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ABSTRACT

This work presents a framework to inversely quantify uncertainty in the model parameters
of the friction model using earthquake data via the Bayesian inference. The forward model
is the popular rate- and state- friction (RSF) model along with the spring slider damper
idealization. The inverse model is to determine the model parameters using the earthquake
data as the response of the RSF model. The conventional solution to the inverse problem is
the deterministic parameter values, which may not represent the true value, and quantifying
uncertainty in the model parameters increases confidence in the estimation. The uncertainty
in the model parameters is estimated by the posterior distribution obtained through the
Bayesian inversion.

1 Introduction

Earthquakes occur as a result of global plate motion. Some earthquakes stop after only a few hundred
meters while others continue rupturing for a thousand kilometers. An earthquake produces P waves, or
compressional waves, that travel faster and reach the seismograph first, and S waves, or shear waves,
that are slower (Fig. 1). Both are transmitted within the Earth and are called body waves. Even slower
are surface waves that run along the surface of the earth and do a lot of the damage. The earthquake
focus is the point within the Earth where the earthquake originates. The epicenter is a point on the surface
directly above the focus. The simplest model for earthquake initiation is to assume that when the stress
accumulated in the plates exceeds some failure criterion on a fault plane, an earthquake happens [1].
Evaluating this criterion requires both a measure of the resolved stress on the fault plane and a quantifiable
model for the failure threshold. The groundbreaking work of [2] arrived at the hypothesis that faulting
occurs when the resolved shear stress exceeds the internal friction on some plane in the medium leading to
fault slip.

The quantification of earthquakes from the fault slip is achieved using the Rate- and State-dependent
Friction (RSF) model, which is considered the gold standard for modeling earthquake cycles (interseismic
loading followed by coseismic relaxation) on mature faults [3–7]. It is given by

µ = µ0 +A ln

(
V

V0

)
+B ln

(
V0θ

dc

)
,

dθ

dt
= 1− θV

dc
,

(1)

where V = |dd/dt| is the slip rate magnitude, a = dV
dt which we hypothesize is of the same order as

recorded by seismograph, µ0 is the steady-state friction coefficient at the reference slip rate V0, A and B are



A framework to quantify uncertainty in critical slip distance in rate and state friction model for earthquakes

empirical dimensionless constants, θ is the macroscopic variable characterizing state of the surface and dc is
a critical slip distance. Here, θ may be understood as the frictional contact time [3], or the average maturity
of contact asperities between the sliding surfaces [8]. The evolution of θ is assumed to be independent of
changes in the normal traction that can accompany the fault slip due to changes in fluid pressure. The
model accounts for the decrease in friction (slip-weakening) as the slip increases, and the increase in friction
(healing) as the time of contact or slip velocity increases. The two effects act together such that A > B leads
to the strengthening of the fault, stable sliding and creeping motion, and A < B leads to weakening of the
fault, frictional instability, and accelerating slip. In this way, the model is capable of capturing repetitive
stick-slip behavior of faults and the resulting seismic cycle [4, 6].

Figure 1: P wave arrives first, followed by the S wave
and then by surface waves.

The critical slip distance, dc, is the distance over
which a fault loses or regains its frictional strength
after a perturbation in the loading conditions [9].
In principle, it determines the maximum slip accel-
eration and radiated energy during an earthquake
insofar that it influences the magnitude and time
scale of the associated stress breakdown process
(e.g., fracture energy) [10]. Regardless of the impor-
tance, it is paradoxical that the values of dc reported
in the literature range from a few to tens of microns
as determined in typical laboratory experiments
with bare surfaces and gouge layers [10], to 0.1–5 m
as determined in numerical and seismological esti-
mates based on geophysical observations [11], and
further to several meters as determined in high-
velocity laboratory experiments [12]. Note that
among these studies, the critical length scale pa-
rameter in the constitutive friction laws (dc) may
differ from the slip-weakening distance inferred
from the traction evolution curves obtained for nat-
ural or laboratory faults. The latter, as usually de-
rived from scenarios where perturbations are large
(e.g., velocity steps of large magnitudes or tips of
dynamic rupture nucleation zones), is also referred
to as the equivalent or effective slip-weakening dis-
tance (deq0 or d0, see a review by [13]). Moreover,
in most numerical simulations of dynamic rupture
propagation with prescribed friction laws, dc is im-
posed a priori and its value is often assumed to be
constant and uniform on the fault plane. Understanding the physics that controls the critical slip distance
and explains the gap between observations from experimental and natural faults is thus one of the crucial
problems in both the seismology and laboratory communities [?].

