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Abstract
We arrive at estimates of critical slip distance in the rate and state model for friction evolution
using synthetic earthquake data via the Bayesian inference. The conventional solution to
the inverse problem is the deterministic parameter values, which may not represent the
true value, and quantifying uncertainty in the model parameters increases confidence in the
estimation. In this work, the uncertainty in the critical slip distance is estimated by the
posterior distribution obtained through the Bayesian inversion.

1 Introduction

Figure 1: P wave arrives first, followed by the S wave and then by surface waves.

Earthquakes occur as a result of global plate motion. They start out many miles beneath the surface, too
deep for us to observe them directly. So they are studied from afar by (1) observing the geological changes
at the ground surface, (2) analyzing the symphony of earthquake vibrations recorded on seismographs,
and (3) monitoring the tectonic changes in the Earth’s crust by surveying it repeatedly, using land survey
techniques for many years and now using satellites. An earthquake produces P waves, or compressional
waves, that travel faster and reach the seismograph first, and S waves, or shear waves, that are slower
(Fig. 1). Both are transmitted within the Earth and are called body waves. Even slower are surface waves
that run along the surface of the earth and do a lot of the damage. The earthquake focus is the point
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within the Earth where the earthquake originates. The epicenter is a point on the surface directly above the
focus. The simplest model for earthquake initiation is to assume that when the stress accumulated in the
plates exceeds some failure criterion on a fault plane, an earthquake happens [1]. The groundbreaking work
of [2] arrived at the hypothesis that faulting occurs when the resolved shear stress exceeds the internal
friction on some plane in the medium leading to fault slip. The quantification of fault slip is achieved using
the Rate- and State-dependent Friction (RSF) model for friction evolution, which is considered the gold
standard for modeling earthquake cycles (interseismic loading followed by coseismic relaxation) on mature
faults [3–7]. It is given by

µ = µ0 +A ln
(
V
V0

)
+B ln

(
V0θ
dc

)
,

dθ
dt = 1− θV

dc
,

}
(1)

where V = |dd/dt| is the slip rate magnitude, a = dV
dt which we hypothesize is of the same order as recorded

by seismograph, µ0 is the steady-state friction coefficient at the reference slip rate V0, A and B are empirical
dimensionless constants, θ is the macroscopic variable characterizing state of the surface and dc is a critical
slip distance. The temporal derivatives of friction coefficient are

µ̇ = A
V V̇ ,

µ̈ = A
V V̈ −

A
V 2 (V̇ )2

}
(2)

1.1 Significance of critical slip distance and the lack of calibration thereof

The critical slip distance, dc, is the distance over which a fault loses or regains its frictional strength after
a perturbation in the loading conditions [8]. In principle, it determines the maximum slip acceleration
and radiated energy during an earthquake insofar that it influences the magnitude and time scale of
the associated stress breakdown process (e.g., fracture energy) [9]. Regardless of the importance, it is
paradoxical that the values of dc reported in the literature range from a few to tens of microns as determined
in typical laboratory experiments with bare surfaces and gouge layers [9], to 0.1–5 m as determined in
numerical and seismological estimates based on geophysical observations [10], and further to several meters
as determined in high-velocity laboratory experiments [11]. Moreover, in most numerical simulations of
dynamic rupture propagation with prescribed friction laws, dc is imposed a priori and its value is often
assumed to be constant and uniform on the fault plane. Understanding the physics that controls the critical
slip distance and explains the gap between observations from experimental and natural faults is thus one of
the crucial problems in both the seismology and laboratory communities [12].

1.2 The agenda for this work

With that in mind, we provide a framework in which synthetic earthquake data is used to quantify uncertainty
in critical slip distance. While the resolution and coupled flow and geomechanics [13–23] associated with
subsurface activity in the realm of energy technologies and concomitant earthquake quantification is a hot
topic, in this work, we focus on the effect of a standard trigonometric perturbation with exponentially
decreasing amplitude. In section 2, we explain the spring slider damper idealization to infer the influence of
critical slip distance on RSF without recourse to complicated elastodynamic equations. In section 3, we
explain the Bayesian inference framework to inversely quantify uncertainty in the estimation of critical slip
distance. In section 4, we present conclusions and outlook for future work.

