
tence and uniqueness of solutions for peridynamic frac-
ture models have been studied for different classes of con-
stitutive laws. For a simple peridynamic model with with
nonlocal forces that soften beyond a critical strain, the
existence and uniqueness of the solution over finite time
intervals is demonstrated for bond-based and state-based
peridynamics in Lipton [46, 47] and Jha & Lipton [117].
Energy balance is shown to hold for all times of the evo-
lution. This is a simple constitutive model designed for
monotonically increasing loads.

4https://lammps.sandia.gov/doc/pair_peri.html
5https://github.com/peridigm/peridigm
6https://pypi.org/project/peripy/
7https://perihpx.github.io/

Existence and uniqueness is established for more com-
plex material models with the force degradation law deter-
mined by both the time and strain rate for strains above a
critical value in Emmrich and Puhst [118]. Therein, both
existence and uniqueness are established for bond-based
peridynamic fracture. The authors Du et al. [119] con-
sider a continuous version of the Prototypical Microelas-
tic Bond (PMB) model introduced by Silling [37]. In this
work both existence and uniqueness are shown and the to-
tal energy of the system is decreasing with time, see [119].
Existence and uniqueness is established for a state-based
model with material degradation law, again determined by
both the time and strain rate for strains above a critical
load in Lipton et al. [120]. There, the rate form of energy
balance is established among energy put into the system
the kinetic energy, elastic energy, and energy dissipated
due to the damage. The energy dissipation rate due to
damage is seen to be positive. This model is suitable for
cyclic loads, see [120]. The theme common to all peridy-
namic models is that both the existence and uniqueness of
solutions follow from the Lipshitz continuity of the peri-
dynamic force and the theory of vector-valued ODE on
Banach spaces.

Second, the answer to question 2) is addressed. The
convergence of finite difference approximations to bond-
based and state-based peridynamic field theories with
forces that soften is established in Jha & Lipton [121]
and [122]. The finite element convergence for bond-based
and state-based peridynamic field theories with forces that
soften are established by those authors in [123] and [81].
A priori convergent rates are linked to the regularity of
continuum PD fracture solutions. Existence and unique-
ness of solutions in Hölder spaces, and Sobolev spaces
Hn, n = 1, 2, are proved for both bond and state based
force softening models in [81, 122]. The convergence
rates for both bond- and state-based models are found to
be linear in the mesh size and time step. However the con-
stants appearing in the convergence estimates grow expo-
nentially as the horizon size tends to zero. Fortunately,
dynamic fracture experiments last hundreds of microsec-
onds for brittle materials and linear a priori convergence
rates for horizons that are tens of times smaller than the
sample size are in force for tens of microseconds. Numer-
ical experiments exhibit much better convergence with re-
spect to mesh size and time step thus driving the need for
the development of a posteriori estimates for understand-
ing convergence rates.

Third, the answer to question 3) is addressed. For cer-
tain PD models one can theoretically recover a local sharp
fracturing evolution. A limiting local evolution is shown
to exist for the force softening peridynamic model; see
[46, 47]. The limiting local evolution has jump discon-
tinuities in the displacement confined to a set of finite
surface areas (more precisely, two-dimensional Hausdorff
measure) for almost every time; see [46, 47]. The jump set
corresponds to the fracture set in the zero horizon model
and the total energy is bounded and given by the classic
energy of linear elastic fracture mechanics [46, 47, 124].
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It is shown there that the deformation in the limit model
satisfies the local balance of linear momentum equation
in quiescent zones away from the crack. Recent work
explores the zero horizon limit for straight cracks grow-
ing continuously with the goal of capturing the explicit
interaction between the growing crack and the surround-
ing elastic material. For this case, it has been found by
Lipton et al. [125] that the local model obtained in the
zero horizon limit is given by a deformation field, that
is, the weak solution of the linear wave equation on the
domain with the growing crack satisfies the zero traction
condition of the sides of the crack. This is in agreement
with Linear Elastic Fracture Mechanics (LEFM). Here,
the weak solution of the wave equation outside a time-
dependent domain defined by a crack was recently devel-
oped in DalMaso and Toader [126]. The convergence of
PD to the wave equation in time-dependent domains [125]
gives theoretical support backing the recent development
of new “asymptotically compatible” methods for fracture
modeling given in Trask et al. [127]. Lastly, starting with
the PD equation multiplying by the velocity and integrat-
ing by parts gives the time rate of change of internal en-
ergy surrounding the crack front. Jha & Lipton [128] use
applied math arguments to show that on passing to the
zero horizon limit, the kinetic relation for crack tip growth
given by LEFM is recovered. Here the classic square root
singularity in the elastic field at the crack tip is obtained.

We conclude this section noting that the numerical analy-
sis of PD in the absence of fracture provides compelling
heuristics for understanding PD fracture models. Figure 5
illustrates the interplay between horizon length scale and
discretization length scale for PD models when local mod-
els can be recovered by passing to the small horizon limit
in non-local models, see Du et al. [111, 112]. When a
numerical scheme can be designed so that the diagonal
arrow captures the same limit as obtained by proceeding
along the sides of the square problem, a numerical scheme
is said to be asymptotically compatible. This is the moti-
vation behind the numerical approach of Trask et al. [127]
to capture the coupling between intact material surround-
ing a growing crack. For example, if one considers elastic
problems in the absence of fracture, then for the diago-
nal transition where the horizon δ and the nodal spacing
h go to zero, it is known that: using piece-wise constant
finite elements, the correct local solution is obtained, if
the nodal spacing decays faster than the horizon to zero
[111]. This is seen for the EMU nodal discretization [97]
which converges to the limit u0,0 along the diagonal if the
nodal spacing decays faster than the horizon in Tian and
Du [114].

2.1.4 On the connection between meshfree
peridynamics and other meshfree methods

In the absence of fracture, the relation of PD to molec-
ular dynamics (MD) has been shown by Seleson et al.
[130]. Along another direction, the relation of PD to
smooth-particle hydrodynamics (SPH) is established in
Ganzenmüller et al. [110]. With these studies in mind,

Discrete LocalDiscrete

Continuum Local PDEContinuum Non-local

uδ,h u0,h

u0,0uδ,0

♥

♠

♣♦

δ → 0

δ → 0

h
→

0

h
→

0δ, h→
0

Figure 5: The consistency of non-local models and the
limits of the horizon δ and the nodal spacing h presented
in Du et al. [111, 112]. Adapted from [129].

it is clear that up-scaling MD fracture models to PD and
establishing the relation between SPH and PD for fracture
would be desirable.

Bessa et al. [131] showed that approximated derivatives
of state-based PD are completely equivalent to the ap-
proximation received by the reproducing kernel particle
method (RKPM) with synchronized derivatives and with
a quadratic polynomial basis. Bode et al. [132] introduced
the peridynamic Petrov-Galerkin (PPG) method. There,
a Petrov-Galerkin method is developed based on the PD
equation of motion starting from the state-based formu-
lation in [10]. Hillman et al. [133] showed the relation
between reproducing kernel (RK) approximation with im-
plicit gradient and peridynamic. Madenci et al. [134] in-
troduced the peridynamic differential operator (PDDO).
Shojaei et al. [135] introduced a generalized finite differ-
ence method (GDFM) based on PDDO. Table 1 lists all of
these connections. Fore more details, we refer to [8].

2.1.5 Visualization of PD results

Since most peridynamic simulations are done using a
meshless method, information, e.g. stress and strain, are
only available on the discrete nodes. Thus, every graph-
ics software, e.g. Paraview [136] or VisIt [137], support-
ing particles can be used to visualize meshless simulation
results. However, to understand the simulation and com-
pare against experimental data, this information is needed
on a larger scale. First, peridynamic theory was used for
physically-based modeling and rendering. Here, the ani-
mation of brittle fracture [138], the animation of fractures
in elastoplastic solids [139], and the animation of hyper
elastic materials [140] were studied. Second, the visual-
ization of fragmentation [141, 142] and visualization of
fracture progression [143] were investigated. For more
details, we refer the readers to [4].
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Table 1: Connection between meshless discrete PD and other meshfree methods. Adapted and extended from [8].

Method Equivalence Reference

smooth-particle hydrodynamics Deformation gradient [110]
reproducing kernel particle method Deformation gradient [131]
Pterov-Galerkin method Correspondence for force state [132]
reproducing kernel with implicit gradient Deformation gradient [133]
generalized finite difference method peridynamic differential operator [134] [135]

2.2 Phase-field models governing equations

Variational models to fracture and damage models were
introduced by Francfort & Marigo [144] and Aranson et
al. [145]. A numerical approximation of variational frac-
ture models was first introduced by Bourdin et al. [146].
We also refer to [12] and the recent review paper [15].

The principal idea of the variational (phase-field) ap-
proach to fracture (here explained for quasi-static fracture
in brittle materials) is based on energy minimization in
which potential and fracture energies interact. To this end,
let Ω ⊂ Rn be the intact domain and Γ ⊂ Rn−1 the frac-
ture set. Let u : Ω → Rn be a displacement field and the
total energy be given by

E(u,Γ) =

∫
Ω

ψ0(ε(u))dV − F (u)

︸ ︷︷ ︸
=:P (u)

+

∫
Γ

Gc dA

︸ ︷︷ ︸
=ψc(Γ)

,

with the potential energy

P (u) :=

∫
Ω

ψ0(ε(u))dV − F (u),

composed by the bulk energy (first term) with
ψ0(ε(u)) := Cε(u) · ε(u) being the energy storage
function with the stiffness tensor C ∈ Rn×n×n×n, and
the linearized strain tensor ε(u) = 1

2 (∇u + ∇uT ). The
external potential of volume and surface forces is given
by

F (u) =

∫
Ω

b∗udV +

∫
∂Ωt

t∗udA, (11)

where b∗ is the distributed body force and t∗ are traction
forces. The crack surface energy is given by

ψc(Γ) =

∫
Γ

Gc dA, (12)

where Gc > 0 is the critical energy release rate.