With that in mind, we provide a framework in which the earthquake data is used alongside RSF to quantify
uncertainty in critical slip distance. While the resolution and coupled flow and geomechanics [14–25]
associated with subsurface activity in the realm of energy technologies and concomitant earthquake
quantification is a hot topic, in this work, we focus on the effect of stress perturbations in the absence of
pore pressure variable. In section 2, we explain the spring slider damper idealization to infer the influence
of critical slip distance on RSF without recourse to complicated elastodynamic equations. In section 3, we
explain the Bayesian inference framework to inversely quantify uncertainty in the estimation of critical slip
distance. In section 4, we present conclusions and outlook for future work.
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2 Spring slider damper idealization to study earthquake response

We first rewrite Eq. (1) as

V = V0 exp
(

1
A

(
µ− µ0 −B ln

(
V0θ
dc

)))
,

θ̇ = 1− θV
dc
,

θ̈ = − θ̇V
dc

 (2)

As shown in Fig. 2, we model a fault by a slider spring system [26–28]. The slider represents either a fault
or a part of the fault that is sliding. The stiffness k represents elastic interactions between the fault patch
and the ductile deeper part of the fault, which is assumed to creep at a constant rate. This simple model
assumes that slip, stress, and friction law parameters are uniform on the fault patch.

η

Figure 2: Spring Slider Damper Idealization of Fault Behavior

The friction coefficient of the block is given by

µ =
τ

σ
=
τl − kδ − ηV

σ
where σ is the normal stress, τ the shear stress on the interface, τl is the remotely applied stress acting
on the fault in the absence of slip, -kδ is the decrease in stress due to fault slip [1] and η is the radiation
damping coefficient [29]. We consider the case of a constant stressing rate τ̇l = kVl where Vl is the load
point velocity. The initial stress may be smaller or larger than steady state friction owing to coseismic slip
on the fault patch or on adjacent parts of the fault. The expression neglects inertia, and is thus only valid
for low slip speed in the interseismic period. The stiffness is a function of the fault length l and elastic
modulus E as k ≈ E

l . With k′ = E
lσ , we get

µ̇ ≈ k′(Vl − V )− k′′V̇ ,
µ̈ ≈ k′(V̇l − V̇ )− k′′V̈

}
(3)

where k′′ = η
σ . Once the phenomenological form of µ̇ and µ̈ is known, we use the following to get V̇ and ȧ,

V̇ = V
A

(
µ̇− B

θ θ̇
)
,

ȧ = V̇
A

(
µ̇− B

θ θ̇
)
+ V

A

(
µ̈− B

θ θ̈ +
B
θ2
θ̇
)  (4)

2.1 Forward Model Response to a Standard Impulse

We follow the steps outlined in Algorithm 1 to arrive at the temporal variations of acceleration and fault
friction coefficient. We initialize the friction coefficient and state variable and obtain the slip rate and rate
of change of the state variable. We then use these values to obtain time derivatives of acceleration and
slip rate. These time derivatives are required as we employ the integrated feature of the scientific Python
package SciPy [30]. The influence of critical slip distance on system response to a load point perturbation
of the form

Vl = 1 + exp (−t/20) sin(t/10)
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Algorithm 1 Rate and state friction model with radiation damping term

Initialize θ = θ0, µ = µref
Use Eq. (2) to get V , θ̇ and θ̈
Use Eq. (3) to get µ̇ and µ̈
Use Eq. (4) to get V̇ and ȧ
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Figure 3: System response for different values of critical slip distance. Units of displacement, velocity and
accelearation are µm, µm/s and µm/s2

is shown in Fig. 3. The code to generate the plots has been given in Appendix A.
This code is a part of the GitHub repository https://github.com/karthikncsu/
Bayesian-inference-using-earthquake-data.