2 The forward model

We first rewrite Eq. (1) as

V = V0 exp
(

1
A

(
µ− µ0 −B ln

(
V0θ
dc

)))
,

θ̇ = 1− θV
dc
,

θ̈ = − θ̇V
dc

 (3)

As shown in Fig. 2, we model a fault by a slider spring system [24–26]. The slider represents either a fault
or a part of the fault that is sliding. The stiffness k represents elastic interactions between the fault patch
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and the ductile deeper part of the fault, which is assumed to creep at a constant rate. This simple model
assumes that slip, stress, and friction law parameters are uniform on the fault patch.

η

Figure 2: Spring Slider Damper Idealization of Fault Behavior

The friction coefficient of the block is given by

µ = τ

σ
= τl − kδ − ηV

σ

where σ is the normal stress, τ the shear stress on the interface, τl is the remotely applied stress acting
on the fault in the absence of slip, -kδ is the decrease in stress due to fault slip [1] and η is the radiation
damping coefficient [27]. We consider the case of a constant stressing rate τ̇l = kVl where Vl is the load
point velocity. The initial stress may be smaller or larger than steady state friction owing to coseismic slip
on the fault patch or on adjacent parts of the fault. The expression neglects inertia, and is thus only valid
for low slip speed in the interseismic period. The stiffness is a function of the fault length l and elastic
modulus E as k ≈ E

l . With k′ = E
lσ , we get

µ̇ ≈ k′(Vl − V )− k′′V̇ ,
µ̈ ≈ k′(V̇l − V̇ )− k′′V̈

}
(4)

where k′′ = η
σ . Once the phenomenological form of µ̇ and µ̈ is known, we use the following to get V̇ and ȧ,

V̇ = V
A

(
µ̇− B

θ θ̇
)
,

ȧ = V̇
A

(
µ̇− B

θ θ̇
)

+ V
A

(
µ̈− B

θ θ̈ + B
θ2 θ̇
)  (5)

We follow the steps outlined in Algorithm 1 to arrive at the temporal variations of acceleration and fault
friction coefficient. We initialize the friction coefficient and state variable and obtain the slip rate and rate
of change of the state variable. We then use these values to obtain time derivatives of acceleration and
slip rate. These time derivatives are required as we employ the integrated feature of the scientific Python
package SciPy [28].

Algorithm 1 Rate and state friction model with radiation damping term
Initialize θ = θ0, µ = µref
Use Eq. (3) to get V , θ̇ and θ̈
Use Eq. (4) to get µ̇ and µ̈
Use Eq. (5) to get V̇ and ȧ

3 Bayesian Inversion Framework

The influence of critical slip distance on system response to a load point perturbation of the form
Vl = 1 + exp (−t/10) sin(10t) (6)

is shown in Fig. 3. The code to generate the plots has been given in Appendix A. This code is a part of the
GitHub repository https://github.com/karthikncsu/Bayesian-inference-using-earthquake-data.
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Figure 3: System response for different values of critical slip distance over three orders of magnitude. Units
of acceleration are µm/s2

The ballpark values are taken from [1] and [27]. Elastic modulus E = 5 × 1010 Pa, Critical fault length
l = 3 × 10−2m, Normal stress σ = 200 × 106Pa, Radiation damping coefficient η = 20 × 106Pa/(m/s),
A = 0.011 and B = 0.014. The effective stiffness and damping is obtained as

k′ = E

lσ
= 5× 1010

3× 10−2 × 2× 108 [1/m] ≈ 104[1/m] ≡ 10−2[1/µm],

k′′ = η

σ
= 2× 107

2× 108 = 0.1[s/m] ≈ 1× 10−7[s/µm]