A corresponding configuration is sketched in Figure 6a.
Therein, the domain Ω of the solid with a (sharp) crack
set Γ is considered. For the boundary ∂Ω of the domain Ω
two kinds of boundary conditions along the normal vector
n are considered such that ∂Ωu∩∂Ωt = ∅. On the bound-
ary ∂Ωu Dirichlet displacement conditions are applied,

which are built, as usually done, into the governing func-
tion spaces. Tractions t∗ are applied to the ∂Ωt boundary.
Discussions on boundary conditions can be found for in-
stance in the early work [144, 147, 148].

From mathematical and numerical viewpoints, the sharp
fracture representation (12) is challenging because the
crack ‘lives’ on a lower-dimensional manifold Γ. On the
one hand, this requires special function spaces (see e.g.,
[147, 148]), and on the other hand, numerical approxima-
tions require specialized discretizations (for instance gen-
eralized/extended finite elements [22–24] among various
other possible techniques).

To handle this challenge one can borrow techniques from
image processing. The single-well Modica-Mortola func-
tional is introduced by Ambrosio and Tortorelli [149, 150]
in image processing to approximate the the surface area
term in the Mumford–Shah functional [48] and is given
by ∫

Γ

dA ≈
∫
Ωc

γ(φ,∇φ)dV, (13)

with

γ(φ,∇φ) =
1

2

[
1

l0
(1− φ)2 + l0|∇φ|2

]
. (14)

Bourdin et al. [146] proposed to use this energy in an ap-
pealing approach to regularize the sharp crack defined on
Γ by a domain integral defined on Ωc. In this context it is
given by ∫

Γ

GcdA ≈
∫
Ωc

Gcγ(φ,∇φ)dV, (15)

with γ(φ,∇φ) is now viewed physically as the crack sur-
face density function as in [151]. Here l0 > 0 is the
so-called length scale (i.e., regularization) parameter and
l0 characterizes the width of the regularized domain Ωc.
Note that there are other formulations for the crack sur-
face density function available [152, 153].

The name ‘phase-field’ was first coined in the year 2008 in
the PAMM8 proceedings from Kuhn and Müller [154] and
in their 2010 follow-up journal paper [155]. In the same

8PAMM = Proceedings in Applied Mathematics and Me-
chanics
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year, Miehe et al. [151] used this terminology, which in-
cludes the above regularization, but additionally, they jus-
tified from a mechanical perspective a thermodynamically
consistent framework for the potential and fracture en-
ergies. We notice that simultaneous pioneering work in
variational gradient damage evolutions was performed by
Pham and Marigo [156, 157] for which we also refer the
reader to Section 2.2.3.

In other words, within phase-field models the crack is reg-
ularized by Ωc around the sharp crack Γ using the so-
called phase-field crack function φ : Ωc ∪ Ω → [0, 1],
see Figure 6b. The notation is that φ = 0 indicates dam-
age and φ = 1 means intact material (some authors define
it the other way around). Between φ = 0 and φ = 1, the
function varies smoothly with values 0 < φ < 1, which is
the so-called transition zone.

Figure 6b sketches the situation in which the smoothed
region Ωc is shown.

By using the phase-field variable, the bulk strain energy
is extended to the entire domain (intact domain plus frac-
tured domain) and we obtain

ψs(u, φ) =

∫
Ω∪Ωc

g(φ)ψ0(ε(u))dV, (16)

where ψ0 is the so-called non-degraded bulk strain en-
ergy and g(φ) the so-called degradation function. Usu-
ally, g(φ) = ϕ2 + κ or g(φ) = (1 − κ)ϕ2 + κ with a
small κ > 0, which is necessary to ensure regular system
matrices within the discretization for quasi-static fracture.
Clearly, for ϕ = 0 (fracture), we have g(ϕ) = κ. In
the non-fractured region, we have ϕ = 1 and g(ϕ) = 1.
For dynamic fracture (see a discussion in [158]) κ = 0 is
possible, which is obvious because the mass matrix term
arising from the discretization of the acceleration term en-
sures well-posedness of the discrete system. A family
of degradation functions and their numerical justification
was investigated in [159] and a multidimensional stability
analysis with a general degradation function was consid-
ered in [160]. The mathematical relation between l0 and
κ is linked to Γ convergence in which l0 → 0 and κ → 0
with the asymptotic behavior κ = o(l0); see e.g., [161]
and again the approximation results in [149, 150].

Summarizing the previous ingredients, the total energy
using the regularized crack representation in the entire do-
main Ω ∪ Ωc is given by

E(u, φ) =

∫
Ω∪Ωc

g(φ)ψ0(ε(u))dV − F (u) (17)

+

∫
Ω∪Ωc

Gc
1

2

[
1

l0
(1− φ)2 + l0|∇φ|2

]
dV .

Several general types of ψ0 functions have been pro-
posed, and it was shown that a suitable choice could avoid
nonphysical growth of cracks under compressive loading
[162]. For more details, we refer to [16, 163].

∂Ωu

∂Ωt

Ω

∂Ωt

Γ

(a)

∂Ωu

∂Ωt

Ω

∂Ωt

Ωc 1

0
φ

(b)

Figure 6: The solid phase-field domain Ω with (a) a sharp
crack interface Γ and (b) the approximated crack using
the phase-field crack function φ resulting in a regularized
crack representation Ωc.

Moreover, in most studies, as model assumption from
a physics perspective, the crack cannot heal, and there-
fore the above energy functional is subject to a crack ir-
reversibility (an entropy condition), which is mathemat-
ically expressed as an inequality constraint in time or
quasi-static loading:

∂tφ ≤ 0.

Due to this constraint, we deal with a quasi-static incre-
mental (or time-dependent) nonlinear, coupled variational
inequality system.

2.2.1 Properties of φ and crack interface
reconstruction

It can be rigorously proven with cut-off arguments that
φ ∈ [0, 1]; see for instance [164], which follows from
the definition of the Ambrosio-Tortorelli functional and
the regularization of the total energy. When further terms
(physics) are added, the property φ ∈ [0, 1] may get lost,
and one must argue carefully. For instance, in pressur-
ized fractures, the pressure can have positive and negative
values and, therefore, further cut-off arguments are nec-
essary in order to establish the bounds for φ [165]. As
the second topic in this short paragraph, we want to men-
tion the principal idea when the crack interface must be
known explicitly. Due to the regularization using φ, there
is some liberty as to when the exact crack interface must
be known. In these cases, the phase-field function is in-
terpreted as a level-set function ([166]) and the crack in-
terface is, for instance, chosen as φc := φ = cI with for
example cI = 0.2 [17, 167, 168].

2.2.2 Brief review of some theoretical findings

We briefly list some important well-posedness results. In
[169] first existence results for quasi-brittle fracture of the
original model by Francfort & Marigo [144] were shown
for the antiplane setting for scalar-valued displacements.
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In [147] the existence and convergence of quasi-static
evolutions for the vector-valued case were established.
Shortly after, the existence of quasistatic crack growth in
nonlinear elasticity was proven [148]. For these settings,
in general, uniqueness cannot be established; see also be-
low in Section 2.2.3 for discussions and references in the
related gradient damage theory. In fact, it is well-known
that uniqueness is a general issue in solid mechanics; see
e.g. [170].

Regarding uniqueness in phase-field fracture, we deal
with two variables, namely φ and u, obtained from solv-
ing a nonlinear coupled system, and the governing func-
tional to be minimized is not convex, yielding several lo-
cal minima. Only recently in [171], the issue of non-
uniqueness was investigated in detail by using a stochastic
approach by computing all solutions with their respective
probability in which they may occur.

The existence of solutions for dynamic fracture using
Ambrosio-Tortorelli [149, 150] approximations was es-
tablished in [172]. Since crack initiation is an important
topic within phase-field based crack models, we mention
theoretical work by Chambolle et al. [173], Goethem/-
Novotny [174], and recently Kumar et al. [175] and de
Lorenzis/Maurini [176]. Some theoretical findings on the
crack path were provided in [177]. For mode III dynamic
fracture modeled using [172], one can follow a sequence
of solutions as l0 → 0, to obtain existence of a limiting
displacement with bounded Linear Elastic Fracture Me-
chanics energy [47]. The latest review of the original
model, in terms of the sharp crack approximation (with-
out phase-field, but nonetheless the ground basis of reg-
ularized models such as phase-field) can be founded in
recently published article by Francfort [18]. Furthermore,
we refer to the SIAM News article [15].

