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aDepartment of Continuum Mechanics and Structural Analysis. University Carlos III of Madrid. Avda. de la Universidad, 30. 28911
Leganés, Madrid, Spain

bIMDEA Materials Institute, c/Eric Kandel 2, 28906 Getafe, Madrid, Spain

Abstract

In this paper, we have performed a microstructurally-informed finite element analysis on the effect of porosity

on the formation of multiple necks and fragments in ductile thin rings subjected to dynamic expansion. For

that purpose, we have characterized by X-ray tomography the porous microstructure of 4 different additively

manufactured materials (aluminium alloy AlSi10Mg, stainless steel 316L, titanium alloy Ti6Al4V and Inconel

718L) with initial void volume fractions ranging from ≈ 0.0007% to ≈ 2%, and pore sizes varying between ≈ 6 µm

and ≈ 110 µm. Three-dimensional analysis of the tomograms has revealed that the voids generally have nearly

spherical shape and quite homogeneous spatial distribution in the bulk of the four materials tested. The pore

size distributions quantified from the tomograms have been characterized using a Log-normal statistical function,

which has been used in conjunction with a Force Biased Algorithm that replicates the experimentally observed

random spatial distribution of the voids, to generate ring expansion finite element models in ABAQUS/Explicit

(2016) which include actual porous microstructures representative of the materials tested. We have modeled the

materials behavior using von Mises plasticity, and we have carried out finite element calculations for both elastic

perfectly-plastic materials, and materials which show strain hardening, strain rate hardening and temperature

softening effects. Moreover, we have assumed that fracture occurs when a critical value of effective plastic strain

is reached. The finite element calculations have been performed for expansion velocities ranging from 50 m/s to

500 m/s. A key point of this investigation is that we have established individualized correlations between the main

features of the porous microstructure (i.e. initial void volume fraction, average void size and maximum void size)

and the number of necks and fragments formed in the calculations. In addition, we have brought out the effect of

the porous microstrucure and inertia on the distributions of neck and fragment sizes. To the authors’ knowledge,

this is the first paper ever considering actual porous microstructures to investigate the role of material defects in

multiple localization and dynamic fragmentation of ductile metallic materials.
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1. Introduction

The pioneering statistical theory of Mott (1947) postulated that fragmentation of metals subjected to intense

impulsive tensile loads occurs due to the activation of weak points of the material –e.g. material defects like pores,

cavities and cracks formed during materials processing– which are scattered throughout the specimen and determine

the distribution of fractures sites. It also considered that material failure occurs instantaneously, disregarding the

localization of plastic deformation that precedes fracture in ductile metals, as well as the fracture resistance and

the fracture energy associated to the breakage process. The instantaneous fracture releases stress waves (or the

Mott’s waves) that propagate away from the fracture, unloading the specimen. The material cannot continue

deforming within the regions of the specimen subjected to the action of the release waves, preventing additional

fractures, so that the size of the fragments is determined by the distance traveled by the Mott’s waves. Despite

the relative simplicity of Mott’s theory, and the number of assumptions made to make the model mathematically

tractable and applicable to actual engineering problems, Grady (2002) highlighted that Mott’s original publication

contains seminal theoretical concepts from which numerous later modeling efforts emerged.

For instance, Grady (1981) applied concepts of survival statistics to the theory of Mott to account for spatially

random fracture nucleation, and derived fragments size distribution curves that found satisfactory agreement

with the experimental data reported by Wesenberg and Sagartz (1977) for thin 6061-T6 aluminum cylinders

subjected to rapid radial expansion at strain rates of ≈ 104 s−1. Moreover, Kipp and Grady (1985) expanded the

analyses of Mott to explicitly account for energy dissipation during the fracture process, and obtained expressions

for the nominal fragment size, the fracture time, and the dynamic fracture strain, which were in reasonable

agreement with the experimental data obtained by Grady and Benson (1983) for the fragmentation of OFHC

copper and 1100-O aluminum rings subjected to radial expansion at strain rates of ≈ 104 s−1. Grady and Olsen

(2003) performed ring expansion fragmentation tests with U6N specimens, for expansion velocities ranging from

50 to 300 m/s, and compared the experimental results with the distribution of fragment masses obtained with

Mott’s statistical theory and the energy-based fragmentation theory of Kipp and Grady (1985). Both theoretical

approaches were in reasonable accord with the experimental data. In addition, the predictions of the energy-based

fragmentation theory for the evolution of the number of fragments with the expansion velocity were compared

with the experimental evidence, and sensible agreement was found for the whole range of expansion velocities

investigated.

Moreover, Zhang and Ravi-Chandar (2006) performed ring expansion experiments using Al 6061-O specimens

with rectangular cross-section of thickness 0.5 mm and length 1 mm, at velocities ranging from 80 to 200 m/s, and
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measured the distributions of neck spacings and fragment sizes. Following Mott (1947) postulates, Zhang and Ravi-

Chandar (2006) suggested that the distribution of lengths between consecutive necks is governed by the spatial

distribution of necking strains in the specimen and the unloading waves emanating from growing necks. Relying

on Mott (1947) scaling analysis, and assuming that the variation in the necking strain is ±2%, Zhang and Ravi-

Chandar (2006) determined the necks spacing to be between 17 mm and 7 mm for the lower and higher expansion

velocities tested, respectively, being these estimates in good agreement with the experimental results which showed

a decrease in the average distance between consecutive necks as the loading rate increases. As to the distribution

of fragment sizes, Zhang and Ravi-Chandar (2006) showed that if the length of the fragment is normalized by the

characteristic unloading length, the normalized fragment lengths distribution, resulting from putting together the

results for different expansion velocities, can be adequately represented by a Weibull probability density function.

Zhang and Ravi-Chandar (2006) interpreted this result as an indicator that there is a random distribution of

weak points scattered throughout the circumference of the ring, and that the release wave mechanism sets the

scale for fragmentation. Zhang and Ravi-Chandar (2008) performed further ring expansion experiments with Al

6061-O, Al 1100-H14 and Cu 101 specimens with different length-to-thickness aspect ratios (different lengths and

fixed thickness of 0.5 mm) and different cross-section sizes (varying both length and thickness), for expansion

velocities ranging from 65 to 230 m/s. The tests using Al 1100-H14 and Cu 101 specimens with cross section of

thickness 0.5 mm and length 1 mm yielded statistical distributions of neck spacings similar to that obtained in

the experiments performed with Al 6061-O rings in Zhang and Ravi-Chandar (2006), such that with increasing

strain rate, more necks were nucleated at shorter distances. Zhang and Ravi-Chandar (2008) suggested that

this behavior occurs at high strain rates because the unloading engendered by any localization does not travel

far enough quickly to inhibit further nucleation at neighboring locations. The tests using samples with different

cross-section sizes showed that, as the specimen cross-sectional size increases, the strain at the onset of necking,

which is roughly the Considère strain for the specimens with the smallest cross-section, increases. The size of

the cross-section of the sample also seemed to affect the spatial distribution of necks such that the scatter in the

distribution of neck sizes decreases with the increase of the cross-section dimensions. Moreover, the tests using

samples with different length-to-thickness ratios showed that the increase of the length of the specimen (thickness

was fixed) leads to a decrease of the average neck spacing and to a gradual removal of the long segments without

necks that are frequently observed in rings with small length-to-thickness relation. In order to provide further

insights into the experimental evidence, Zhang and Ravi-Chandar (2008) performed finite element calculations

using ABAQUS/Explicit of specimens with different length-to-thickness ratios expanded at ≈ 250 m/s, modeled

with von Mises plasticity and a power-law hardening model, and with material properties corresponding to Al 6061-

O. In order to provide an idealized modeling of the material properties variation at the microstructural level, a
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random distribution of punctual defects (at the element level), with reduced yield strength and no strain hardening,

was included in the samples. As the loading process starts, before the Considère condition was reached, the plastic

strain was shown to evolve nearly uniformly over the entire specimen with slight perturbations in the vicinity of the

defects. With the continuation of the loading process, there was a magnification of the strain fluctuations, so that

for the specimens with the smallest cross-section multiple localized necks formed right after the Considère strain

was met. In contrast, for specimens with large length-to-thickness ratio, the calculations revealed the emergence

of a large post-uniform deformation regime, so that the localization, that took the form of multiple necking bands,

developed when the average strain in the specimen was more than twice the Considère strain (which corresponds

to the bifurcation strain for the sheet necking mode given by Hill (1952)).