In an inverse problem, the acceleration response of the model is known and the goal is to find the parameter,
critical slip distance parameter (dc). To define the inverse problem, considered the relationship between
acceleration (ai(t)) and the model response by the following statistical model

a(ti) = f(ti, θ, µ,A,B, dc) + εi (7)
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where εi is the error in the statistical model. Here the a(ti) and εi are the random variables. The earthquake
data over time a(t1), ..., a(tn) are the n observations for a(ti) and f(A, ti, θ, µ,A,B, dc) is the acceleration
response of the model over time obtained using the Algorithm 1. The goal of the inverse problem is to
determine the model parameter (dc) from the Eq.(7) and conventional method to determine the model
parameter that mimizes the norm of the errors using the least squares fit solution as shown below

dc,0 = arg min
dc

n∑
i=1

(εi)2 = arg min
dc

n∑
i=1

(a(ti)− f(ti, θ, µ,A,B, dc))2 (8)

The critical slip distance parameter (dc) obtained using the least-squares fit solution, Eq.(8) is deterministic
value. The values estimated using the least square fit are not the true values due to inherent noise in the
data and in most cases, the noise in the data makes it difficult to find the true value. Instead, finding
a probability distribution for the model parameters encompasses the true model parameter values and
increases the confidence in the prediction. Using the Bayes theorem [29], the distribution for the model
parameters is given by the posterior distribution

π(dc|a(t1), ..., a(tn)) = π(a(t1), ..., a(tn)|dc)π0(dc)∫
dc
π(a(t1), ..., a(tn)|dc)π0(dc)ddc

(9)

Here π(dc|a(t1), ..., a(tn)) is the posterior, π(a(t1), ..., a(tn)|dc) is the likelihood and π0(dc) is the prior
distribution for the model parameters. Assuming the εi ∼ N(0, σ2) as unbiased, independent and identical
normal distribution with standard deviation σ, the likelihood function is expressed as

π(a(t1), ..., a(tn)|dc) =
n∏
i=1

π(a(ti)|dc) =
n∏
i=1

1
σ
√

2π
e
− 1

2

(
a(ti)−f(V,ti,θ,µ,A,B,dc)

σ

)2

(10)

In above equation, the f(V, ti, θ, µ,A,B) is calculated using the forward problem given by algorithm 1. The
information of the model parameters can be included in the posterior distribution through the prior, π0(dc).
In this study, the prior is assumed to be uniform distribution and the prior is a constant value inside the
uniform distribution limits.

Algorithm 2 Bayesian inference
Input data: earthquake data, a(t1), ..., a(tn)
Generate grid dc
Use Algorithm 1 to get RHS of Eq. (7)
Use (10) to get π(a(t1), ..., a(tn)|dc) for each grid point.
Integrate Eq. (9) to obtain the posterior distribution

The goal of the inverse problem is to calculate the posterior distribution Eq.(9), which represents the
uncertainty in the critical slip distance parameter (dc) due to the noise in the earthquake data. Direct
evaluation of the posterior distribution using quadrature rules is expensive and often requires adaptive
methods to find the posterior distribution. Alternatively, sampling methods like Markov chain Monte Carlo
(MCMC) methods [29–31] can be used to generate samples from the posterior distribution.

4 Conclusions and Outlook

This work presents a framework to inversely quantify uncertainty in the critical slip distance parameter
of the rate and state friction (RSF) model via the Bayesian inference using the earthquake data. The
forward model is to determine the acceleration, using the RSF model, for the given model parameters. In
case of an inverse problem, the acceleration data is known and the goal is to find the model parameters.
Using conventional methods such as least-squares methods, a deterministic value of the critical slip distance
parameter can be obtained from the inverse problem. However, the deterministic parameter value estimated
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using the conventional methods does not represent the true values due to the noise in the earthquake
data, and quantifying uncertainty in the model parameters increases the confidence in the prediction. The
uncertainty in the model parameter is estimated by the posterior distribution obtained from the Bayes
theorem. The future work will be to demonstrate a simulation to quantify uncertainty in the critical slip
distance parameter using the earthquake data via sampling methods such as Markov chain Monte Carlo.