2.2.3 Fracture/damage models for PF

In this section, we first note that phase-field fracture mod-
els have a close relationship to damage models. Indeed,
due to the regularization in phase-field models yielding
a transition zone, and damage mechanics with gradients,
similar approaches are obtained. For seminal work in the
year 2010, we refer to Pham and Marigo [156, 157] (based
on earlier work of Mielke [178]). Therein, the authors
propose and investigate local [156] and nonlocal [157]
brittle damage laws from a mechanical viewpoint. The
evolution is based on three fundamental physical princi-
ples: irreversibility of the damage (i.e., fracture) parame-
ter, stability, and an energy balance. The actual relation of
gradient damage models with brittle fracture is described
in [179]. Further properties of such damage models (and
consequently phase-field approaches) are investigated in
[180]. Specifically, the stability and uniqueness (in terms
of bifurcation) of the evolution of the gradient damage
variational formulation is investigated for uniaxial tests,
namely the homogeneous response of a bar under an in-
creasing traction loading. The construction of bifurcations
for a large class of gradient damage models (i.e., elastic-

softening materials) was continued in [181]. Earlier work
on stability and bifurcations using energetic variational
principles is from Nguyen [182, 183]. Solely bifurcations
for a one-dimensional gradient damage model applied to
a bar were considered in [184]. Here, the mathematical
ill-posedness (aspects of uniqueness and dependencies on
the data) is discussed and possible consequences of nu-
merical approximations (in particular mesh sensitivity) is
drawn (here, we also point to [171] for uniqueness stud-
ies for phase-field fracture). Another, more recent dis-
cussion about similarities and differences can be found in
[185]. In what follows, we therefore have both fracture
and damage models in mind. Table 2 lists the available
phase-field fracture and damage models. The following
models have been developed within the phase-field frame-
work: brittle fracture [12, 146, 151, 155, 186–188], fa-
tigue [189–196], multi-field fracture [152, 197–212], fric-
tional contact [213], plate/shell fracture [214–220] (where
[220] solves some issues with the energy decomposition
which were leading in [214, 216] to unphysical results),
three-dimensional fracture [151, 202, 221–228], finite de-
formation/hyperelastic fracture [217, 227, 229–234], dy-
namic fracture [172, 221, 222, 235–241], cohesive frac-
ture [12, 242–247], ductile fracture [199, 225, 248–258],
anisotropic surface energy [259–264], layered material
fracture [215, 244, 265–271], and polymer composites
fracture [272].

Furthermore, we summarize various models for splitting
the energy (i.e., strain / stress) into different parts for
accounting the fracture growth behavior under tension
and compression. To the best of our knowledge, we are
aware of Amor et al. [273], Miehe et al. [151], Zhang
et al. [274], Strobl/Seelig [275], Steinke/Kaliske [276],
Bryant/Sun [277], Freddi/Royer-Carfagni [278], Bilgen-
/Homberger/Weinberg [279], and Fan et al. [280].

2.2.4 Treating the crack irreversibility constraint

For treating the irreversibility constraint ∂tφ ≥ 0, five
fundamental procedures have been proposed:

1. Fixing crack nodes by Dirichlet values [146,
155];

2. Strain history function [186];
3. Penalization: simple and augmented Lagrangian

[165, 287–289];
4. Primal-dual active set methods [290];
5. Complementarity system with Lagrange multi-

pliers as unknowns [283];
6. Interior-point methods [291].

Comparisons of some of these approaches were per-
formed in [288] and [17].

2.2.5 Discretization, Solvers, and Software for PF

Classical Lagrange Galerkin finite elements [146], ex-
ponential shape functions [292], isogeometric elements

10
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Table 2: Overview of various fracture and damage models available for phase-field modeling. Adapted and extended
from [16]

.

fracture/damage models

brittle fracture [12, 146, 151, 154, 155, 186]
ductile fracture [199, 225, 248–252]
cohesive fracture [12, 239, 242–245, 281]
dynamic fracture [172, 221, 222, 235–237, 241, 282]
fracture in incompressible solids [283–285]
finite deformation fracture [217, 227, 229–232]
3D fracture [151, 202, 221–228]
plate/shell fracture [214–220]
multi-field fracture [152, 197–210, 286]
fatigue [189–193]
layered material fracture [215, 244, 265–271]
anisotropic surface energy [259–264]

[222], discontinuous finite elements [293], or mixed for-
mulations [283] were mostly utilized for the spatial dis-
cretization of the fracture/damage models as described
in the previous section. Meshless methods for gen-
eral phase-field were first introduced in [294] and for
meshless phase-field fracture, see e.g., [216, 295]. For
discretized nonlinear systems, the following solvers are
available: alternating minimisation algorithms [146, 153,
187, 237, 273, 296–298], alternating minimisation al-
gorithm with path-following strategies [299], staggered
scheme [186], stabilized staggered schemes [300–303],
monolithic solvers [17, 151, 290, 304–308], and mono-
lithic solvers with path-following strategies [309, 310].

For solving linear equation systems, most often black-
box (direct) solvers have been adopted. Only recently
[297] proposed conjugate gradient (CG) solutions with
multigrid preconditioning for the decoupled phase-field
displacement system. For monolithic solvers, a gen-
eralized minimal residual (GMRES) method with par-
allel algebraic multigrid preconditioning was proposed
in [311]. A matrix-free geometric multigrid precondi-
tioner was developed in [307], and its parallelized vari-
ant in [312]. Furthermore, we mention the development
of a FFT (fast Fourier transform) solver for higher-order
phase-field fracture problems.

Following proprietary implementations using Matlab
[313, 314], COMSOL [315], [316, 317] using FEAP9,
and Abaqus [226, 318–323] are available. Following open
source implementations: [310] using Nutils [324], [243]
using JIVE10, [325] using MOOSE [326], [327] (pfm-
cracks11 based on deal.II) and [328] using deal.II12, and
[237, 297] using FENICS [329] are available. In addition,
a GPU-based implementation [330] and the MEF 90 For-
tran implementation [12, 144, 296, 331] are available.

9http://projects.ce.berkeley.edu/feap/
10http://www.jem-jive.com
11https://github.com/tjhei/cracks
12https://www.dealii.org/

2.2.6 Numerical analysis for PF

A posteriori error estimation For numerical analysis
with respect to a posteriori error estimation, a short sum-
mary is presented here. First, work on residual-based
error estimators goes back to [187, 332]. Extracting er-
ror indicators for local mesh refinement based on an a
posteriori error estimator for the phase-field variational
inequality realizing the fracture irreversibility constraint
are presented in [333, 334] The development of goal-
oriented mesh adaptivity was undertaken in [17, 335]. The
Ambrosio–Tortorelli functional is used to Γ approximate
each time evolution step in [336]. An additional penalty
constraint is enforced for the irreversibility of the fracture
as well as the applied displacement field. An a posteriori
error estimator driving the anisotropic adaptive procedure
is utilized for mesh adaptivity. According to the authors,
the main properties of automatically generated meshes are
to be very fine and strongly anisotropic in a small neigh-
borhood region of the crack, but only far away from the
crack tip, while they show a highly isotropic behavior
in a neighborhood of the crack tip instead. The Ambro-
sio–Tortorelli functional is applied in [187] to two adap-
tive finite element algorithms for the computation of its
(local) minimizers. Two theoretical results demonstrate
convergence of the developed algorithms to the local min-
imizers of the Ambrosio–Tortorelli functional. However,
the Ambrosio–Tortorelli functional is for quasi-static sim-
ulations and might not apply to dynamic fracture situa-
tions. The phase-field parameter itself is used in [158]
to refine the mesh. The gradients of the phase-field are
high in the near crack region and close to one away from
the crack. A threshold is introduced to run the dynamic
phase-field simulation for a few time steps, then all el-
ements are refined above the introduced threshold, and
the simulation is resumed with the newly refined mesh.
This procedure is repeated until the convergence criterion
is met.

It is expected that improved error estimates can further
advance both PD and PF modeling approaches to pave the
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path for routine use as predictive simulations for a certain
class of fracture problems.

Goal functional evaluations and computational analy-
sis for ε − h relationship In [17, 335, 337] a slit do-
main (a square plate with an initial crack) with displace-
ment discontinuity at the crack and the manufactured dis-
placement field [338, 339] are utilized to study the ε − h
relationship. Note that the crack in this study is rep-
resented by the phase-field damage function φ. Moti-
vated by [161, 340], various simulations for ε = chl with
l ∈ (0, 1] and h as the mesh size are conducted. Three
cases of mesh refinement are studied: 1) c = 2.0 and
l = 1.0, 2) c = 0.5 and l = 0.5, and 3) c = 0.5 and
l = 0.25. First, the influence of ε on the goal func-
tion evaluation is considered. Therefore, the goal func-
tion J(uFM) := uFM(0.75,−0.75) for a displacement
point value is utilized, which results in the total error
J(uFM) − J(uh). The maximal convergence order of
r = O(ε) was obtained in case 2) where r = ε = 0.5.
The observed order is r = ε = 0.25 for case 3) and
r ≈ 0.9 < ε for case 1). These results lead to the as-
sumption that |J(uFM) − J(uh)| = O(ε) as presented in
[202, 290, 300, 311]. In addition, two phase-field frac-
ture configurations were proposed as prototype models for
comparison in the recent benchmark collection [341].

Adaptivity Regarding adaptivity, we distinguish be-
tween spatial and temporal mesh refinement and adaptive
multiscale approaches. Spatial mesh refinement goes back
to anisotropies introduced by the mesh [342], residual-
based adaptive finite elements [187, 332], anisotropic
adaptive mesh refinement [336], and pre-refined meshes
where the crack path is known a priori [222]. Other
computational convergence analyses were undertaken in
[343]. For unknown crack paths, a predictor-corrector
approach was developed and applied in [202, 290, 344],
goal-oriented error-control [335, 337], and mesh refine-
ment in multiscale phase-field methods [345]. A few
rigorous studies on temporal error control exist [330,
346]. Apart from classical mesh refinement, an adaptive
predictor-corrector non-intrusive global-local (multiscale)
approach [314] (see also [347]) was developed based on
the approach presented in [348], was applied to porous
media [349], and extended to multilevel concepts [350].

Solver analyses Using alternating minimization for
solving the coupled displacement-phase-field problem,
the convergence of the scheme was established in [296]
and [187]. A convergence proof for a truncated nons-
mooth Newton multigrid method was very recently un-
dertaken in [351]. For further fully-coupled (i.e., mono-
lithic) techniques, no rigorous convergence are available,
but significant numerical evidence of the performance of
nonlinear solvers [17, 151, 290, 291, 304–310, 352].