The influence of defects on necking localization and the formation of multiple necks for strains well beyond

the Considère condition was also the subject of study of Vaz-Romero et al. (2017), who performed finite element

calculations of nonlinear elastic bars with spatially-localized defects of the strain rate field and subjected to

dynamic stretching. The computations of Vaz-Romero et al. (2017) showed that the post-uniform deformation

regime that extends from the Considère strain until the formation of localized necks enlarges with the strain rate,

bringing out the stabilizing effect of inertia which delays localization. The finite element results of Vaz-Romero

et al. (2017) also showed that, while the defects of the strain rate field speed up the development of the necking

pattern in the late stages of the localization process, the characteristic (average) distance between consecutive

necks is largely independent of the defects for the defects’ amplitudes investigated. The average neck spacing

obtained with the finite elements was compared with the predictions of 1D and 3D dynamic stability analyses,

finding good correlation for strain rates varying between 200 s−1 and 10000 s−1. The agreement between numerical

calculations and linear stability analyses was considered to be a proof that the multiple localization mechanisms

cannot be effectively explained using exclusively statistical theories. Similarly, it was also suggested that the

distance between necks cannot be exclusively attributed to the random distribution of material properties and

to the defects population (see Dequiedt (2015)). Following previous works of Fressengeas and Molinari (1994),

Guduru and Freund (2002) and Mercier et al. (2010) among others, Vaz-Romero et al. (2017) indicated that

there are dominant necking modes which define, at least up to some extent, the average neck spacing in multiple

localization patterns, the specific dominant modes being determined by the emergence of inertia effects at high

strain rates. The effect of material defects on the formation of multiple necking patterns was also investigated

by N’souglo et al. (2018), who performed finite element calculations of elasto-plastic bars with yielding modeled

with Gurson porous plasticity criterion (Gurson, 1977; Tvergaard, 1981, 1982) and subjected to dynamic tension

at strain rates varying from 103 s−1 to 5 · 104 s−1. The initial porosity, which in the Gurson model (Gurson, 1977;

Tvergaard, 1981, 1982) intends to idealize material defects, was randomly varied at the element level, using various
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upper and lower bounds for the maximum and minimum porosity variation, and different spatial distributions. The

calculations of N’souglo et al. (2018) indicated that, for the lower strain rates, the distribution of neck spacings is

heterogeneous and sensitive to the initial distribution of the porosity. In contrast, as the strain rate increases, the

distribution of lengths between consecutive necks becomes more homogeneous and less dependent on the initial

distribution of porosity. A possible explanation for these results was sought on the predictions of a linear stability

analysis, which brought out that with the increase of the strain rate the dominant necking modes have a strong

prevalence over the other growing modes, reducing the scatter in the distribution of neck sizes. Other authors

who performed numerical calculations to investigate the influence of material defects on multiple localization and

fragmentation problems are Hiroe et al. (2008), Zhang and Ravi-Chandar (2010), Liu et al. (2013, 2016) and Cliche

and Ravi-Chandar (2018). In these works, as in those mentioned above, material defects are included by allocating

a reduced elastic limit to an arbitrary number of material points, or by assuming local variations in the failure

strain. However, while this strategy to model material defects is easy to implement in numerical calculations, and

thus it shows clear advantages from a practical standpoint, it is a difficult task to associate these idealized defects

with actual microstructural heterogeneity or mechanical property variations, and hence to elucidate what is the

role of actual material flaws in the formation of multiple localization patterns and the dynamic fragmentation of

metallic structures. Furthermore, most of the times the actual distribution of defects in the material is not known.

These are precisely the gaps we intend to fill in this paper. For that purpose, we have devised a microstructurally-

informed finite element analysis to determine the role of actual porosity, i.e. actual material defects, on the for-

mation of multiple necks and fractures in metallic rings subjected to radial expansion. We have characterized by

X-ray tomography the porous microstructure of 4 different additively manufactured materials (aluminium alloy

AlSi10Mg, stainless steel 316L, titanium alloy Ti6Al4V and Inconel 718L) with initial void volume fractions ranging

from ≈ 0.0007% to ≈ 2%, and roughly spherical pores with diameter varying between ≈ 6 µm and ≈ 110 µm. The

pores recorded in the X-ray tomograms are fitted to a Log-normal statistical function that is later used to generate

porosity distributions based on the actual microstructure of the material. These porosity distributions are then

included in the finite element model of a ring subjected to rapid radial expansion so that the specimen contains

actual voids. We have performed calculations for expansion velocities ranging from 50 m/s to 500 m/s, assuming

that the matrix material follows von Mises plasticity. Specifically, we assume that the matrix material is elastic

perfectly-plastic in Section 4, and thermo-viscoplastic with strain hardening, strain rate hardening and thermal

softening in Section 5. For simplicity, material fracture is assumed to occur when a critical effective plastic strain

is reached. Note that the objective of this paper is to determine the effect of porous microstructure on dynamic

localization and fragmentation, and we do not pay attention to the specific mechanical response of the printed

metals from which the microstructures are taken. The results of the finite element simulations provide new insights
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into the role of porosity on the distributions of necks spacing and fragments size. While direct numerical simulation

of specimens containing a large population of voids was performed by Becker and Callaghan (2018, 2020) to assess

the load path and mean stress dependence of void growth, to the authors’ knowledge, this is the first paper ever

that includes actual microstructural porosity distributions in large scale calculations of dynamic localization and

multiple ductile fracture.

2. Porosity distribution

In this section, we describe the methodology that we have developed to determine the distribution, shape and

size of the pores present in several additively manufactured metals. Recall that in this paper we do not study

the mechanical behavior of the materials investigated, the additively manufactured materials are solely employed

to obtain representative porosity distributions to be used in the simulations of Sections 4 and 5. Cylindrical

specimens with diameter and height of 6 mm were printed by Selective Laser Melting (SLM) by the company

Materialise out of aluminium alloy AlSi10Mg, stainless steel 316L, titanium alloy Ti6Al4V and Inconel 718L. This

printing technique often leads to residual porosity in the samples, generally lower than 5%, which can be controlled

adjusting the major printing parameters (Aboulkhair et al., 2014; Kasperovich et al., 2016; Moussaoui et al., 2018).

Two different printing directions of parallel and perpendicular to the longitudinal axis of the cylinder were chosen.

We have analyzed 12 specimens (i.e. 12 porous microstructures) which are denoted as Al3Z, Al3XY, Al0.5Z,

Al0.5XY, SS5Z, SS5XY, SS0.5Z, SS0.5XY, Ti0.5Z, Ti0.5XY, INC1Z and INC1XY, where Al, SS, Ti and INC

stand for the material, the following numbers indicate the nominal void volume fraction (%) provided by the

manufacturer, and Z and XY determine whether the sample was printed in parallel or perpendicular direction to

the longitudinal axis of the cylinder. We performed X-ray Computed Tomography (XCT) of each sample using a

Nanotom 160NF tomograph (General Electric-Phoenix) located at IMDEA Materials Institute. We used a 3×3×3

µm3 tomogram voxel size. The reconstruction of the tomograms was carried out using an algorithm based on the

filtered back-projection procedure for Feldkamp cone beam geometry (e.g. see Stef et al. (2018)). Further analysis

of 3D reconstructed images was performed using the open source software tool ImageJ (Schneider et al., 2012), so

that for each sample we selected three cylindrical sub-volumes of 1.5 mm diameter and 1.5 mm height, with no

overlapping between them, to obtain the distribution, shape and size of the voids in the specimens investigated.

Analyzing three cylindrical sub-volumes for each sample, with the aforementioned dimensions, enables to record

sufficient number of voids to obtain statistically significant results which are representative of the actual porosity

distribution in the materials (note that the 3D object counter plugin of ImageJ (Bolte and Cordeliéres, 2006) does

not allow to analyze the AlSi10Mg cylindrical samples of 6 mm height and 6 mm diameter in one step due to the

very large number of voids they contain).
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Figs. 1-4 show 2D XCT images of the middle cross-section of the samples perpendicular to the main axis of

the cylinder for the 12 specimens investigated. The voids appeared in form of dark spots, with roughly circular

area, which are randomly dispersed in the samples. Notice that there is a layer of larger voids close to the outer

shell of the cylinders. Sukal et al. (2018) and Koutiri et al. (2018), among others, stated that the concentration of

pores below the surface of SLM printed parts is caused by the inadequate connection of the hatching of the sample

volume with the contour of the part. This layer of larger voids is excluded from the calculations used to characterize

the porosity distribution of the materials in order to maintain a homogeneous microstructure. Notice that the

number of voids in the AlSi10Mg samples is greater than in the other materials tested (as mentioned before), with

important differences between the samples with nominal porosity 3% and 0.5%, so that the specimens Al3XY and

Al3Z contain more voids which are generally slightly larger (see also Table 1). Moreover, stainless steel 316L and

titanium alloy Ti6Al4V specimens have the lower levels of porosity. A more detailed quantitative analysis of the

void volume fraction of the specimens and the distribution of void sizes is carried out below.

(a) (b)

(c) (d)

Figure 1: X-ray computed tomography images of the middle cross-section of the samples perpendicular to the main axis of the cylinder
for: (a) Al3Z, (b) Al3XY, (c) Al0.5Z and (d) Al0.5XY. The dark spots correspond to porosity. The pixel size is 3 µm.
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(a) (b)

(c) (d)

Figure 2: X-ray computed tomography images of the middle cross-section of the samples perpendicular to the main axis of the cylinder
for: (a) SS5Z, (b) SS5XY, (c) SS0.5Z and (d) SS0.5XY. The dark spots correspond to porosity. The pixel size is 3 µm.

(a) (b)

Figure 3: X-ray computed tomography images of the middle cross-section of the samples perpendicular to the main axis of the cylinder
for: (a) Ti0.5Z and (b) Ti0.5XY. The dark spots correspond to porosity. The pixel size is 3 µm.
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(a) (b)

Figure 4: X-ray computed tomography images of the middle cross-section of the samples perpendicular to the main axis of the cylinder
for: (a) INC1Z and (b) INC1XY. The dark spots correspond to porosity. The pixel size is 3 µm.

Figs. 5-8 show 3D rendered images of the porosity distribution (in orange) in the cylindrical sub-volumes.

Note that we only show 1 out of the 3 cylindrical sub-volumes with diameter and height of 1.5 mm that we have

analyzed per sample. Consistent with the 2D XCT images shown in Figs. 1-4, the 3D reconstructions make

apparent that the AlSi10Mg samples have the largest number of voids, being Inconel 718L the material with the

next largest number of pores, followed by stainless steel 316L and titanium alloy Ti6Al4V, for which the void

volume fraction is the lowest. For all the specimens, the voids, which are roughly spherical (see Zhang et al.