A Python Program to Generate Forward Model Response

1 from __future__ import division
2 from scipy.misc import derivative
3 import numpy as np
4 from scipy import integrate
5 import matplotlib . pyplot as plt
6 from math import exp ,log ,pi ,sin ,cos
7
8 fig = plt. figure ()
9 fig. suptitle (’$d_c =100 \mu m$’)

10
11 global Dc ,V_ref ,delta_t ,t_start ,t_final ,amp ,num_steps ,k
12 Dc = 100
13 V_ref = 1
14 t_start = 0.0
15 t_final = 50.
16 delta_t = 1e-2
17 num_steps = int (( t_final - t_start )/ delta_t )
18
19 def friction (t,y):
20 a = 0.011
21 b = 0.014
22 kprime = 1e -2*10/ Dc # inversely prop to Dc
23 mu_ref = 0.6
24 k1 = 1e-7 # radiation damping term
25
26 V_l = V_ref *(1+ exp(-t/10)*sin (10*t))
27
28 # Just to help readability
29 #y[0] is mu ( friction )
30 #y[1] is theta
31 #y[2] is velocity
32
33 n = len(y)
34 dydt = np.zeros ((n ,1))
35
36 # compute v
37 temp_ = V_ref * y[1] / Dc
38 temp = 1/a*(y[0] - mu_ref - b * log(temp_))
39 v = V_ref * exp(temp)
40
41 # time derivative of theta
42 dydt [1] = 1. - v * y[1] / Dc
43
44 # double derivative of theta
45 ddtheta = - dydt [1]*v/ Dc
46
47 # time derivative of mu
48 dydt [0] = kprime *V_l - kprime *v
49
50 # time derivative of velocity
51 dydt [2] = v/a*( dydt [0] - b/y[1]* dydt [1])
52
53 # radiation damping
54 dydt [0] = dydt [0] - k1*dydt [2]
55 dydt [2] = v/a*( dydt [0] - b/y[1]* dydt [1])
56

6



A framework to quantify uncertainty in critical slip distance in rate and state friction model for earthquakes

57 return dydt
58
59 r = integrate .ode( friction ). set_integrator (’vode ’, order =5, max_step =0.001 , method =’bdf ’,

atol =1e-10, rtol =1e -6)
60
61 # Initial conditions
62 mu_t_zero = 0.6
63 mu_ref = 0.6
64 theta_t_zero = Dc/V_ref
65 v = V_ref
66 r. set_initial_value ([ mu_t_zero , theta_t_zero , V_ref], t_start )
67
68 # Create arrays to store trajectory
69 t = np.zeros (( num_steps ,1))
70 mu = np. zeros (( num_steps ,1))
71 theta = np.zeros (( num_steps ,1))
72 velocity = np.zeros (( num_steps ,1))
73 acc = np.zeros (( num_steps ,1))
74 t[0] = t_start
75 mu [0] = mu_ref
76 theta [0] = theta_t_zero
77 velocity [0] = v
78 acc [0] = 0
79
80 # Integrate the ODE(s) across each delta_t timestep
81 k = 1
82 while r. successful () and k < num_steps :
83 # integrate .ode. set_f_params (r,velocity ,k)
84 r. integrate (r.t + delta_t )
85
86 # Store the results to plot later
87 t[k] = r.t
88 mu[k] = r.y[0]
89 theta[k] = r.y[1]
90 velocity [k] = r.y[2]
91 acc[k] = ( velocity [k]- velocity [k -1])/ delta_t
92 k += 1
93
94 # Make some plots
95
96 ax4 = plt. subplot (111)
97 ax4.plot(t, acc , ’r’, linewidth =0.5)
98 ax4. set_xlim (t_start , t_final )
99 ax4. set_xlabel (’Time [sec]’)

100 ax4. set_ylabel (’Acceleration ’)
101 ax4.grid(’on’)
102
103 plt.show ()

Listing 1: Python example
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