Zhang et al. [353] used a length scale material pa-
rameter to evaluate the accuracy of phase-field model-
ing of brittle fractures with available experimental data.

They observed significant discrepancies between numer-
ical predictions and the experimentally observed load-
displacement curves after the critical force, despite a rea-
sonably accurate prediction of crack paths. Zhuang et
al. [354] implemented the phase-field method in a stag-
gered scheme to sequentially solve for the displacement,
phase-field, and fluid pressure. Asymmetric deflection
along material interfaces and penetration of hydraulic
fractures in naturally-layered porous media were reported
for different layer arrangements based upon their respec-
tive stiffness as measured by E and Gc. Farrell and Mau-
rini [297] reformulated the alternate minimization algo-
rithm for the variational fracture approach to simulate
nucleation and propagation of complex fracture patterns
as a nonlinear Gauss-Seidel iteration along with over-
relaxation to accelerate its convergence. They showed
further reduction in solution time by utilizing the ac-
celerated alternate minimization with Newton’s method.
Brun et al. [300] showed an iterative staggered scheme,
a two-field variational inequality system with indepen-
dent phase-field variable and displacement variables. For
the convergence using a fix-point argument and a natural
condition, the elastic mechanical energy remains bounded
and with a sufficiently thick diffusive zone around the
crack surface, monotonic convergence is achieved. Noll
et al. [355] presented results for ductile fracture with
linear isotropic hardening and discussed the computa-
tional costs for 3D simulations while analyzing added
computations due to mesh refinement. Chukwudozie et
al. [356] presented a unified fracture-porous medium hy-
draulic fracturing model that handled interactions among
multiple cracks, as well as the evolution of complex crack
paths in 3D simulations using energy minimization with-
out any additional branching criterion, but the location of
crack tip and its velocity remains a challenge in complex
configurations. Further, detailed linear solver analyses
for quasi-monolithic phase-field fracture using a GMRES
solver with matrix-free geometric multigrid precondition-
ing were conducted in [307]. Scalability tests of parallel
performance were performed in [311] and [312].

It is evident that further improvements in robust solvers
will be the key for both PD and PF approaches to be
adopted as the engineering tools of choice to predict frac-
ture phenomena.

3 Macroscale View of Crack Propagation
Physics using Thermodynamics
Constraints and Constitutive
Relationships

According to Haslach [357], a maximum dissipation non-
equilibrium evolution model can describe the unsteady
crack propagation rate for both brittle fracture and for
viscoplastic behavior at the crack tip. Ulmer et al. [358]
presented a thermodynamically consistent framework for
phase-field models of crack propagation in ductile elastic-
plastic solids under dynamic loading with an incremen-
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tal variational principle and validated it against the classi-
cal Kalthoff-Winkler experimental results. Mauthe and
Miehe [359] used two constitutive functions – free en-
ergy and dissipation potential to incorporate fluid flow
in cracks during hydraulic fracturing and coupled it to
a phase-field approach to fracture within a variational
framework. Miehe et al. [360] proposed a gradient dam-
age formulation with two independent length scales to
regularize the plastic response and crack discontinuities
to ensure that the damage zones of ductile fractures re-
main inside plastic zones. Roy et al. [361] presented
a rephrased phase-field theory of continuum damage in
a peridynamics setup and showed promising results of
mode II delamination. Farrahi et al. [362] demonstrated
that under mode I crack growth and proper calibration
of parameters, PFM always agreed with Griffith’s the-
ory. Alessi et al. [363] demonstrated that macroscopic
responses assimilable to brittle fractures, cohesive frac-
tures, and a sort of cohesive fracture, including depinning
energy contributions by tuning a few key constitutive pa-
rameters such as relative yield stresses and softening be-
haviors of the plasticity and damage criteria. It is duly
noted that both PD and PF show promise to visualize and
predict complex fracture phenomena without resorting to
ad-hoc modeling assumptions.

4 Validation against experimental data

The validation against experimental data is a cornerstone
to access the predictive accuracy of any engineering frac-
ture mechanics model. In this section, the experiments
used as benchmarks for peridynamic models are com-
pared against the ones used as benchmarks for phase-field
models. We limited the focus to the Sandia Fracture Chal-
lenge and publications where both models were compared
to the same experimental data. For a detailed review about
the comparison with experimental data, we refer to [4] for
peridynamic models and for phase-field models to [16,
Section 2.12]. It is remarked that the experimental data
from Jeffery and Bunger [364] may be used in the valida-
tion of different numerical simulators for hydraulic frac-
ture propagation.

4.1 Reasons for Sandia Fracture Challenge and
outline

Two reasons make the Sandia Fracture Challenge an ex-
cellent example:

1. experimental data is usually not disclosed in the
literature [365] whereas all data and experimen-
tal designs are made available in the Sandia chal-
lenge;

2. the Sandia fracture challenge has two unique fea-
tures that together establish the validity of a free
fracture model. First, the calibration step re-
quires the free fracture model to be calibrated
through a simple prototypical problem, e.g. a

tensile test. The subsequent validation step re-
quires the calibrated model to simulate a distinct
and more complicated fracture problem. It is the
model’s ability to match experimental results for
the complex problem that establishes its validity.
This prohibits parameter fitting to match a par-
ticular experiment.

The outline for the following subsections is as follows:
we first provide the methodology for error measurements
used to compare the different models. Afterward, the San-
dia Fracture Challenge is described in detail, with a focus
on the first and third test sets. These descriptions are fol-
lowed by comparisons of both models, including details
on the respective discretizations, numerical cost, and er-
ror measurements.

4.2 Error measurements for comparisons

For all compared values, the following error measure-
ments were calculated: For scalar values, the relative error
εrel = (xsim − xexp)/xexp and for a time series the coefficient
of determination R2 [366] is computed, when applicable.
The coefficient of determination R2 is defined as

R2 = 1− SSE

SST
(18)

for two series of n values y1, . . . , yn, the so-called series
of observables and ŷ1, . . . , ŷn, the so-called series of pre-
dictions. Where the total sum of squares SST reads as

SST =

n∑
1

(yi − y)2 with y =
1

n

n∑
1

yi (19)

and the sum of square residuals (or errors) reads as

SSE =

n∑
1

(yi − ŷi)2. (20)

Thus, R2 is a statistical measure in the range of zero to
one to indicate how good the series of predictions ŷi ap-
proximates the series of observables yi. R2 = 1 implies
that SSE = 0 and therefore, the series of observables
fits the series of predictions perfectly. If R2 = 0 and
therefore SSE = SST then the mean of observables se-
ries is as good as any predicted series. For the time se-
ries, the WebPlotDigitizer13 was used to extract the x and
y coordinates of the respective plot from the Sandia re-
port. The scipy.stats.linregress14 functionality of
the python SciPy package [367] was utilized to compute
the R2 correlation.

4.3 Sandia Fracture Challenge

The Sandia Fracture Challenge (SFC) is considered as one
of the potential set of benchmarks to showcase the predic-
tive accuracy of the two models for various complex ex-
perimental data. There are many other experimental data

13https://automeris.io/WebPlotDigitizer/
14https://docs.scipy.org/doc/scipy-0.15.1/

reference/generated/scipy.stats.linregress.html

13

https://automeris.io/WebPlotDigitizer/
https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.stats.linregress.html
https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.stats.linregress.html
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sets available which could serve as experimental bench-
marks as well. However, the SFC addresses some im-
portant aspects of calibration vs. validation against ex-
perimental results. One essential part of this challenge
is to calibrate free fracture model on simple prototypi-
cal problems such as a tensile test, and use this calibra-
tion to simulate the crack and fracture phenomena. With
this additional step, the model parameters can not be cal-
ibrated or fitted to the complex scenario but instead have
been calibrated using the simple scenario. This additional
step of calibration makes the SFC an excellent problem
to benchmark phase-field models and peridynamic mod-
els to assess their performance on different kinds of crack
and fracture phenomena. For the first and third fracture
challenge, we could find the contributions of peridynamic
models, see Section 4.3.1 and Section 4.3.2, respectively.
No studies using phase-field models were found for all
three fracture challenges. The summary of model accu-
racy is shown in Table 5.

4.3.1 First Sandia Fracture Challenge

In the first Sandia Fracture Challenge [368] blind round
robin predictions of ductile tearing for an alloy (15-5PH)
were studied. The stress-strain curve of a tensile bar was
provided to calibrate the model. Experiments on CT spec-
imens were conducted and the extracted quantities of in-
terest are shown in Figure 7. The geometry has a blunt
notch A and three holes B, C, and D, respectively. The
two unlabeled holes were used for the load pins to apply
the load in force±F . The following three challenge ques-
tions were used for predictive simulations:

1. What is the load force and the COD displace-
ment at the time of the crack initiation?

2. What is the path of crack propagation?
3. At what force and COD displacement does the

crack re-initiate out of the first hole, if the crack
does propagate to either holes B, C, or D?

and the teams had to answer these questions with their re-
spective model. Team 9 from the University of Arizona
used a bond-based peridynamic model [37, 38] to answer
these questions. The geometry was discretized using hex-
ahedron regions with edge length of 0.63mm and the
horizon was δ =1.5621mm. For more details about the
simulations, we refer to [368, Section 8.9].