(2017)), are rather homogeneously/uniformly distributed in the bulk of the material (note that the Inconel 718L

specimens also show flattened pores, most likely due to lack of fusion, nevertheless, we assume that all voids can

be considered spherical for the modeling purposes, see Section 3). A summary of the measurements obtained from

the reconstructed 3D tomograms is stressed in Table 1. The void volume fraction and the number of voids per

mm3 are computed by averaging the results obtained with the three cylindrical sub-volumes that we have analyzed

per sample to characterize materials porosity (the total material volume analyzed per sample is ≈ 8 mm3). Note

that the measured void volume fractions are lower than the nominal values indicated by the supplier. This occurs,

most likely, because the large voids near the outer shell of the cylinders and the voids with diameter less than

6 µm were excluded from the calculations (voids with diameter smaller than 6 µm cannot be detected with the

resolution of 3 × 3 × 3 µm3 of voxel size).

The XCT measurements of void size distributions are represented in Figs. 9-12 in form of relative frequency

versus void diameter (black columns). The void distributions have been computed using all pores recorded in

the three cylindrical sub-volumes that we have analyzed per sample. Note that we have considered a continuous

probability density function, so that the histogram bins are just selected to illustrate the evolution of the number

of voids with the voids size. The experimental measurements have been fitted to the Log-normal distribution (solid
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red line) with corresponding mean (µ) and standard deviation (dev) values given in Table 1. The number of voids

with diameter larger than 75 µm is very small in comparison with the total number of voids, so that 75 µm is

the largest pore size considered in Figs. 9-12. The limitation of the void diameter to 75 µm in the graphs is for

illustrative purposes only, to not increase the scale of the plots. However, in the finite element models we include

pores with diameter greater than 75 µm (see Section 3), as recorded from the tomograms. Notice that the only

microstructures containing pores with diameter greater than 75 µm are Al3Z, Al3XY, SS5Z and INC1Z, see Table

1. For all materials and specimens investigated, the diameter of most voids lies within the range 5 µm < d < 30 µm.

The greatest and the smallest average pore sizes, 18.45 µm and 6.41 µm, correspond to the specimens SS5Z and

INC1XY, respectively. Moreover, the standard deviation of the distributions lies between 3.81 µm for Al0.5Z and

9.85 µm for SS5Z. Notice that there is no clear effect of the printing orientation on the average pore size. While

for AlSi10Mg and Ti6Al4V the average diameter of the voids is smaller when the printing direction is parallel to

the longitudinal axis of the cylinder, the opposite trend is obtained for stainless steel 316L and Inconel 718L.

Similarly, there is no correlation between the printing direction and the standard deviation of the distributions of

pores sizes, neither between the printing direction and the maximum size of the voids.
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(a) (b)

(c) (d)

Figure 5: 3D reconstruction of cylindrical sub-volume with diameter 1.5 mm and height 1.5 mm for: (a) Al3Z, (b) Al3XY, (c) Al0.5Z
and (d) Al0.5XY. Porosity distribution in orange. For interpretation of the references to colour in the text, the reader is referred to
the web version of this article.
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(a) (b)

(c) (d)

Figure 6: 3D reconstruction of cylindrical sub-volume with diameter 1.5 mm and height 1.5 mm for: (a) SS5Z, (b) SS5XY, (c) SS0.5Z
and (d) SS0.5XY. Porosity distribution in orange. For interpretation of the references to colour in the text, the reader is referred to
the web version of this article.

(a) (b)

Figure 7: 3D reconstruction of cylindrical sub-volume with diameter 1.5 mm and height 1.5 mm for: (a) Ti0.5Z and (b) Ti0.5XY.
Porosity distribution in orange. For interpretation of the references to colour in the text, the reader is referred to the web version of
this article.
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(a) (b)

Figure 8: 3D reconstruction of cylindrical sub-volume with diameter 1.5 mm and height 1.5 mm for: (a) INC1Z and (b) INC1XY.
Porosity distribution in orange. For interpretation of the references to colour in the text, the reader is referred to the web version of
this article.
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(a) (b)

(c) (d)

Figure 9: Void size distribution corresponding to: (a) Al3Z, (b) Al3XY, (c) Al0.5Z and (d) Al0.5XY. The Log-normal distribution
function was fitted (solid red line) to the X-ray computed tomography measurements (black columns). The blue line represents the
void size distribution included in the ring expansion model developed in ABAQUS/Explicit (2016) for one of the three realizations used
in the finite element calculations (R1,R2,R3), see Section 3. For interpretation of the references to colour in the text, the reader is
referred to the web version of this article.

3. Finite element modeling

In this section, we present the ring expansion finite element model that we have created to study the role

of porous microstructure in dynamic localization and fragmentation of ductile materials. Following the works

of Rusinek and Zaera (2007), Vadillo et al. (2012) and Rodŕıguez-Mart́ınez et al. (2013b), we have modeled in

ABAQUS/Explicit (2016) a thin ring with inner and outer radii Rin = 15 mm and Rout = 15.5 mm, respectively,

and axial thickness e = 0.5 mm, subjected to rapid radial expansion, see Fig. 13. The radial thickness will

be referred to as h = Rout − Rin. Similar specimen dimensions were used in the ring expansion experiments

performed by Zhang and Ravi-Chandar (2006). The loading condition is a radial velocity, Vr, applied in the inner

surface of the ring which remains constant throughout the entire analysis (Rusinek and Zaera, 2007; Vadillo et al.,
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(a) (b)

(c) (d)

Figure 10: Void size distribution corresponding to: (a) SS5Z, (b) SS5XY, (c) SS0.5Z and (d) SS0.5XY. The Log-normal distribution
function was fitted (solid red line) to the X-ray computed tomography measurements (black columns). The blue line represents the
void size distribution included in the ring expansion model developed in ABAQUS/Explicit (2016) for one of the three realizations used
in the finite element calculations (R1,R2,R3), see Section 3. For interpretation of the references to colour in the text, the reader is
referred to the web version of this article.

(a) (b)

Figure 11: Void size distribution corresponding to: (a) Ti0.5Z and (b) Ti0.5XY. The Log-normal distribution function was fitted
(solid red line) to the X-ray computed tomography measurements (black columns). The blue line represents the void size distribution
included in the ring expansion model developed in ABAQUS/Explicit (2016) for one of the three realizations used in the finite element
calculations (R1,R2,R3), see Section 3. For interpretation of the references to colour in the text, the reader is referred to the web
version of this article.
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(a) (b)

Figure 12: Void size distribution corresponding to: (a) INC1Z and (b) INC1XY. The Log-normal distribution function was fitted
(solid red line) to the X-ray computed tomography measurements (black columns). The blue line represents the void size distribution
included in the ring expansion model developed in ABAQUS/Explicit (2016) for one of the three realizations used in the finite element
calculations (R1,R2,R3), see Section 3. For interpretation of the references to color in the text, the reader is referred to the web version
of this article.

2012; Rodŕıguez-Mart́ınez et al., 2013b; Vaz-Romero et al., 2019). The initial condition is a radial velocity of the

same value V (t = 0) = Vr applied to all the nodes of the finite element mesh (Vaz-Romero et al., 2019; Marvi-

Mashhadi and Rodŕıguez-Mart́ınez, 2020). The application of this initial condition minimizes the propagation of

waves through the thickness of the ring due to the abrupt motion of the inner surface at t = 0. Otherwise, the

waves generated due to the application of the loading condition could lead to instantaneous plastic localization in

the inner surface of the specimen (Needleman, 1991; Xue et al., 2008; Vaz-Romero et al., 2019). We are aware

that these initial and loading conditions idealize the velocity boundary conditions generally observed in laboratory

experiments. However, imposing a constant radial velocity shows the advantage that the nominal strain rate along

the loading process is constant, which facilitates the comparison with analytical models and other finite element

calculations reported in the literature which use similar loading condition, see Figs. 22 and 31. The initial strain

rate in the material is ε̇0 ≈ Vr
Rin

. We have performed calculations with different loading velocities ranging from

50 m/s to 500 m/s, i.e. the initial strain rate varies between ≈ 3333 s−1 and ≈ 33333 s−1. While the largest

expansion velocities considered exceed the regular experimental capabilities (ring expansion tests can rarely be

performed for velocities higher than 300 m/s, see Grady and Benson (1983), Grady and Olsen (2003) and Zhang

and Ravi-Chandar (2006)), exploring such a wide range of loading rates helps to enlighten the role of porous

microstructure on the formation of multiple necks and fragments. Note that we have only analyzed a quarter

of the ring (for the microstructure Al3XY only an eighth) in order to reduce the computational time, since we

need to use very fine mesh to define the actual distribution of porosity in the microstructures investigated (see the

discussion below).
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The novelty of the finite element analysis performed in this paper is that we have included in the ring the actual

pores recorded in the tomograms. To this end, the voids are modeled as spheres characterized by the coordinates

of their centers, which are referred to a Cartesian coordinate system with origin located at the center of mass of

the whole specimen (X,Y, Z) (see Fig. 13), and the corresponding diameters di, where the sub-index i denotes the

sphere number. Recall that most of the voids recorded in the XCT images presented in Figs. 5-8 showed nearly

spherical shape, and we did not notice any specific effect of the printing orientation on the shape of the voids, so

that taking the voids to be spherical seems to be a reasonable assumption, which in turn facilitates the generation

of the finite element models and the interpretation of results. Nevertheless, the methodology presented in this

paper can be easily adapted to consider, for instance, oblate and prolate spheroidal voids with different orientations

(this is left for a future work). Moreover, the number of pores and the distribution of pore sizes included in the

ring are determined using a Log-normal distribution with parameters obtained from the tomograms and specified

in Table 1. Recall that with the resolution of 3 × 3 × 3 µm3 of voxel size used in the X-ray tomography we did

not detect pores with diameter smaller than 6 µm, so that this is the smallest pore size included in the finite

element models. Furthermore, we have randomly distributed the pores in the ring, which is consistent with the

fact that the voids are rather uniformly/homogeneously dispersed in most of the samples investigated, see Figs.