The ballpark values are taken from [1] and [29]. Elastic modulus E = 5 × 1010 Pa, Critical fault length
l = 3 × 10−2m, Normal stress σ = 200 × 106Pa, Radiation damping coefficient η = 20 × 106Pa/(m/s),
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A = 0.011 and B = 0.014. The effective stiffness and damping is obtained as

k′ =
E

lσ
=

5× 1010

3× 10−2 × 2× 108
[1/m] ≈ 104[1/m] ≡ 10−2[1/µm],

k′′ =
η

σ
=

2× 107

2× 108
= 0.1[s/m] ≈ 1× 10−7[s/µm]

3 Bayesian Inversion Framework
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Figure 4: Seismograph reading (measured as normalized to g = 9.8m/s2) of 1940 EL Centro earthquake of
magnitude Mw = 6.9 that occurred in the Imperial Valley in southeastern Southern California near the
USA-Mexico border. It was the first major earthquake to be recorded by a strong-motion seismograph
located next to a fault rupture, and led to a total damage of $6 million [31].

Fig. 3 shows the response of the forward (rate and state friction) model for a given point load perturbation
(Vl), critical slip distance parameter (dc), and empirical constants (µ0, V0, A and B). The response of the
model is the acceleration of the slider, computed using algorithm 1. In an inverse problem, the acceleration
response of the model is known and the goal is to find the parameter, critical slip distance parameter (dc).
The earthquake acceleration data shown in Fig. 4 can be considered as the acceleration response of the
model. To define the inverse problem, considered the relationship between acceleration (ai(t)) and the
model response by the following statistical model

a(ti) = f(ti, θ, µ,A,B, dc) + εi (5)

where εi is the error in the statistical model. Here the a(ti) and εi are the random variables. The earthquake
data over time a(t1), ..., a(tn) are the n observations for a(ti) and f(A, ti, θ, µ,A,B, dc) is the acceleration
response of the model over time obtained using the Algorithm 1. The goal of the inverse problem is to
determine the model parameter (dc) from the Eq.(5) and conventional method to determine the model
parameter that mimizes the norm of the errors using the least squares fit solution as shown below

dc,0 = argmin
dc

n∑
i=1

(εi)
2 = argmin

dc

n∑
i=1

(a(ti)− f(ti, θ, µ,A,B, dc))2 (6)

The critical slip distance parameter (dc) obtained using the least-squares fit solution, Eq.(6) is deterministic
value. The values estimated using the least square fit are not the true values due to inherent noise in the
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data and in most cases, the noise in the data makes it difficult to find the true value. Instead, finding
a probability distribution for the model parameters encompasses the true model parameter values and
increases the confidence in the prediction. Using the Bayes theorem [32], the distribution for the model
parameters is given by the posterior distribution

π(dc|a(t1), ..., a(tn)) =
π(a(t1), ..., a(tn)|dc)π0(dc)∫

dc
π(a(t1), ..., a(tn)|dc)π0(dc)ddc

(7)

Here π(dc|a(t1), ..., a(tn)) is the posterior, π(a(t1), ..., a(tn)|dc) is the likelihood and π0(dc) is the prior
distribution for the model parameters. Assuming the εi ∼ N(0, σ2) as unbiased, independent and identical
normal distribution with standard deviation σ, the likelihood function is expressed as

π(a(t1), ..., a(tn)|dc) =
n∏
i=1

π(a(ti)|dc) =
n∏
i=1

1

σ
√
2π
e
− 1

2

(
a(ti)−f(V,ti,θ,µ,A,B,dc)

σ

)2

(8)

In above equation, the f(V, ti, θ, µ,A,B) is calculated using the forward problem given by algorithm 1.
The information of the model parameters can be included in the posterior distribution through the prior,
π0(dc). In this study, the prior is assumed to be uniform distribution and the prior is a constant value inside
the uniform distribution limits.