During the ten experiments, the crack pathA−D−C−E
occurred nine times and the crack path A − C − E oc-
curred one time. Team 9 predicted the second path in
their simulations as the answer to the second question. Ta-
ble 3 shows the answers to the remaining questions. The
first row shows the average value for the force (N) and
the crack open displacement (COD) ((mm)) for the first
crack event and the second crack event. The first value in
every column is the value obtained by the load drop, and
the second one the visual obtained value. The second row
contains the average value obtained by the simulations of
team 9. The relative error εrel for the 1st crack events are

Table 3: The average values of the force (N) and the
crack opening displacement (COD) (mm) for the crack
path A − C − E, see Figure 7. For the experiments, the
average value obtained by the load drop is shown first and
the visual obtained value, second. For the simulations of
team 9, their obtained average value is shown. Adapted
from [368].

1st crack event 2nd crack event

Force (N) COD (mm) Force (N) COD (mm)
Exp 8066/6621 3.542/3.538 5128/4363 5.217/5.362
PD 4782 1.092 3514 1.575

−F

F

EA
B
C

D

COD

Figure 7: First Sandia Fracture Challenge: Simplified
geometry of the CT specimen to sketch the experimen-
tal quantity of interests which the peridynamic simulation
was compared against. Adapted from [368].

for the force −0.4/−0.28 and for the COD −0.7/−0.7 re-
spectively. The relative error for the 2nd crack events are
for the force −0.31/−0.2 and for the COD −0.7/−0.7 re-
spectively.

Using phase-field modeling, recent results were reported
in [369]. The discretization is based on tetrahedral ele-
ments with locally pre-refined meshes. The authors report
force-displacements curves for different numerical mod-
els and show contour plots for three different loadings of
the crack path, elastic energy, plastic energy, and the coa-
lescence degradation function.

4.3.2 Third Sandia Fracture Challenge

In the third Sandia Fracture Challenge, the predictions of
ductile fracture in additively manufactured metals were
studied. The data of tensile tests was provided to cali-
brate the simulation models. Figure 8 shows a simplified
sketch of the geometry to showcase the following chal-
lenge questions for predictive simulations:
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Table 4: Comparison of the measurements and the ob-
tained loads in the simulations for four different displace-
ments. For the comparison, the nominal load is consid-
ered. Adapted from [371].

Force (kN) for four displacements (mm)
0.25 0.5 0.75 1.0

Exp 7.884 8.164 8.203 6.538
PD 7.469 6.919 4.330 2.188

1. What is the force at the displacements 0.25, 0.5,
0.75, and 1.0 mm?

2. What is the force and Hencky (logarithmic)
strain in the vertical direction of the points P1–
P4 on the surface at the following forces: 75%
and 90% of peak load (before peak), at peak load,
and 90% after the peak load?

3. What is the force versus the gauge displacement
for the test?

4. What is the force and Hencky (logarithmic)
strain in the vertical direction of the points P1–
P4 on the surface over time?

5. What is the force and Hencky (logarithmic)
strain in the vertical direction of the lines H1–
H4 on the surface at the same forces as in ques-
tions 2?

Team C from the University of Texas Austin used an ex-
plicit peridynamic model with bond damage [370]. For
the damage evolution, the Johnson-Cook model was used.
The geometry was discretized with a nodal spacing of
h =0.14mm resulting in a total of 460.000 nodes. In-
formation of the used horizon were not reported in [371,
Table 9]. The answers to question 1 are shown in Table 4.
The relative errors are: −0.05, −0.15, −0.47, −0.66, re-
spectively. The R2 correlation for question 3, load (kN)
vs displacement (mm) is 0.7. For the relative errors with
respect to question 2, one can only look at the trend at
the peak load, since all other loads were defined relatively
to it. For the peak load, a relative error of −0.08 was
reported. The relative errors for the vertical logarithmic
strain (%) for point P2 are 7, 4.8, −0.8, and −0.8, re-
spectively. The R2 correlation at the peak load for the
Hencky strain on lines H3 for question 4 is 0.44. Unfor-
tunately, we had issues extracting the R2 correlations for
lineH4 with our tools. Note that this was a blind verifica-
tion, and the same team performed a revisited simulation
with more details, receiving better results [372]. How-
ever, phase-field simulations were done only qualitatively
using the geometry of the third Sandia Fracture Challenge
[373].

4.4 Comparison of both models with the same
experimental data

First, finite elastic deformation and rupture in rubber-like
materials [374] was studied for phase-field models in
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Figure 8: Third Sandia Fracture Challenge: Simplified
sketch of the geometry to showcase the quantity of inter-
ests in the fracture challenge. Adapted from [371].

80
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Figure 9: Geometry of the rubber sheet (80mm ×
200mm) and a thickness of 3mm. The length a of the
notches varied from, 12mm, 16mm, 20mm, and 24mm.
The radius of the notches is fixed at 1mm.

[375] and for peridynamic models in [376]. In these
publications, a rubber sheet with double edge notches
was studied on the geometry shown in Figure 9 (80mm×
200mm) and a thickness of 3mm. For the experimental
setup, the length of the notches a varied from, 12mm,
16mm, 20mm, and 24mm. For the PD simulations, the
horizon δ = 3.015h was used. In total, 16 000 discrete
PD nodes with a surrounding volume of V=1mm2 and a
nodal spacing of h = 1mm. For the PF simulations, a
quad mesh with a resolution of h = 6.66mm was used.
The applied displacement (mm) vs the reaction force (N)
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Table 5: Overview of the Sandia Fracture Challenge with contributions of peridynamic models. Two different re-
search groups contributed to the first and second Sandia Fracture Challenge using a peridynamic model. To the best
knowledge of the authors, no phase-field model contributed to the Sandia Fracture Challenge. However, phase-field
simulations were done using the geometry of the third Sandia Fracture Challenge [373]. To compare with the exper-
imental measurement, the relative error is provided for scalar values, and the R2 correlation for a series of values.
For the first Sandia Fracture Challenge, the following quantities were studied: a) Force (N) 1st crack event, b) Crack
Opening Displacement (COD) (mm) 1st crack event, c) Force (N) 2nd crack event, and d) COD (mm) 2nd crack
event. For the third Sandia Fracture Challenge, the following quantities were studied: a) - d) Force (kN) at 0.25, 0.5,
0.75, and 1 mm displacement; e) Force vs displacement (time series); f) Force (kN) at Peak load; and g) Hencky strain
(%) on line H3 at peak load.

First Sandia Fracture Challenge [368] Third Sandia Fracture Challenge [371]

a b c d a b c d e f g
εrel −0.4/−0.28 −0.7 −0.31/−0.2 −0.7 −0.05 −0.15 −0.47 −0.66 0.08
R2 0.7 0.44

was compared against the experimental observations and
the corresponding simulation results. The R2 correlation
for PD are: 0.83, 0.99, 0.98, 0.98, 0.98, and 0.78
respectively. The R2 correlation for PF are: 0.78, 0.84, 1,
0.64, and 0.65 respectively.

Second, dynamic brittle fracture in glassy materials was
studied in [377, 378]. In this study, a phase-field model
[186], a discontinuous-Galerkin implementation of PD
[379], and a meshfree discretization of PD [38] are used in
the geometry shown in Figure 10. For the PD simulation,
a nodal spacing h =0.1mm and a horizon δ =0.5mm
were used. For the discontinuous-Galerkin implementa-
tion of PD a non-uniform mesh with average element size
h of 0.1mm and a horizon δ of 0.5mm was used. For
the phase-field model, the nodal spacing was h =0.3mm
and the length scale parameter l0 was 0.6mm. Note that
the authors did some δ-convergence study in [378], how-
ever, we only report the finest resolution here. Fore more
details, we refer to [378, Section 5.2]. For all three imple-
mentations, the crack angle after branching, the time of
crack branching, and position of the crack branching were
compared with the experimental results. In this study var-
ious discretization parameters were studied, however, we
report the discretization parameters corresponding to the
best agreement with the experimental data. First, the value
for the meshfree discretization is presented, followed by
the value for the discontinuous-Galerkin discretization,
and the value for the phase-field model last. The relative
errors for the crack angle are: −0.21, −0.35, and −0.51,
respectively. The relative errors −0.06 for the event of
crack branching in time are the same for all simulations.
The relative errors for the crack branching position are: 0,
−0.12, and 0, respectively.

5 Comparison between peridynamics and
phase-field fracture models

In this section, the two approaches PD and PF are com-
pared with respect to their computational aspects, advan-

100

1508
19

y

x

Figure 10: Sketch of the geometry (100mm × 150mm)
with a thickness of mm. The angle of the cut-off is 40°
and the initial crack has a length of 8mm.

tages in simulating complex fracture phenomena, and the
challenges faced by these numerical methods. For peridy-
namics, we assume that the presented aspects hold for all
three models presented in Figure 2. If one aspect holds
only for specific models, we will mention that explicitly
in the text below.

5.1 Computational aspects

In this section, we focus on the computational aspects
of both models from a bird’s eye view and compare
the computations on a very high-level. To do so, we
define the quantity of a field which can be a vector
field f = {f1, . . . , fn | fi ∈ R3} or a scalar field
f = {f1, . . . , fn | fi ∈ R}. Peridynamics is a single-field
model, here one just solves for the displacement field u
and the peridynamic damage field d(u) is obtained from
the displacement field using the constitutive law. The
displacement field is solved with explicit or implicit time
integration [380–384]. The majority of PD simulations
utilized bond-based models due to the increased compu-
tational costs for the state-based models. Similarly, the
majority of simulations utilized explicit time integration
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Table 6: For the two experiments, phase-field and peridynamic models were used for comparison. To compare with
the experimental measurement, the relative error is provided for scalar values and the R2 correlation for a series of
values. For the double edge notches, the displacement (mm) vs the reaction force (N) was compared for a initial
crack lengths 12, 16, 20, 24, and 28mm, see a) - d. For the dynamic brittle fracture in glassy materials, the following
quantities were studied: a) crack angle, b) crack branching position, and c) crack branching event. Here, two different
PD discretizations: a meshfree discretion [38] and a discontinuous-Galerkin implementation [379]. For each error
measurement, the first value is with respect to the meshfree discretization, and the second one with respect to the
discontinuous-Galerkin implementation.