5-8. Random positions of the sphere centers are obtained by means of a Force Biased Algorithm (Bargie l and

Mościński, 1991). Nevertheless, note that the random distribution of voids allows for having pore clusters, leading

to specific portions of the ring with large void volume fraction (see Fig. 16). Note also that, while the maximum

void volume fraction of the printed samples studied in this paper is 2.13% (see Table 1), this algorithm, which is

frequently used to design highly porous media such as foams (Marvi-Mashhadi et al., 2020), is able to generate

random packed configurations of spheres with a predefined size distribution and volume fraction up to 60%, and

thus the methodology developed in this paper can be applied to model the porous microstructure of printed or

sintered metals with larger porosity.

The specific steps taken to generate the porous microstructure are as follows. Firstly, the Force Biased Algo-

rithm generates an initial spatial distribution of M spheres S(Xi, Yi, Zi, di), where Xi, Yi and Zi are the coordinates

of the centers of the spheres and di is taken from the XCT measurements, in a cubic volume element of 1×1×1 mm3,

using the Log-normal function parameters given in Table 1 to determine the distribution of void sizes. The dimen-

sions of the cubic volume element enable to include sufficient number of voids to obtain statistically significant

results which are representative of the actual porosity distribution in the materials. Initially, overlapping of spheres

is allowed. Then, the algorithm starts to reduce the overlaps between spheres by pushing apart spheres that are

connected. After specific number of iterations, relocation of overlapped spheres is stopped and the remained
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overlapped spheres are gradually shrunk to remove all connections, while the non-overlapped spheres are enlarged

accordingly to fulfill the Log-normal distribution of void sizes. The final outcome of the algorithm is a new packed

non-overlapped configuration of spheres S
′
(X ′i, Y

′
i , Z

′
i, d
′
i) with number of voids and distribution of void sizes con-

sistent with the XCT measurements. Note that X ′i, Y
′
i and Z ′i are the new coordinates of the centers of the

spheres, and d′i is the new diameter of ith sphere. This operation is repeated to obtain N = 24 random packed

configurations of 1 × 1 × 1 mm3 in order to generate the porous microstructure of the finite element model (a

quarter of the circumference of the ring is approximately 24 mm). Note that there are no spheres intersecting the

boundaries of the 24 packed configurations used to build the ring. Moreover, denoting X ′m,j as the X coordinate of

the mth sphere (m = 1, . . . ,M) belonging to the pack configuration j (j = 1, . . . , N), then, to align all the packed

configurations on the X-axis:

X ′′i = (j − 1) +X ′m,j , with i = 1, ..., N ×M and j = 1, ..., N and m = 1, ...,M (1)

where X ′′i is the new X coordinate of the ith sphere. Note that Y ′′i = Y ′i and Z ′′i = Z ′i. Moreover, equation (2)

places the packed configurations on the inner circumference of the ring:

X ′′′i =
(
Y ′′i +Rin

)
cos

(
X ′′i
Rin

)
Y ′′′i =

(
Y ′′i +Rin

)
sin

(
X ′′i
Rin

)
Z ′′′i = Z ′′i

(2)

where X ′′′i , Y ′′′i and Z ′′′i are the new coordinates for the ith sphere. Notice that the cross-section of the specimen

created in ABAQUS is 0.5×0.5 mm2, i.e. it is smaller than the cubic volume element of 1×1×1 mm3 used to pack

the spheres, and therefore approximately three quarters of the spheres lie outside the ring boundaries (recall that

the dimensions of the cubic volume element were taken greater than the cross-section of the ring in order to include

sufficient number of voids to obtain statistically significant results which are representative of the actual porosity

distribution in the materials). Thus, the out-of-ring-boundary spheres as well as the spheres overlapping with the

outer walls of the ring were dismissed, see Fig. 13(a). Next, the spheres which lie inside the specimen boundaries

were cut out to obtain actual voids inside the ring model. For each of the 12 samples analyzed (see Section 2) we

have generated three realizations of void size and position distribution fulfilling the same Log-normal function in

order to take into account the potential scatter in the finite element results coming from the randomness in void

dispersion. These three realizations will be denoted as R1, R2 and R3, respectively. It is worth mentioning that

the whole process to create the porous microstruture was automatized using a Python script which generates the

command file for ABAQUS/CAE to create the porous ring.
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Figure 13: Finite element model created in ABAQUS/Explicit (2016) for realization R1 of the microstructure INC1XY. The Cartesian
coordinate system (X,Y, Z) has the origin located at the center of mass of the whole specimen. (a) Virtual design of the porous ring.
(b) Discretized model. The zoomed frame shows the mesh quality and accuracy of the voids description.

The agreement between the virtual porous microstructure of the rings modeled in ABAQUS/Explicit (2016)

and the actual porous microstructure of the specimens studied is apparent in Figs. 9-12, where the distribution of

void sizes included in the ring for one of the three realizations used in the simulations (solid blue line), is compared

with the XCT measurements (black columns) and the Log-normal distribution fitted to the experiments (red solid

line). The average number of voids and the corresponding standard deviation, in a quarter of the ring, for the three

realizations that we have generated per sample, and for the 12 microstructures investigated, are shown in Table 2.

The maximum number of voids, 34413±120, corresponds to the microstructure Al3XY, and the minimum, 18±2,

to SS0.5Z. On the other hand, recall that our goal is to determine the influence of the porous microstructure in

the necking and fragmentation patterns, providing new insights into the role of defects on dynamic localization

and fracture, rather than developing an analysis on the influence of microstructure on the mechanical behavior of

the specific materials considered.

The ring models were discretized using C3D4 general purpose tetrahedral elements (ABAQUS/Explicit, 2016).

This type of element enables to describe the complex geometry of the porous media, as it is pictured in Fig. 13(b).

Generally, as the number of voids increases, and the void size decreases, more elements are required to describe

accurately the porous microstructure and the shape of the voids. In fact, for the microstructure Al3XY, which

has the greater number of voids, we modeled only an eight of the ring to bound the number of elements in the

finite element mesh. Specifically, using an average element size of 15 µm, the ring expansion models for the 12

microstructures investigated contain the number of elements reported in Table 2, ranging between 2.7 millions for

the microstructure SS5Z and 18.9 for Al3Z. No specific element size has been used to seed the voids, instead,
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each meridian of the voids was discretized with at least 5 elements, i.e., the number of elements surrounding

the voids depends on the size of the void. For example, for a pore with diameter of 10 µm, the element size

was ≈ 2 µm. The calculations were performed using a workstation with 24 CPUs with the following features:

Intel Xeon Gold 6128 @ 3.4 GHz. The computational cost of each simulation shown in this paper ranged between

2 and 12 days, depending on the loading velocity and the microstructure considered, using simultaneously the 24

CPUs of the workstation indicated before.
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4. Analysis and results: multiple necking

In this section, we investigate the influence of the porous microstructure on the multiple necking pattern that

emerges around the circumference of the ring at large strains. We have performed ring expansion calculations

for the 12 microstructures investigated (corresponding to the 12 samples analyzed), and for the 3 realizations of

void size and position distribution that we have created per microstructure (R1,R2,R3). The material behavior is

modeled using isotropic linear elasticity, with Young modulus E = 200 GPa and Poisson’s ratio ν = 0.3, and von

Mises plasticity with constant yield stress σy = 500 MPa (i.e., the material is considered elastic perfectly-plastic).

The initial material density is ρ = 7800 kg/m3. The advantage of using this idealized constitutive modeling is

that the formation and development of the necking pattern is solely controlled by inertia, stress multiaxiality (i.e.

triaxiality) and porous microstructure, which facilitates the interpretation of results. In addition, considering that

the material is elastic perfectly-plastic favors early necking formation, reducing mesh distortion problems. Recall

that the objective of this paper is to determine the effect of porous microstructure on dynamic localization and

fragmentation, and we do not pay attention to the specific mechanical response of the additively manufactured

materials from which the microstructures are taken (this is left for a future work). In this regard, the reader

is referred to the works of Li et al. (2020), Li et al. (2019), Tancogne-Dejean et al. (2016) and Ghorbanpour

et al. (2020), among others, to obtain detailed information on the actual elastic/plastic behavior of additively

manufactured AlSi10Mg, stainless steel 316L, Ti6Al4V and Inconel 718L, respectively. Moreover, notice that

inertia effects can be quantified with the dimensionless number Ĥ−1 =
√

ρh2ε̇20
4σy

which is derived from the balance

of linear momentum (Zhou et al., 2006). For the calculations performed in this work (see Section 3), Ĥ−1 varies

from 0.0033 for Vr = 50 m/s to 0.033 for Vr = 500 m/s. Note that, due to the stabilizing role of inertia (Vaz-

Romero et al., 2017), the plastic strain outside the necks, after the necking pattern is formed, is generally above

3% in the calculations performed in this section for Vr = 50 m/s (in absence of inertia, a rate-independent material

with no strain hardening develops instantaneous necking localization), increasing up to 25% for the greatest

loading velocities investigated. In future works, we should perform calculations with specimens with greater cross-

section to boost the effect of inertia (the relatively small cross-section samples investigated impose a limitation

to the effect of inertia on the localization and fragmentation processes). Moreover, note that the large number

of microstructures investigated makes impossible to show necking patterns and neck size distributions for all the

simulations performed in this work. The idea is to display results that provide a general overview of the influence of

porous microstructure in the necking pattern, and to compare microstructures with different void volume fractions,

maximum pore diameters and average pore sizes.