Algorithm 2 Bayesian inference

Input data: earthquake data, a(t1), ..., a(tn)
Generate grid dc
Use Algorithm 1 to get RHS of Eq. (5)
Use (8) to get π(a(t1), ..., a(tn)|dc) for each grid point.
Integrate Eq. (7) to obtain the posterior distribution

The goal of the inverse problem is to calculate the posterior distribution Eq.(7), which represents the
uncertainty in the critical slip distance parameter (dc) due to the noise in the earthquake data. Direct
evaluation of the posterior distribution using quadrature rules is expensive and often requires adaptive
methods to find the posterior distribution. Alternatively, sampling methods like Markov chain Monte
Carlo (MCMC) methods [32–40] can be used to generate samples from the posterior distribution.

4 Conclusions and Future Work

This work presents a framework to inversely quantify uncertainty in the critical slip distance parameter
of the rate and state friction (RSF) model via the Bayesian inference using the earthquake data. The
forward model is to determine the acceleration, using the RSF model, for the given model parameters. In
case of an inverse problem, the acceleration data is known and the goal is to find the model parameters.
Using conventional methods such as least-squares methods, a deterministic value of the critical slip
distance parameter can be obtained from the inverse problem. However, the deterministic parameter
value estimated using the conventional methods does not represent the true values due to the noise in
the earthquake data, and quantifying uncertainty in the model parameters increases the confidence in the
prediction. The uncertainty in the model parameter is estimated by the posterior distribution obtained
from the Bayes theorem. The future work will be to demonstrate a simulation to quantify uncertainty in
the critical slip distance parameter using the earthquake data via sampling methods such as Markov chain
Monte Carlo.

6



A framework to quantify uncertainty in critical slip distance in rate and state friction model for earthquakes

A Python Program to Generate Forward Model Response

1 from scipy.misc import derivative
2 import numpy as np
3 from scipy import integrate
4 import matplotlib.pyplot as plt
5 from math import exp,log,pi,sin,cos
6

7 fig = plt.figure()
8 fig.suptitle(’$d_c=20 \mu m$’)
9

10 def friction(t,y):
11 k = 1e-2
12 a = 0.011
13 b = 0.014
14 Dc = 20.
15 mu_ref = 0.6
16 V_ref = 1.
17 k1 = 1e-7 # radiation damping term
18 # k1 = 0
19

20 # if t < 5:
21 # V_lp = 1.
22 # else:
23 # V_lp = 10.
24

25 amp_t = 20
26 trig_t = .1
27 tp = t/amp_t
28 tt = t/trig_t
29

30 amp = 1
31 V_lp = 1 + amp*exp(-tp)*sin(tt)
32 dV_lp = -amp/amp_t*exp(-tp)*sin(tt) + amp/trig_t*exp(-tp)*cos(tt) # time derivative of

V_l
33

34 # Just to help readability
35 #y[0] is mu (friction)
36 #y[1] is theta
37 #y[2] is velocity
38 #y[3] is acceleration
39

40 n = len(y)
41 dydt = np.zeros((n,1))
42

43 # compute v
44 temp_ = V_ref * y[1] / Dc
45 temp = 1/a*(y[0] - mu_ref - b * log(temp_))
46 v = V_ref * exp(temp)
47

48 # time derivative of theta
49 dydt[1] = 1. - v * y[1] / Dc
50

51 # double derivative of theta
52 ddtheta = - dydt[1]*v/ Dc
53

54 # time derivative of mu
55 dydt[0] = k*V_lp - k*v
56

57 # time derivative of velocity
58 dydt[2] = v/a*(dydt[0] - b/y[1]*dydt[1])
59

60 # double derivative of mu
61 ddmu = k*dV_lp - k*dydt[2]
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62

63 # time derivative of acceleration
64 dydt[3] = dydt[2]/a*(dydt[0] - b/y[1]*dydt[1]) + v/a*(ddmu - b/y[1]*ddtheta + b/y[1]*dydt