Double edge notches Dynamic brittle fracture in glassy materials

R2 a b c d e εrel a b c

PD [376] 0.83 0.99 0.98 0.98 0.78 PD [378] −0.21/−0.35 0/−0.12 −0.06/−0.06
PF [375] 0.78 0.84 1 0.64 0.65 PF [378] −0.51 0 −0.06
EXP [374] - - - - - EXP [377] 57°/55° {0.53,0.57,0.88}Width 30.7±1.5µs

due to their lower computational costs.

For phase-field, we have a two field model with the
displacement field u and the damage field φ.
For staggered schemes and alternating minimiza-
tion [186, 187, 222, 296, 300–302, 385] the global
system is decoupled, first, one solves for the dis-
placement field u and second, one solves for the
phase-field damage field φ independently. For the
equation of motion, implicit or explicit time integration
schemes can be utilized. For the monolithic scheme
[151, 155, 236, 304, 306, 307, 318, 352, 386] the dis-
placement field and the phase-field damage field are fully
coupled and solved simultaneously. Pham et al. [162]
suggested that a suitable choice of fracture process zone
corresponding to the intrinsic length scale associated with
the phase-field model could provide valid predictions of
crack growth in quasi-static brittle fracture.

Classical elasticity parameters can be used to calibrate
both models. Both models require a minimal set of pa-
rameters for calibration, i.e. Young’s modulus E, Pois-
son’s ratio ν, and fracture energy Gc, which all can be
experimentally determined. Thus, both models could use
the same elasticity and fracture properties obtained by
an experiment to calibrate and validate against the same
quantity of interest. Both models depend on length scale
parameters; l0 for phase-field models and the horizon δ
for peridynamic models needs to be calibrated. Tech-
niques for calibration that include material strength and
flaw size have been shown for PF [387] and PD [68, 115].
On the other hand, when sharp cracks approximations are
needed, mathematically l0 should tend to zero (see Sec-
tion 2.2), as confirmed for PF with numerical simulations
in [311] using an academic test case in which manufac-
tured solutions for the crack opening displacement and
total crack volume were constructed [388]. In the case
of PD with bond softening, one sees that the damage is
confined to a thin zone about the crack line of thickness
controlled by the PD horizon δ, [128]. Here, the thick-
ness is δ + 2h where the mesh diameter h is h = o(δ).

Goswami et al. [389] developed an enhanced physics-
informed neural network (PINN) based machine learning
(ML) for the fracture growth and propagation problem us-
ing PF. Nguyen et al. [390] used ML to develop relation-
ships between the displacements of a material point and
the displacements of its neighbors and the applied forces
within PD framework. Mandal [391] presented a com-
parison of PF and PD models and [392] for a tensile im-
pulse traction on the pre-crack faces experiment. Good
agreements were reported for crack tip velocities for no-
branching case as well as branching for higher stress in-
tensities cases despite the post-processing of PD and PF
results using distinct algorithms.

We conclude that there are very few results available
where both models are compared against the same exper-
imental data. Confronted with this paucity of information
it is difficult to get insights regarding better suitability of a
method for specific crack phenomena. With this in mind,
the Sandia fracture challenge is pointed out in this review
for the two main reasons described in Section 4.1. This
makes the Sandia fracture challenge an excellent problem
to benchmark phase-field models and peridynamic mod-
els in order to assess their performances for different kinds
of fracture phenomena. Further, it would be a good exer-
cise for both communities to come together and define a
common set of benchmark simulations for experimental
validation and model performance assessment.

5.2 Advantages

Several advantages are highlighted for both PD and PF ap-
proaches to show why these two methods have been pop-
ular approaches to understand fracture phenomena.

1. Crack initiation:
Growth at the tips of long preexisting cracks are
handled by both phase field and peridynamics
noting that brittle crack extension is energy
based. For short interior cracks and notches
quasi-static phase field models have introduced
strength based driving forces for to account
for crack nucleation Kumar et al., [175]. For
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peridynamics crack nucleation about defects are
manifested as dynamic instabilities Silling et al.,
[393], for cohesive models see Lipton et al. [47],
[124].

2. Notion of damage in the model representa-
tion: In most other models or computational
techniques an additional criteria, e.g. as in
Linear Elastic Fracture Mechanics, is needed
to describe the growth of cracks. However,
in peridynamic and phase-field models the
criteria for the crack growth is determined as a
part of the solution and no external criteria is
needed. The PD correspondence models offer
the opportunity to incorporate classic continuum
damage models in state based peridynamics see
Tupek et al. [394].

3. Increasing complexity in multi-field fracture:
Both models were extended to multi-field frac-
ture. For peridynamic models: thermal effects
[395–399], diffusion [113, 396, 400–402], ge-
omechanical fracture [1, 403–413], and corro-
sion [414–416]. For phase-field simulations: hy-
draulic fracture [168, 201–203, 293, 354, 356,
359, 417–427], diffusion [209], thermo-elastic-
plastic [199], thermal effects [152, 197, 198,
286, 428], geologic/geo-materials [246, 258,
429], and fluid-structure interaction [17, 346,
430].

5.3 Challenges

The following important issues are identified as chal-
lenges in the context of both PD and PF modeling.

Common challenges to PD and PF

1. From dynamic to quasi-static evolution A
long range goal for fracture modelling will be
the ability to recover quasistatic fracture models
directly from dynamic fracture models without
ad-hoc assumptions. This aspect is largely
absent in both PF and PD approaches. To the
best of our knowledge such questions have been
raised and partially answered only recently for
a new local fracture model in the context of
the dynamic peeling test in one dimension as
described in Freund [431]. In this context the
dynamic model is a local model for free de-
cohesion developed in Dal Maso et al., [432] and
the quasistatic limit is identified in Lazzarioni
and Nardini [433]. It is recognized that this is a
hard problem and presents a challenge for PD
and PF.

2. Computational cost: Both PD and PF ap-
proaches are computationally expensive. For

peridynamics it is the meshless discretization,
which is computational intensive, similar to
molecular dynamics (MD) and smoothed-
particle hydrodynamics (SPH). To accelerate the
computations implementations using the Mes-
sage Passing Interface (MPI) [84, 86, 87], the
C++ standard library for parallelism and concur-
rency (HPX) [88], and GPU accelerated [93–95]
are available. To speed up the implicit time
integration following methods were proposed:
Finite element approaches (FEM) [80, 82, 85],
a Galerkin method that exploits the matrix
structure [434], using sparse matrices instead of
a dense tangent stiffness matrix [435], adaptive
dynamic relaxation schemes (ADR) [436–438],
the Fire algorithm [439, 440], an explicit tangent
stiffness matrix [441] using bond softening [46],
a convolution based approach [442, 443], and
the GMRES algorithm [443, 444] in conjunction
with the Arnoldi process [445, 446]. Here,
bond-based material models are computationally
cheaper than state-based models. Furthermore
explicit time integration is computationally
cheaper than implicit time integration.

For phase-field models the length scale pa-
rameter l0 tends to become small, thus,
requiring small mesh sizes for finite element
discretizations. Therefore, the method gets com-
putationally expensive due to the large number
of mesh elements. Phase-field models could be
accelerated using a staggered schemes instead
of a monolithic scheme [226], GPU acceleration
[330], and the Message Passing Interface (MPI)
based parallelization [237, 311], and matrix-free
geometric multigrid methods [307, 312]. Other
attempts to reduce the computational costs
are model order reduction [447, 448], sym-
pletic time integrators [449], adaptive schemes
[187, 202, 290, 330, 332, 335, 336, 450],
and global/local (multiscale) approaches
[314, 348, 350, 451].

3. Lack of detailed three-dimensional simu-
lations: Probably due to their computational
expenses, only a few three-dimensional sim-
ulations using PF and PD are reviewed here.
Following three-dimensional PD simulations
are available: hydraulic fracture [409, 452], the
Brokenshire torsion experiment [453], polymer
chains [454], Kalthoff Winkler [143], pitting
corrosion damage [455], 3-point bending [96],
impact damage on the glass layered structure
[96, 456, 457], penny-shaped crack in a cylindri-
cal bar [458], double edge notch specimen [458],
ductile material behavior in a rectangular bar
[459], pressurized cylinder [222], and reinforced
concrete lap splice [69].
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The following three-dimensional research
studies using PF are available: formation and
growth of echelon cracks [228], pressure vessel
simulation [222], single-edge notched shear
test [226], cube with rigid spherical inclusion
under tension [221], Kalthoff Winkler exper-
iment [221], bolted plate compared against
experimental results [225], simple shear tests of
thoracic aorta with anisotropic failure compared
against experimental results [227], random
nucleation sites [223], L-shaped specimen
[224, 307], tension test of cube with spherical
inclusion [151], bending of Hopkinson bar
[460], and Sneddon/Lowengrub benchmark
[202, 287, 311], and non-isothermal pressurized
fractures [461].