AKI
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4.1. The role of porous microstructure

Fig. 14 shows the normalized effective plastic strain ˆ̄εp versus the normalized outer perimeter of the quarter

ring P̂ = 2θ
π (in the case of Al3XY it is one eight of the ring P̂ = 4θ

π ), hereinafter also referred to as normalized

radial angle, for the four microstructures corresponding to aluminium alloy AlSi10Mg: (a) Al3Z, (b) Al3XY (c)

Al0.5Z and (d) Al0.5XY. These are the microstructures with greater void volume fraction, see Table 1 (only

INC1XY has comparable amount of porosity). The imposed loading velocity is Vr = 250 m/s, which corresponds

to ε̇0 = 16666 s−1 and Ĥ−1 = 0.0165. We compare the results obtained with the 3 realizations that we have

generated per microstructure, where the black, red and green curves correspond to R1, R2 and R3, respectively.

Recall that the three realizations (R1,R2,R3) provide different spatial and size distributions of the voids. The

normalized effective plastic strain is defined as ˆ̄εp = ε̄p

ε̄pb
, where ε̄p is the von Mises effective plastic strain measured

in the outer surface of the specimen and ε̄pb = ln
(
Rout+Vrt
Rout

)
approximates the background effective strain in the

ring, where t is the loading time. The background effective strain corresponds to the fundamental/homogeneous

solution of the problem (Vaz-Romero et al., 2017). Hence, before the localization process starts, the normalized

effective plastic strain is ≈ 1. The ˆ̄εp − P̂ curves display a succession of peaks and valleys. Similarly to N’souglo

et al. (2018) and Vaz-Romero et al. (2017), we consider that necks are all the excursions of strain that meet the

condition ˆ̄εp = 1.1 when the maximum value of ˆ̄εp reaches ≈ 2. The necking criterion has been chosen so that

the necking pattern is generally fully formed (i.e. no new necks are formed with the continuation of the loading

process), yet the strains are not so large that the finite element grid becomes excessively distorted. The idea is to

use a criterion for the identification of the necks such that the plastic strain is localized in the necked sections, and

the portions of the ring outside the necked sections are unloaded. The ring expansion finite element calculations

performed by Marvi-Mashhadi and Rodŕıguez-Mart́ınez (2020) for rings with random distributions of geometric

imperfections showed that the number of necks recorded is generally not very sensitive to the precise cut-off values

of ˆ̄εp used in the necking criterion. Note that the results shown in Fig. 14 correspond to the loading time for which

the maximum value of ˆ̄εp reaches ≈ 2, i.e. to the loading time for which the necking condition is met, hereinafter

also referred to as necking time tneck.

The number of necks N varies between 10 and 13 for Al3Z, Al0.5Z and Al0.5XY. In the case of Al3XY,

the number of necks is about half, either 5 or 6, depending on the realization, because the calculations for this

microstructure were performed modeling an eighth instead of a quarter of the ring, as stated in Section 3. Moreover,

the necking time is smaller for Al3Z and Al3XY, than for Al0.5Z and Al0.5XY, because increasing the initial void

volume fraction and the maximum diameter of the voids favors early necking formation, see Table 1 (we will

elaborate on this issue later in this section). Notice that the results obtained for the 3 realizations (R1,R2,R3),

in terms of necking time tneck and number of necks N , are similar (see also Tables 3 and 4). In contrast, for a
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given microstructure, the specific location of the necks varies with the microstructural realization. This becomes

apparent in the contours of effective plastic strain shown in Fig. 15 for the realizations R1 and R2 corresponding

to the microstructure Al3Z which show that, while the necking condition is met at the same loading time, the

position of the necks is different (notice that the necks are numbered). Note that there is no evidence that the

planes free of voids generated at the intersection of the 24 packed configurations used to build the ring lead to any

specific necking pattern in the simulations, see Section 3. The color coding of the isocontours is such that effective

plastic strains ranging from 0.1 to 0.35 correlate with a color scale that goes from blue to red. Effective plastic

strains below 0.1 remain blue and above 0.35 remain red. The average value of the effective plastic strain outside

the necks is ≈ 7%. The isocontours, which correspond to a cut view of the ring for the plane Z = 0, bring out

the distribution of voids in the specimen. Note that the distance between pores varies from pore to pore. Note

also that the pores inside the necked sections are elongated, while those located outside the necks remain nearly

spherical.

Fig. 16 displays the ˆ̄εp − P̂ curves for the 4 microstructures corresponding to stainless steel 316L: (a) SS5Z,

(b) SS5XY, (c) SS0.5Z and (d) SS0.5XY. These microstructures display large variation in the maximum pore

size, ranging from 25.90 µm for SS0.5Z to 100 µm for SS5Z, see Table 1. The results correspond to the necking

time and the imposed velocity is Vr = 250 m/s. The comparison of the 3 realizations that we have generated per

microstructure shows that the number of necks and the necking time hardly change with R1, R2 and R3 (see also

Tables 3 and 4). In contrast, the number of necks varies between the different microstructures from 9 to 14, with

the smaller number of necks and the smaller necking time corresponding to the microstructure SS5Z, which has the

greatest void volume fraction and contains the biggest voids, see Table 1. The contours of effective plastic strain

for SS5Z and realization R1 shown in Fig. 17 display two big pores acting as triggers for the localization of plastic

deformation and the formation of early necks. The color coding of the isocontours is such that effective plastic

strains ranging from 0.05 to 0.35 correlate with a color scale that goes from blue to red. Effective plastic strains

below 0.05 remain blue and above 0.35 remain red. The microstructure SS5Z also displays the most irregular

necking pattern, so that the two necks nucleated from the two big pores are significantly more developed than the

others (numbers 6 and 8 in the case of R1, which corresponds to the black curve in Fig. 16(a)), leading to long

neck-free segments (from 0.6 . P̂ ≤ 1 in the case of R1, see Fig. 16(a)).

Fig. 16 also pictures the initial void volume fraction VF (%) along the normalized radial angle P̂ for realization

R1 and the four microstructures considered (grey dashed lines). The void volume fraction is calculated in segments

whose length being one hundredth part of the total perimeter of the ring. The results reveal that the more developed
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Figure 14: Normalized effective plastic strain ˆ̄εp versus normalized outer perimeter of the ring P̂ for microstructures: (a) Al3Z, (b)
Al3XY, (c) Al0.5Z and (d) Al0.5XY. Results are shown for 3 realizations of void size and position distribution: R1, R2 and R3.
Loading velocity Vr = 250 m/s. The loading time is taken when the necking condition is met. Note that the necks corresponding to the
realization R1 are numbered. The horizontal yellow dashed lines correspond to ˆ̄εp = 1.1 and ˆ̄εp = 2. For interpretation of the references
to color in this figure, the reader is referred to the web version of this article.
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Figure 15: Contours of effective plastic strain ε̄p for microstructure Al3Z. Loading velocity Vr = 250 m/s. Cut view of the ring
corresponding to the plane Z = 0. (a) Realization R1. Loading time t = 10 µs. (b) Realization R2. Loading time t = 10 µs. For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.
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necks for the four microstructures are nucleated at the locations with greater initial void volume fraction (segments

with larger pores, or pore clusters). However, the location of many other necks does not seem to find a correlation

with the porous microstructure. This suggests that the final necking pattern results from the competition between

inertia and porous microstructure. For the microstructure SS0.5Z, for which the initial void volume fraction is

the lowest and the maximum pores size is the smallest, the influence of porous microstructure seems to be less.

As mentioned before, in future works we should perform calculations with specimens with greater cross-section to

boost inertia effects and further check this conclusion.

The influence of the microstructure on the distribution of neck spacings is further illustrated in Fig. 18,

which shows histograms with the number of necks Nneck as a function of the normalized Lagrangian neck spacing

L̂neck = Lneck
h for: (a) SS5Z, (b) SS5XY, (c) SS0.5Z and (d) SS0.5XY. The Lagrangian neck spacing Lneck is the

distance between the central sections of two consecutive necks referred to the undeformed configuration. The idea

is to identify the characteristic distribution of neck sizes for each microstructure, so that the more realizations

we include in the histograms, the more representative the results are for that given velocity and microstructure.

However, as mentioned before, the computational cost of the calculations is high, and the number of realizations

per microstructure is limited to three, i.e., the results correspond to the three realizations we have performed per

microstructure, R1, R2 and R3, which are represented by black, red and green blocks, respectively. The height of

a colored block within a bar of the histogram marks the number of necks with fixed L̂neck for a given realization.

The greater scatter in the distribution of neck spacings corresponds to SS5Z, for which the normalized Lagrangian

neck spacing varies between 3.16 and 9.74, with an average value of 4.72. The smaller scatter corresponds to the

microstructure SS0.5Z, which has the smaller void volume fraction and the smaller value of dmax, see Table 1. For

this microstructure, L̂neck varies between 2.88 and 5.75, with an average value of 3.66, suggesting that decreasing

the void volume fraction and the maximum size of the voids favors the formation of more regularly spaced necks.

Tables 3 and 4 compile the number of necks and the necking time, respectively, for the 12 microstructures

investigated (corresponding to the 12 samples analyzed), and for the 3 realizations that we have created for each

microstructure, R1, R2 and R3. The imposed loading velocity is Vr = 250 m/s (as in Figs. 14-18). These

results are plotted in Fig. 19 with respect to: (a) the initial void volume fraction VF (%), (b) the maximum void

diameter dmax and (c) the average void size µ. Recall that the values of VF (%), dmax and µ corresponding to

each microstructure are given in Table 1.