[1]/y[1])
65

66 # radiation damping
67 dydt[0] = dydt[0] - k1*dydt[2]
68 dydt[2] = v/a*(dydt[0] - b/y[1]*dydt[1])
69 ddmu = ddmu - k1*dydt[3]
70 dydt[3] = dydt[2]/a*(dydt[0] - b/y[1]*dydt[1]) + v/a*(ddmu - b/y[1]*ddtheta + b/y[1]*dydt

[1]/y[1])
71

72 return dydt
73

74 r = integrate.ode(friction).set_integrator(’vode’, order=5,max_step=0.001,method=’bdf’,atol=1
e-10,rtol=1e-6)

75

76 # Time range
77 t_start = 0.0
78 t_final = 50.
79 delta_t = 1e-2
80 num_steps = int(np.floor((t_final-t_start)/delta_t)+1)
81

82 # Initial conditions
83 mu_t_zero = 0.6
84 V_ref = 1.
85 Dc = 10.
86 mu_ref = 0.6
87 theta_t_zero = Dc/V_ref
88 v = V_ref
89 start_acc = 0
90 r.set_initial_value([mu_t_zero, theta_t_zero, V_ref, start_acc], t_start)
91

92 # Create arrays to store trajectory
93 t = np.zeros((num_steps,1))
94 mu = np.zeros((num_steps,1))
95 theta = np.zeros((num_steps,1))
96 velocity = np.zeros((num_steps,1))
97 acc = np.zeros((num_steps,1))
98 t[0] = t_start
99 mu[0] = mu_ref

100 theta[0] = theta_t_zero
101 velocity[0] = v
102 acc[0] = 0
103

104 # Integrate the ODE(s) across each delta_t timestep
105 k = 1
106 while r.successful() and k < num_steps:
107 #integrate.ode.set_f_params(r,velocity,k)
108 r.integrate(r.t + delta_t)
109

110 # Store the results to plot later
111 t[k] = r.t
112 mu[k] = r.y[0]
113 theta[k] = r.y[1]
114 velocity[k] = r.y[2]
115 acc[k] = r.y[3]
116 k += 1
117

118 # Make some plots
119

120 #cjm_t,cjm_mu = np.loadtxt(’cjm_step.tim’,skiprows=2,unpack=True)
121

122 ax1 = plt.subplot(411)
123 ax1.plot(t, mu,color=’r’, linewidth=0.5)
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124 ax1.set_xlim(t_start, t_final)
125 #ax1.plot(cjm_t+10.,cjm_mu,color=’k’)
126 #ax1.set_xlabel(’Time [sec]’)
127 ax1.set_xticklabels([])
128 ax1.set_ylabel(’Friction’)
129 ax1.grid(’on’)
130

131 ax2 = plt.subplot(412)
132 ax2.plot(t, theta, ’r’, linewidth=0.5)
133 ax2.set_xlim(t_start, t_final)
134 #ax2.set_xlabel(’Time [sec]’)
135 ax2.set_ylabel(’State Variable’)
136 ax2.set_xticklabels([])
137 ax2.grid(’on’)
138

139 ax3 = plt.subplot(413)
140 ax3.plot(t, velocity, ’r’, linewidth=0.5)
141 ax3.set_xlim(t_start, t_final)
142 #ax3.set_xlabel(’Time [sec]’)
143 ax3.set_ylabel(’Velocity’)
144 ax3.set_xticklabels([])
145 ax3.grid(’on’)
146

147 ax4 = plt.subplot(414)
148 ax4.plot(t, acc, ’r’, linewidth=0.5)
149 ax4.set_xlim(t_start, t_final)
150 ax4.set_xlabel(’Time [sec]’)
151 ax4.set_ylabel(’Acceleration’)
152 ax4.grid(’on’)
153

154 #ax5 = plt.subplot(515)
155 #ax5.plot(t, forcing, ’r’)
156 #ax5.set_xlim(t_start, t_final)
157 #ax5.set_xlabel(’Time [sec]’)
158 #ax5.set_ylabel(’Forcing’)
159 #ax5.grid(’on’)
160

161 plt.show()

Listing 1: Python example
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