To list some representative three-dimensional
simulations, Weinberg et al. [462] showed stress
distributions for modes I, II, and III fractures
using NURBS-based finite elements in three-
dimensional simulations. Heider et al. (2018)
compared the hydraulic fracturing simulation
results using PF against the experimental data
for granite samples from the “Hohenberg”
quarry in Germany with good predictive accu-
racy (within experimental relative errors less
than 15%) for the pressure needed to initiate the
crack in both 2D and 3D geometries. Another
plausible reason for the lack of detailed three-
dimensional fracture simulations could also be
the associated challenges to perform detailed
three-dimensional experimental measurements
and provide validation data sets.

4. Extraction of crack tip/surfaces: Since both
models have a notion of damage, the so-called
phase-field crack function φ and the peridynamic
damage parameter d, the position of the crack
tip/surface is not encoded in the model and
needs to be approximated. This phenomenon is
not limited to phase-field [281] and peridynamic
models, e.g. [463, 464], and relates to any
other method which does not have explicit
crack representation in the model. This could
be a source of error for tracking the crack tip
and comparing the crack tip velocity against
experimental observations in dynamic fracture
simulations. Ziaei-Rad et al. (2016) used the
non-maximum suppression technique from an
image processing field to detect the ridge of
the phase-field profile and then applied cubic
spline fit to determine the crack path represen-
tation with reasonable success to identify crack
branching as well as crack tips within the mesh
resolution limits. Agrawal and Dayal [465]
partially explained the relationship between
phase-field and crack opening displacement
and irreversibility in the phase-field model.

Yoshioka et al. [466] presented two approaches
- a line integral and a level-set method, to
compute the crack opening displacement that is
required in hydraulic fracturing simulations and
demonstrated that both approaches computed
the crack opening temporal growth accurately.
Despite these recent advances, there is still room
for improvement to extract the complex mul-
tiple interacting crack surfaces from simulations.

5. Lack of validation studies against available
experimental data: Validation against exper-
imental data for peridynamics is summarized
in [4] and for phase-field models in [16, Sec-
tion 2.12]. However, for an accurate comparison
of these two models, the same experiment or
a set of experiments should be utilized to gain
some insights of both methods on the same
problem. Table 6 lists the phase-field and
peridynamic models which were compared
against the same experimental data. On the
other hand, accessing raw experimental data is a
different challenge [365], and one of the Sandia
Fracture Challenges could be used to validate
peridynamics and phase-field models against the
same experimental data.

6. Unavailability in commercial codes: Most
simulations of PF and PD models use their im-
plementations in corresponding scientific code
bases. At the time of writing of this review, not
many commercial codes implemented either one
of the models. LS-DYNA provides a bond-based
peridynamics implementation discretized with
the discontinuous Galerkin FEM [96].

7. Crack nucleation: Although crack propagation
and path is autonomously handled by both
models, a complete theoretical understanding of
nucleation for dynamic and quasistatic fracture
is incomplete.
Recent developments include the introduction
of a strength based crack driving force for
quasistatic PD [175] based on a realistic phe-
nomenology and comparison with experiments.
[162, 467–470]. As expected it is a very active
area of interest both for PF [175, 176, 387, 471]
and PD [472–474].

8. Incompressible hyper elastic material be-
havior: At the time of completing this review,
not many material models or simulations for
incompressible hyper elastic material behavior,
e.g. a Poisson ratio ν = 0.5, were available
for PF [283, 284] and the recent PhD thesis
[475], and the application to carbon black filled
ethylene propylene diene monomer rubber
(EPDM) was done in [285]. For PD we have
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[140, 476, 477]. Note that modeling of hyper
elastic material behavior is challenging for
any numerical method since the constitutive
material law must reflect material behaviors
such as a neo-Hookean [478] or Mooney–Rivlin
[479] solids and requires for the well-posedness
the inf-sup condition for both the continuous
problem formulation and the discretization.

9. Microscale view of crack propagation physics
using molecular dynamics (MD) simulations:
Seleson et al. [130] showed that peridynamics
(PD) model can recover the same dynamics as
the MD model through appropriate selection of
length scale for smooth deformations. Ahadi and
Melin [480] investigated accuracy of PD in cap-
turing features emerging from atomistic simu-
lation [481] through calibration of interparticle
bond strength and length scale parameters elas-
tic plastic effects. In a similar attempt to connect
the phase-field method to MD, Patil et al. [482]
derived PFM parameters from the MD atomistic
simulations and showed that the theoretical en-
ergy release rate G and internal length param-
eter are consistent with the MD simulation re-
sults. It is important to note that the microscale
physics of crack nucleation and growth through
MD atomistic simulation can provide the infor-
mation for upscaling [483]. Given the current
state of the art, the relation between first princi-
ples models and the macroscopic models of PD
and PF with crack nucleation and propagation
has not been firmly established in the literature.

Specific challenges for Peridynamics Fracture Model

The following challenges are highlighted to show the dif-
ficulties in applying boundary conditions, specific mate-
rial models, and controlling numerical errors in PD.

1. Application of boundary conditions: As
mentioned in [4] a major challenge within PD
is the treatment of boundary conditions in a
non-local fashion [484–489]. This is seen in
nonlocal traction conditions for state based
linear peridynamic solids where surface effects
appear. For this case techniques to handle
nonlocal traction are recently developed [127].
More general non ordinary state based and cor-
respondence models have yet to be addressed.
For local to nonlocal coupling one approach is
to couple local and non-local models to enforce
boundary conditions in the local region and have
the non-local model in the region where cracks
and fractures arise. For more details, we refer
to the review on non-local coupling approaches
[490].

2. Constitutive modeling Figure 2 illustrates the
plethora of material models proposed for peri-
dynamics. The question of choosing a nonlocal
model that is an acceptable representative for a
particular material system must be the focus of a
coordinated theoretical and experimental effort.
This applies to bond based and state based
PD models as well as correspondence models
Tupek et al. [394] that permit the usage of
constitutive models from local theory within the
peridynamic formulation. [41, 41, 50–57, 59–
62, 76, 77, 79, 491–493]. The possibility for
zero energy modes in correspondence models
has been acknowledged and methods for stabi-
lization are being developed [491, 492, 494].

3. Choice of discretization parameters: As
mentioned in [4] the choice of the nodal spacing
and the horizon results in diverse convergence
scenarios [111, 114]. One challenge is to
find the proper ratio between the horizon and
mesh size, since the simulations are sensitive
[115, 116] with respect of these parameters.
One adjustment is to select the ratio such that
the PD simulation matches the dispersion curve
obtained by the experiment [495]. Another
adjustment is to determine the horizon by Grif-
fith’s brittle failure criterion [68]. To determine
the discretization parameters from experimental
data, the peridynamic formulation of the virtual
field method could be applied [496].

4. Surface effects and corrections: Most PD
models are calibrated under the assumption
that a discrete PD node has a full neighbor-
hood. However, points close to the boundary
do not have a full neighborhood and their
material properties are slightly different from
the ones with the full neighborhood. This is
the so-called surface effect. Le and Bobaru
studied some proposed methods/algorithms to
address the surface effect [497]. The following
methods/algorithms are available: volume
method [9, Section 2], force density method
[498], energy density method [10, 498, 499],
force normalization method [82], a modified
position-aware linear solid constitutive model
[79], fictitious node method [396, 500], and
correction of the transient heat conduction [501].

5. Development of adaptive PD models and
methods: There is a lack of adaptive meth-
ods developed to handle peridynamic fracture
problems for coupling interior dynamics to
boundary effects and for coupling inelastic to
elastic domains within a simulation. A variable
horizon approach is proposed for adaptivity in
[502] and [503]. It is well known that nonlocal
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models are far more expensive to simulate than
local models. Additionally they can induce
artificial dispersive artifacts in otherwise local
elastic regions. These considerations provide
motivation for adaptive local-nonlocal models
for fracture evolution. Here the fracture set is
evolved in terms of bond based PD while FEM
methods can be used away from the fracture set
[504]. More on this type of numerical modeling
and implementation can be found in [490].

6. Asymptotically compatible quadrature meth-
ods: An additional way to control accuracy of
peridynamic methods is through development of
asymptotically compatible quadrature methods
for state based fracture as in recent approach of
[127]. Here, the numerical scheme is designed
to recover linear elastic behavior away from the
crack set asymptotically as the horizon tends to
zero.

7. Ductile fracture: As of the time of writing this
review, not many material models and simula-
tion for ductile fracture were available [505–
508]. Note that ductile tearing is challenging
for any numerical method, due to the choice of
an appropriate ductile failure model. This fail-
ure model needs to incorporate the failure of hy-
drostatic stress (or triaxiality of stress) to predict
ductile failure. Here, state-based and correspon-
dence models will be beneficial, as bond-based
material models are limited to model two point
interactions.

8. Opportunities for quasistatic PD models: The
preponderance of peridynamic simulation has
focused on dynamic problems and this provides
an opportunity for quasistatic fracture modeling
[381, 509–511] with suitable PD models. There
are plenty of experimental benchmarks for
the validation of peridynamic models in the
quasistatic regime.

Specific challenges for Phase-field Fracture Model

The following challenges are highlighted regarding the
handling of complex geometries, material models, and
controlling numerical errors in estimating crack surface
geometries in PF.

1. Crack path intersecting holes, obstacles, and
boundaries: Several issues were reported while
obtaining crack paths in agreement with LEFM
for problems involving holes [16]. Another
study [163] concluded that judgement on if a
crack arrests or the method simply does not
permit continuation across obstacles, requires
expert knowledge. In pressurized fractures, see
e.g., [306], the fracture often branches, which

raises however whether this is physically reason-
able. Moreover, goal functional evaluations are
sensitive to boundary conditions and the domain
size [311].

2. Fast crack propagation under dynamic
loading: For some fast crack propagation
simulations, e.g. [465], the calculated fracture
velocity overestimated the fracture energy
dissipation.