Fig. 19(a) illustrates that both number of necks Nneck and necking time tneck decrease with the initial void
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Figure 16: Normalized effective plastic strain ˆ̄εp and initial void volume fraction VF (%) versus normalized outer perimeter of the
ring P̂ for microstructures: (a) SS5Z, (b) SS5XY, (c) SS0.5Z and (d) SS0.5XY. Results for the effective plastic strain are shown for
3 realizations of void size and position distribution: R1, R2 and R3. Results for the initial void volume fraction correspond to R1.
Loading velocity Vr = 250 m/s. The loading time for the results of the effective plastic strain corresponds to the necking condition.
Note that the necks corresponding to the realization R1 are numbered. The horizontal yellow dashed lines correspond to ˆ̄εp = 1.1 and
ˆ̄εp = 2. For interpretation of the references to color in this figure, the reader is referred to the web version of this article.
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Figure 17: Contours of effective plastic strain ε̄p for microstructure SS5Z. Realization R1. Cut view of the ring corresponding to the
plane Z = 0. Loading velocity Vr = 250 m/s. Loading time: (a) t = 6 µs, (b) t = 9 µs, (c) t = 10 µs and (d) t = 12 µs. For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.
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Figure 18: Histograms showing the number of necks Nneck as a function of the normalized Lagrangian neck size L̂neck = Lneck
h

for
microstructures: (a) SS5Z, (b) SS5XY, (c) SS0.5Z and (d) SS0.5XY. Results are shown for 3 realizations of void size and position
distribution: R1, R2 and R3. Loading velocity Vr = 250 m/s. For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.
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volume fraction VF (%) (which is plotted in log scale). Note that the drop of the necking time is significantly more

pronounced. Based on the logarithmic functions used to fit the finite element results, the necking time decreases

from ≈ 22 µs for f = 0.0007% up to ≈ 10 µs for f = 2.17% (120% drop), while the number of necks varies

between ≈ 12 and ≈ 10. It becomes apparent that porosity promotes necking localization, leading to a significant

decrease of the specimen ductility for this expansion velocity (250 m/s) and this range of initial void volume

fractions. Moreover, notice that an increase of three orders of magnitude in the initial void volume fraction only

reduces the number of necks by 20%. The necking time for the microstructures SS5XY, Al0.5XY and INC1XY

is similar, ranging between 16 µs and 18 µs for the three realizations performed per microstructure, see Table 4.

The corresponding void volume fractions are quite different, 0.0025%, 0.0203% and 0.14%, while the maximum

diameter of the voids is similar, 41.40 µm, 45.52 µm and 41.24 µm, respectively. These results suggest that, for

this loading velocity, the maximum void diameter has an important influence on the necking time. In fact, Fig.

19(b) shows that increasing the maximum void diameter dmax also leads to a decrease of both the number of necks

Nneck and the necking time tneck. Note that microstructures with similar maximum void size have different void

volume fraction (e.g. see Al0.5XY, SS5XY and INC1XY in Table 1). The finite element results are fitted with

linear functions which predict that increasing dmax from 25.9 µm to 110.53 µm leads to a decrease in the number of

necks and the necking time of 20% and 120%, respectively. Note that for microstructures with similar void volume

fraction, like Al0.5Z, Al0.5XY, INC1Z for which VF ranges between 0.13% and 0.14%, the lower necking times are

obtained for INC1Z, which contains the voids with greater diameter. This reinforces the idea that big pores are

preferential locations for the inception of early necks (see Fig. 17). Moreover, these results also suggest that the

spacing between necks is less sensitive to the porous microstructure than the critical strain triggering localization.

In addition, notice that the scatter in the results is more important for the necking time than for the necking

strain. Fig. 19(c) brings out that, while the number of necks Nneck decreases with µ (based on the linear function

used to fit the finite element results), there does not seem to be any connection between the necking time tneck

and the average void size. Note that the maximum necking time is obtained for µ = 17.30 µm, which corresponds

to Ti0.5XY, and the minimum for µ = 11.31 µm, which corresponds to Al3Z.

To the authors’ knowledge, these results provide the first correlations ever reported for the ring expansion

problem between material porous microstructure, number of necks and loading time for which the necks are formed,

including individual identification of the roles played by initial void volume fraction, maximum void diameter and

average void size. The maximum void diameter seems to be the main microstructural feature controlling the

necking pattern, however, obtaining definite conclusions requires additional efforts which are left for a future work

(e.g. this analysis should be repeated for other expanding velocities).
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Number of necks - Vr = 250 m/s

Microstructure R1 R2 R3
Al3Z 13 11 10

Al3XY 5 5 6
Al0.5Z 10 11 12

Al0.5XY 11 11 13
SS5Z 9 9 9

SS5XY 10 12 12
SS0.5Z 13 12 13

SS0.5XY 13 14 14
Ti0.5Z 13 12 12

Ti0.5XY 13 14 13
INC1Z 11 10 13

INC1XY 13 12 11

Table 3: Number of necks Nneck obtained for the 12 microstructures investigated in this work: Al3Z, Al3XY, Al0.5Z, Al0.5XY, SS5Z,
SS5XY, SS0.5Z, SS0.5XY, Ti0.5Z, Ti0.5XY, INC1Z and INC1XY. Results are shown for the 3 realizations (R1,R2,R3) that we have
generated per microstructure. The loading velocity is Vr = 250 m/s.

Necking time (µs) - Vr = 250 m/s

Microstructure R1 R2 R3
Al3Z 10 10 7

Al3XY 11 12 13
Al0.5Z 15 16 15

Al0.5XY 16 17 18
SS5Z 12 13 12

SS5XY 17 18 18
SS0.5Z 23 22 23

SS0.5XY 20 22 21
Ti0.5Z 19 21 20

Ti0.5XY 22 22 23
INC1Z 13 12 14

INC1XY 17 16 17

Table 4: Necking time tneck obtained for the 12 microstructures investigated in this work: Al3Z, Al3XY, Al0.5Z, Al0.5XY, SS5Z,
SS5XY, SS0.5Z, SS0.5XY, Ti0.5Z, Ti0.5XY, INC1Z and INC1XY. Results are shown for the 3 realizations (R1,R2,R3) that we have
generated per microstructure. The loading velocity is Vr = 250 m/s.
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Figure 19: Number of necks Nneck and necking time tneck versus: (a) initial void volume fraction VF (%), (b) maximum void diameter
dmax and (c) average void size µ. Results are shown for the 12 microstructures investigated in this work and the 3 realizations
(R1,R2,R3) that we have generated per microstructure. The loading velocity is Vr = 250 m/s.
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4.2. The role of expansion velocity

Fig. 20 shows the normalized effective plastic strain ˆ̄εp versus the normalized outer perimeter of the ring P̂ ,

for: (a) Al3Z (b) SS0.5Z and (c) INC1Z. The three porous microstructures display large differences for the void

volume fraction and the maximum void diameter, see Table 1. The comparison between the results obtained for

three different loading velocities Vr = 50, 250 and 500 m/s (the corresponding values of Ĥ−1 are 0.0033, 0.0165

and 0.033, respectively) is presented. The results correspond to the necking time, and the associated background

strain is indicated in the plots. The calculations correspond to realization R1.

The number of necks increases with the applied velocity. Zhang and Ravi-Chandar (2006, 2008) attributed this

behavior to the fact that for the lower expansion rates, the release waves that emanate from the necks that form

earlier have the time to unload larger segments of the specimen; contrary to what happens at higher expansion

rate, when the time for the released waves to travel and unload the specimen is less, allowing for the nucleation of

more necks closer together. An alternative explanation for the increase in the number of necks with the expansion

rate, that stems from the works of Fressengeas and Molinari (1994), Mercier and Molinari (2004), Rodŕıguez-

Mart́ınez et al. (2013a) and N’souglo et al. (2020), among others, is that inertia stabilizes material behavior,

delays localization and promotes the development of preferential necking wavelengths that lead to the formation

of additional (smaller) necks as the strain rate (loading velocity) increases. The stabilizing effect of inertia is

responsible for the increase of the background strain corresponding to the necking time with the expansion velocity.

The calculations performed with the microstructure Al3Z, Fig. 20(a), predict that the number of necks is 9, 13

and 14 for 50, 250 and 500 m/s, respectively. Some necks repeatedly nucleate at the same location for the three

velocities, numbers 1−3, 4−6 and 9, suggesting that these are triggered by the porous microstructure (most likely

by big pores or pore clusters). In contrast, as the expansion velocity increases, localization is delayed and additional

necks are nucleated at different positions of the ring. The blue arrows indicate necks that emerge for 500 m/s at

locations that were neck-free for 50 m/s. Moreover, the split up of long necks into two at higher velocities also

leads to additional necks for 500 m/s which are indicated with orange arrows. Attending to the results presented

in Figs. 14 and 5 of Rodŕıguez-Mart́ınez et al. (2013a) and Rodŕıguez-Mart́ınez et al. (2017), respectively, the split

up of long necks into smaller ones can be attributed to inertia, which promotes the development of smaller necking

wavelengths as the loading rate and the material deformation increase. Nevertheless, it is difficult to attribute a

single origin to any neck of the pattern, and it could be the case that the microstructure also contributes –probably

less than inertia– to the formation of these additional necks that develop at high strain rates.

For the microstructure SS0.5Z, Fig. 20(b), the localization pattern is formed by 10, 13 and 16 necks, for 50,

250 and 500 m/s, respectively. Necks 4, 5, 6 and 9 seem to be triggered by the porous microstructure since they

are located in the same position for the three velocities investigated. The necks indicated with blue and orange
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arrows, as in the case of the calculations shown in Fig. 20(a) for Al3Z, only appear at high expansion rate, and their

nucleation seems to be favored by the increase of inertia with the loading velocity. Moreover, notice that, although

neck number 4 is the first to meet the necking criterion for the three velocities, the level of development (peak

strain) of the necks triggered by the microstructure, and of the necks that appear at higher expansion velocity, is

generally similar. Note that the invariance of neck positions with applied velocity seems to be less pronounced for

SS0.5Z than for the two microstructures shown in Figs. 20(a) and 20(c). This could be attributed to the fact that

the maximum void diameter is smaller for SS0.5Z. The maximum void size seems to play the role of a weakest

link, which interplays with the loading rate (inertia) to determine the necking time (as discussed in Section 4.1)

and the position of some necks.

The calculations corresponding to the microstructure INC1Z predict that increasing the velocity from 50 m/s

to 500 m/s leads to a variation in the number of necks that goes from 9 to 14, see Fig. 20(c). The isocontours

of effective plastic strain ε̄p shown in Fig. 21 illustrate the formation of additional necks with the increase of the

loading rate in segments of the ring that were neck-free at lower expansion velocities. Note that the color coding of

the isocontours is different for the three expansion velocities, so that the plastic strains inside the necks are greater

as the loading rate increases. Outside the necks, the average plastic strain for 50 m/s, 250 m/s and 500 m/s is

≈ 0.014, 0.11 and 0.21, respectively (notice that the average plastic strain outside the necks does not match with

the background strain, because the latter is calculated assuming that the strain distribution in the specimen is

fully homogeneous until the necking condition is met). The isocontours correspond to a cut view of the ring for

the plane Z = 0 (as in Fig. 15) so that they expose the distribution of voids inside the specimen. Notice that the

voids in the necked zones, which are nearly spherical for 50 m/s because the localization starts for relatively low

strains (0.014 as indicated before), become elongated as the expansion speed increases, because necking formation

is delayed due to inertia. Moreover, notice that the loading time corresponding to the necking condition is smaller

for the microstructure INC1Z than the microstructure SS0.5Z, and greater than for the microstructure Al3Z, for

the three expansion velocities. These results bring out that the necking time decreases with the void volume

fraction and with the maximum void diameter for any velocity within the range of expansion rates investigated

in this work (recall that the values of VF(%) and dmax for the microstructure INC1Z are greater/smaller than for

the microstructure SS0.5Z/Al3Z).

These results suggest that both porous microstructure and inertia play a role in the resulting necking patterns.

While the microstructure seems to impose the nucleation of necks at specific locations (weak points) of the specimen

for all the velocities investigated, inertia delays localization and favors the nucleation of additional necks at higher

loading rates. As mentioned before, future works should consider specimens with greater cross-section to increase

inertia effects and provide further insights into the interplay between inertia and porous microstrcture on necking
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Figure 20: Normalized effective plastic strain ˆ̄εp versus normalized outer perimeter of the ring P̂ . Results are shown for three different
loading velocities Vr: 50 m/s, 250 m/s and 500 m/s. (a) Microstructure: Al3Z. (b) Microstructure: SS0.5Z. (c) Microstructure: INC1Z.
The calculations with the porous microstructures correspond to realization R1. The loading time is taken when the necking condition
is met. The horizontal yellow dashed lines correspond to ˆ̄εp = 1.1 and ˆ̄εp = 2. For interpretation of the references to color in this figure,
the reader is referred to the web version of this article.

Fig. 22 shows the evolution of the average normalized Lagrangian neck spacing L̂avgneck with the inertia parameter

Ĥ−1 for finite element results obtained with the microstructures Al3Z, SS0.5Z and INC1Z. Note that using

the inertia parameter instead of the strain rate or the expansion velocity to plot the evolution of the average

normalized Lagrangian neck spacing enables to compare results obtained with specimens with different cross-

section dimensions, and with materials displaying different initial density and yield stress. The average normalized

Lagrangian neck spacing is defined as the ratio between the normalized outer perimeter of the quarter ring and the
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Figure 21: Contours of effective plastic strain ε̄p for microstructure INC1Z. Realization R1. Cut view of the ring corresponding to the
plane Z = 0. (a) Loading velocity Vr = 50 m/s. Loading time t = 14 µs. (b) Loading velocity Vr = 250 m/s. Loading time t = 13 µs.
(c) Loading velocity Vr = 500 m/s. Loading time t = 13 µs.
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number of necks L̂avgneck =
πRext

2hNneck
. A comparison with the finite element calculations performed by Guduru and

Freund (2002), and with the finite element calculations and the linear stability analysis results reported by N’souglo

et al. (2018) is presented. The results of Guduru and Freund (2002) and N’souglo et al. (2018) were obtained for

bars with circular cross-section, subjected to dynamic stretching, with initial and boundary conditions consistent

with the ring expansion problem, and modeled using Gurson plasticity with an initial void volume fraction of 0.01

(in the case of N’souglo et al. (2018)). Additional stability analysis results obtained with the analytical model of

N’souglo et al. (2018) for the perfectly-plastic material are pictured. The yield stress is 500 MPa –recall that this

is the value used in the finite element calculations presented in this section– and the initial void volume fraction

is 0.0115 –which corresponds to the microstructure Al3Z–.

The finite element results obtained in this work are in quantitative agreement with the numerical simulations of

Guduru and Freund (2002). On the other hand, the agreement with the stability analysis and with the numerical

simulations obtained with the analytical and numerical models of N’souglo et al. (2018) is only qualitative, with

the simulations performed in this work predicting greater values of L̂avgneck for the whole range of values of Ĥ−1.

The differences are greater for the stability analysis performed with the perfectly-plastic material. While it is

difficult to determine the specific reason for this disagreement, it may be attributed to the fact that the models of

N’souglo et al. (2018) do not consider the actual microstructure of the material and neglect the shielding effect of

the release waves that emanate from the voids, which may prevent the development of some necks. In addition,

the formulation of the stability analysis is based on a series of simplifications, e.g., it does not take into account the

elastic unloading arising after the nucleation of the necks –which may affect the necking pattern especially at lower

strain rates–, and it assumes that the problem is 1D, using the Bridgman (1952) correction factor to account for

the hydrostatic stresses that develop inside a necked section. In any case, all the results presented in Fig. 22 show

that the average neck spacing decreases with the inertia parameter, the decrease being milder as Ĥ−1 increases.

5. Analysis and results: fragmentation

In this section, we investigate the influence of porosity in the fragmentation of the rings using the 12 mi-

crostructures considered in this work. We have performed calculations with the 3 realizations of void size and

position distribution (R1,R2,R3) employed in Section 4 for selected microstructures: Ti0.5Z, Ti0.5XY, INC1Z

and INC1XY. For all other microstructures, we have performed calculations with only R1 and/or R2 realizations

due to the large computational cost of the simulations. The material behavior is modeled using isotropic linear

elasticity and von Mises plasticity with associated flow rule, with yield stress evolving with the effective plastic

strain ε̄p, the effective plastic strain rate ˙̄εp and the temperature T , according to the following power-law type

relation:
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σY = σ0 + σK (ε̄p)n
(

˙̄εp

ε̇ref

)m(
T

Tref

)−µ
(3)

where σ0, σK , n, ε̇ref , m, Tref and µ are material parameters. Moreover, assuming adiabatic conditions of defor-

mation (no heat flux) and considering that plastic work is the only source of heating, the evolution of temperature

is given by:

Ṫ = β
σ̄ ˙̄εp

ρCp
(4)

where β is the Taylor-Quinney coefficient, ρ is the current material density and Cp is the specific heat. The values

of the material parameters are given in Table 5, and they correspond to steel AISI 430 (Vaz-Romero et al., 2015).

In Sections 5.1 and 5.2, we perform a comparison between the results obtained with this viscoplastic modeling,

and the elastic perfectly-plastic material used in Section 4.

Symbol Property and units Value

ρ0 Initial density (kg/m3) 7740
Cp Specific heat (J/kg K), Eq. (4) 460

E Young modulus (GPa) 200
ν Poisson’s ratio 0.3

σ0 Initial yield stress (MPa), Eq. (3) 175.67
σK Hardening modulus (MPa), Eq. (3) 530.13
n Strain hardening exponent, Eq. (3) 0.167
m Strain rate sensitivity exponent, Eq. (3) 0.0118
ε̇ref Reference strain rate (s−1), Eq. (3) 0.01
µ Temperature sensitivity exponent, Eq. (3) 0.51
Tref Reference temperature (K−1), Eq. (3) 300

β Taylor-Quinney coefficient, Eq. (4) 0.9

Table 5: Values of the material parameters used in the finite element calculations as taken from Vaz-Romero et al. (2015).

Material failure is accounted for in the finite element simulations using the element deletion technique available

in ABAQUS/Explicit (2016). We consider that failure occurs when a critical value of the accumulated plastic strain,

ε̄pf = 1, is reached. This value was chosen because the necking pattern has fully developed for all the velocities and

microstructures investigated, yet the strains are not so large that the finite element grid has become significantly

deformed. We are aware that assuming a constant value for the critical failure strain is a crude assumption,

since the failure strain of metallic materials is generally dependent on the stress state, the strain rate and the
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temperature (Pandya et al., 2020; Habib et al., 2019; Khan and Liu, 2012). However, using this simple failure

criterion facilitates the analysis and the interpretation of results. Moreover, note that the same failure criterion

was used in the ring expansion fragmentation calculations performed by Rusinek and Zaera (2007), Zhang and

Ravi-Chandar (2008) and Vaz-Romero et al. (2019).