3. Composite/Concrete fracture: At the time of
writing this review, not many fracture/damage
models for composites [267, 512, 513] and
concrete [514–517] were available.

4. Asymptotic computational understanding of
the interaction of regularization, model, and
discretization parameters: In terms of numer-
ical and computational convergence analysis,
current PF understanding is still incomplete.
Ingredients of numerical analysis from image
segmentation [518], phase-field in fluid flow
[519, 520] are available. Furthermore, compu-
tational convergences analyses for phase-field
fracture have been undertaken [17, 290] and
[521, 522]. Such a rigorous numerical analysis
for a phase-field fracture model substantiated
with numerical tests is missing to date. However,
passing to the limits in the regularization param-
eters also requires to change the mathematical
function spaces, e.g., [147, 148].

5. Robust and efficient linear solvers and pre-
conditioners Closely related to the previous as-
pect is the development of iterative or multigrid
linear solvers and preconditioners. Several sug-
gestions exist as we have previously discussed,
but a robust preconditioner for variations in the
length-scale l0, the regularization parameter κ,
both spatial and temporal discretization parame-
ters, and material parameter limits, for instance,
Poisson’s ratio ν → 0.5 has not yet been fully
understood; first attempts can be found in the
PhD theses [523] and [475]. The challenge are
spectral-equivalent operators for preconditioning
and the multiscale-multidomain character due to
the variations of several orders of magnitude of
the regularization parameters.

This review paper has highlighted some common chal-
lenges and specific challenges for both models. In our
opinion, listing these challenges are useful in many ways.
First, these challenges can guide young researchers to in-
teresting research topics they might address for their fu-
ture career. Second, these challenges need to be addressed
for rigorous comparison against experiments. Notably in
Section 5 we point out that there are few comparisons of
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both methods against the same experiment. Here, more
work is needed for comparison of both models’ accuracy
for specific crack and fracture phenomena. Another as-
pect is that both models have not participated in the San-
dia fracture challenge as consistently as other methods.
Third, more rigorous mathematical and numerical analy-
sis of cracks speeds, locations and bifurcations are needed
for both methods. Application and calibration of these
methods to composite materials should be carried out. We
believe that this is necessary for both methods to have a
broader acceptance in industry. Presently these methods
are being applied by some research and development de-
partments of companies, however, they are not used for
validation and certification of products. This is in contrast
with the finite element method where it is used in the final
structural certification of the the Boeing 777. Here, one
could argue that the finite element method was introduced
75 years ago [524–526], while free fracture methods were
introduced only around 21 years ago. However, address-
ing these challenges is crucial for a broader adaption of
these methods outside the academic setting.

6 Conclusions

A comprehensive review of two numerical modeling ap-
proaches - Peridynamics (PD) and Phase-field (PF) is pre-
sented with the expectation to highlight their advantages,
as well as challenges in modeling fracture initiation, prop-
agation, and predictive capabilities for experimental vali-
dation. Both numerical methods can retrieve a consistent
microscale physics of crack initiation and propagation.
Despite both approaches being computationally challeng-
ing, their advantages in capturing multiple fracture in-
teractions with minimal amount of phenomenological as-
sumptions and closures make PD and PF as a good choice
to understand engineering fracture mechanics. The fol-
lowing items are listed here for further improvement of
both modeling approaches:

• Both PD and PF need to be evaluated against the
same experimental benchmark for a reasonable
comparison in a blind validation manner. Several
experimental datasets are identified as the avail-
able community resources.

• Phase-field simulation results for the Sandia
fracture challenge problems could provide the
missing piece of information for a comprehen-
sive and validated comparison among the two
modeling approaches.

• There is in general a lack of comparative studies
between these two leading modeling approaches
for fracture initiation and propagation, even for
the same set of simple fracture experiments.

Nomenclature

Peridynamic

e ∈ Rn Direction vector between two points in the de-
formed state

c ∈ R+ Material dependent stiffness constant

S ∈ Rn Strain between two points in the deformed con-
figuration

sc ∈ R+ Material dependent critical bond stretch

δ Length scale parameter (δ ∈ R+) [m]

f Pair-wise force function (f : Rn×Rn× [0, T ]→
Rn)

x ∈ Rn Discrete PD material

X Material point (X ∈ Rn)

µ Damage function µ : [0, T ]× Rn × Rn → R
T Force state T : Rn × Rn × [0, T ]→ Rn

Bδ Neighborhood of a PD material point X

D Domain (D ⊂ Rn)

d Damage variable d : [0, T ]× Rn → R
Phase-field

Γ Crack set (Γ ⊂ Rn−1)

γ Crack surface density function

κ Regularization parameter (κ ∈ R+)

b∗ Body force [N/m3]

t∗ Boundary traction [Pa/m]

Ω Domain (Ω ⊂ Rn)

∂Ω Boundary (∂Ω ⊂ Rn−1)

∂Ωt Traction boundary (∂Ωt ⊂ Rn−1)

∂Ωu Displacement boundary (∂Ωu ⊂ Rn−1)

∂tφ ≤ 0 Crack irreversibility constraint

φ Phase-field crack function (φ ∈ [0, 1])

ψc Surface energy

ψs Strain energy

E Energy [J]

F External energy potential [J]

g(φ) Degradation function

l0 Length scale parameter (l0 ∈ R+) [m]

P Potential energy [J]

Other Symbols

ü Acceleration (ü ∈ Rn) [m/s2]

u Displacement (u ∈ Rn) [m]

ε(u) Linearized strain tensor

% Material’s density [kg/m3]

Gc Critical energy release rate [J m−2]

n Dimension n = {1, 2, 3}
T Final Time [s]

t Current time [s]
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istence of solutions to a regularized model of dy-
namic fracture”. Mathematical Models and Meth-
ods in Applied Sciences, 20(07), pp. 1021–1048.

29



A PREPRINT - JANUARY 26, 2022

[173] Chambolle, A., Giacomini, A., and Ponsiglione,
M., 2008. “Crack initiation in brittle materials”.
Arch. Ration. Mech. Anal., 188, pp. 309–349.

[174] van Goethem, N., and Novotny, A., 2010. “Crack
nucleation sensitivity analysis”. Math. Methods
Appl. Sci., 33(16).

[175] Kumar, A., Bourdin, B., Francfort, G., and Lopez-
Pamies, O., 2020. “Revisiting nucleation in the
phase-field approach to brittle fracture”. Jour-
nal of the Mechanics and Physics of Solids, 142,
p. 104027.

[176] de Lorenzis, L., and Maurini, C., 2021. “Nu-
cleation under multi-axial loading in variational
phase-field models of brittle fracture”. Interna-
tional Journal of Fracture.

[177] Chambolle, A., Francfort, G., and Marigo, J.-J.,
2009. “When and how do cracks propagate?”.
Journal of the Mechanics and Physics of Solids,
57(9), pp. 1614–1622.

[178] Mielke, A., 2005. Evolution of rate-independent
systems. Elsevier/North-Holland, pp. 461–559.

[179] Pham, K., Amor, H., Marigo, J.-J., and Maurini, C.,
2011. “Gradient damage models and their use to
approximate brittle fracture”. International Jour-
nal of Damage Mechanics, 20(4), pp. 618–652.

[180] Pham, K., Marigo, J.-J., and Maurini, C., 2011.
“The issues of the uniqueness and the stability of
the homogeneous response in uniaxial tests with
gradient damage models”. Journal of the Mechan-
ics and Physics of Solids, 59(6), pp. 1163–1190.

[181] Pham, K., and Marigo, J., 2013. “From the onset of
damage to rupture: construction of responses with
damage localization for a general class of gradient
damage models”. Continuum Mech. Thermodyn.,
25, p. 147–171.

[182] Nguyen, Q., 1987. “Bifurcation and postbifurca-
tion analysis in plasticity and brittle fracture”. J.
Mech. Phys. Solids, 35, pp. 303–324.

[183] Nguyen, Q., 2000. Stability and Nonlinear Solid
Mechanics. Wiley & Son, London.

[184] Benallal, A., and Marigo, J.-J., 2006. “Bifurcation
and stability issues in gradient theories with soften-
ing”. Modelling and Simulation in Materials Sci-
ence and Engineering, 15(1), dec, pp. S283–S295.

[185] de Borst, R., and Verhoosel, C. V., 2016. “Gradi-
ent damage vs phase-field approaches for fracture:
Similarities and differences”. Computer Meth-
ods in Applied Mechanics and Engineering, 312,
pp. 78–94. Phase Field Approaches to Fracture.

[186] Miehe, C., Hofacker, M., and Welschinger, F.,
2010. “A phase field model for rate-independent
crack propagation: Robust algorithmic implemen-
tation based on operator splits”. Computer Methods
in Applied Mechanics and Engineering, 199(45-
48), pp. 2765–2778.

[187] Burke, S., Ortner, C., and Süli, E., 2010. “An adap-
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Wriggers, P., 2021. “A general phase-field model
for fatigue failure in brittle and ductile solids”.
Comput. Mech., 67, pp. 1431–1452.

[196] Carrara, P., Ambati, M., Alessi, R., and De Loren-
zis, L., 2020. “A framework to model the fatigue
behavior of brittle materials based on a variational
phase-field approach”. Computer Methods in Ap-
plied Mechanics and Engineering, 361, p. 112731.

[197] Miehe, C., Schaenzel, L.-M., and Ulmer, H., 2015.
“Phase field modeling of fracture in multi-physics
problems. part i. balance of crack surface and fail-
ure criteria for brittle crack propagation in thermo-
elastic solids”. Computer Methods in Applied Me-
chanics and Engineering, 294, pp. 449–485.
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