5.1. The role of porous microstructure

Fig. 23 displays the evolution of the normalized effective plastic strain ˆ̄εp versus the normalized radial angle P̂

for microstructure Ti0.5Z. This microstructure displays low void volume fraction and relatively small maximum

pore size, see Table 1, which is assumed to boost the effect of inertia in the necking and fragmentation processes.

The results obtained for 3 realizations of void size and position distribution, R1, R2 and R3, are compared for

the expansion velocity Vr = 250 m/s. The loading time is taken when the necking condition is met. The number

of necks for the three realizations is 11, 9 and 11, respectively, with the specific location of the necked sections

varying with the realization. Notice that the number of necks is smaller as compared to the simulations performed

in Section 4 for the same microstructure with the elastic perfectly-plastic material, for which the number of necks

was 13, 12 and 12, for R1, R2 and R3, respectively, see Table 3. On the other hand, the necking time is greater,

see Table 4, most likely due the stabilizing role of strain hardening and strain rate hardening, which delay necking

formation and increase specimen ductility (Hutchinson and Neale, 1977; Chung and Wagoner, 1988). These results

bring out the effect of the constitutive behavior of the material in the necking pattern (this issue will be further

discussed in Section 5.2).

The location of the fractures and the size of the fragments also depends on the realization of void size and

position distribution. Fig. 24 shows contours of effective plastic strain ε̄p for the same calculations presented

in Fig. 23. The color coding of the isocontours is such that effective plastic strains ranging from 0.4 to 0.8

correlate with a color scale that goes from blue to red. Effective plastic strains below 0.4 remain blue and above

0.8 remain red. The loading time for the contour plots is taken 8 µs after the necking condition is met, so that

the fragmentation process is completed (no additional fractures occur for greater loading times). There are 4

fractures for the three realizations R1, R2 and R3, which are indicated with red numbers. Notice that the number

of fragments is smaller than the number of necks. The arrested necks, which are pointed with black arrows, seem

to be unloaded by the release waves emanating from neighboring fractures, leading to long fracture-free segments,

as suggested by Mott (1947), Kipp and Grady (1985) and Zhang and Ravi-Chandar (2006). In addition, the

differences in the rate of development of the necks shown in Fig. 23 also seem to contribute to the heterogeneous

spatial distribution of fractures. Fig. 25 shows histograms with the number of necks Nneck and the number of

fragments Nfrag versus the normalized Lagrangian neck spacing L̂neck and the normalized Lagrangian fragment
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Figure 23: Normalized effective plastic strain ˆ̄εp versus normalized outer perimeter of the ring P̂ for microstructure Ti0.5Z. Results
are shown for 3 realizations of void size and position distribution: R1, R2 and R3. Loading velocity Vr = 250 m/s. The loading time is
taken when the necking condition is met. Note that the necks corresponding to the realization R1 are numbered. The horizontal yellow
dashed lines correspond to ˆ̄εp = 1.1 and ˆ̄εp = 2. For interpretation of the references to color in this figure, the reader is referred to the
web version of this article.

size L̂frag =
Lfrag
h

, respectively. The Lagrangian fragment size Lfrag is defined as the distance between two

consecutive fractures referred to the undeformed configuration. Taking together the results obtained for the three

realizations, the normalized Lagrangian neck spacing varies from 2.87 to 12.04, and the average value of L̂neck is

4.71, see Fig. 25(a). Note that 68% of the neck spacings lie within the interval 3.5 ≤ L̂neck ≤ 5.5. On the other

hand, the scatter in the fragments size is significantly greater, see Fig. 25(b), with L̂frag varying from 8.35 to

18.71, being the average normalized fragment size 12.59. Notice that there are only two intervals, 9 ≤ L̂frag ≤ 10

and 12 ≤ L̂frag ≤ 13, for which we obtained more than one fragment, which illustrates the heterogeneous spatial

distribution of fractures for this microstructure and loading velocity.

The influence of the porosity distribution on the necking and fragmentation is further illustrated in Fig. 26,

which shows the evolution of the number of necks Nneck and fragments Nfrag with the initial void volume fraction

VF (%) and the maximum void diameter dmax. The loading velocity is Vr = 250 m/s. Results are included for all

the microstructures investigated in this work. Similarly to the results obtained in Section 4 for the elastic perfectly-

plastic material, see Fig. 19, the number of necks decreases with both initial void volume fraction and maximum

void diameter. Namely, we have used a logarithmic function to fit the evolution of Nneck with the void volume

fraction, which predicts that the number of necks drops ≈ 20% within the range of values of VF (%) investigated.
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Figure 24: Contours of effective plastic strain ε̄p for microstructure Ti0.5Z. Loading velocity Vr = 250 m/s. Cut view of the ring
corresponding to the plane Z = 0. (a) Realization R1. Loading time t = 40 µs. (b) Realization R2. Loading time t = 42 µs. (c)
Realization R3. Loading time t = 41 µs. For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.
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Figure 25: Histograms showing (a) the number of necks Nneck as a function of the normalized Lagrangian neck spacing L̂neck and (b)
the number of fragments Nfrag as a function of the normalized Lagrangian fragment size L̂frag. The calculations correspond to the
microstructure Ti0.5Z. Results are shown for 3 realizations of void size and position distribution: R1, R2 and R3. Loading velocity
Vr = 250 m/s. Comparison between results obtained with three different loading velocities Vr: 50 m/s, 250 m/s and 500 m/s.



45

On the other hand, the decrease of the number of necks with the maximum void diameter dmax has been fitted with

a linear function, based on which Nneck decreases from ≈ 10 to ≈ 6 within the range 25.90 µs 6 dmax 6 110.53 µs.

In contrast, the number of fragments Nfrag shows a slight increase with the initial void volume fraction and the

maximum void diameter. It seems that, if the porosity is large and the material contains big voids, the proportion

of necks that develop into fractures increases. Specifically, the logarithmic function used to fit the evolution of

Nfrag with VF (%) predicts that the number of fragments increases ≈ 25% within the range of void volume fractions

investigated. Moreover, the evolution of the number of fragments with the maximum void diameter has been fitted

with a linear function, so that the predicted increase of Nfrag with dmax is ≈ 20%. Nevertheless, we are aware

that these trends should be further substantiated and evaluated in future works with additional finite element

calculations.
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Figure 26: Number of necks Nneck and number of fragments Nfrag versus: (a) initial void volume fraction VF (%) and (b) maximum
void diameter dmax. Results are included for all the microstructures investigated in this work. The loading velocity is Vr = 250 m/s.

The evolution of the necking time tneck and the fracture time tfrac with the initial void volume fraction VF (%)

and the maximum void diameter dmax is shown in Fig. 27. The fracture time is taken as the loading time when

the fracture condition ε̄pf = 1 is first met (in any element of the mesh of the ring). Both necking time and fracture

time decrease with the initial void volume fraction and the maximum void diameter, with tfrac being slightly

greater than tneck for the whole range of values of VF (%) and dmax investigated. As in the case of the elastic

perfectly-plastic material, see Fig. 19, the evolution of the necking time with the initial void volume fraction and

the maximum void diameter has been fitted with logarithmic and linear functions, respectively. Notice that the

same functions, with different coefficients, have been used to fit the evolution of the fracture time with VF (%)

and dmax.

The potential effect of strain hardening, strain rate hardening and thermal softening on the scatter in the
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Figure 27: Necking time tneck and fracture time tfrag versus: (a) initial void volume fraction VF (%) and (b) maximum void diameter
dmax. Results are included for all the microstructures investigated in this work. The loading velocity is Vr = 250 m/s.

number of necks and fragments, and in the necking and fracture time, still needs further investigation. This is left

for a future work.

5.2. The role of expansion velocity

Fig. 28 shows the normalized effective plastic strain ˆ̄εp versus the normalized radial angle P̂ for the microstruc-

ture INC1Z and realization R1. The INC1Z shows relatively large values for the void volume fraction and the

maximum pore size, so that the microstructure has a marked effect on the necking and fragmentation patterns

(especially for lower velocities, as discussed below). Calculations are shown for two different loading velocities

Vr = 175 m/s and 325 m/s. The results obtained with the viscoplastic material with yield stress defined by equa-

tion (3) are compared with the calculations performed with the elastic perfectly-plastic material used in Section

4. The ˆ̄εp − P̂ curves correspond to the loading time when the necking condition is met, being the necking time

greater for the viscoplastic material, for both loading velocities, 175 m/s and 325 m/s, consistently with the results

obtained for the microstructure Ti0.5Z (see Fig. 23 and the discussion therein). On the other hand, while the

number of necks for 175 m/s is the same for both material models, in the case of 325 m/s the number of necks is

less for the viscoplastic material, 9 versus 13, showing that the influence of the constitutive model in the number

of necks depends on the loading velocity. Notice also that for Vr = 175 m/s the location of the necks is the same

for both material models, reinforcing the idea that for the lower strain rates investigated in this paper the necking

pattern is largely controlled by the porosity distribution. In contrast, for Vr = 325 m/s the spatial distribution

of necks is markedly different for both material models, suggesting that at higher strain rates both mechanical

behavior of the material and inertia play an important role in the distribution of neck spacings (porosity defects

are not the sole factor controlling the necks location).

The influence of loading velocity in the distribution of neck spacings and fragment sizes for the microstructure

INC1Z and the realization R1 is further illustrated in Fig. 29 which shows histograms with the number of necks
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Figure 28: Normalized effective plastic strain ˆ̄εp versus normalized outer perimeter of the ring P̂ . Comparison between the elastic
perfectly-plastic material used in Section 4, and the material with yield stress defined by equation (3). Finite element results obtained
with the microstructure INC1Z and realization R1. Results corresponding to two different loading velocities Vr: (a) 175 m/s and (b)
325 m/s. The loading time is taken when the necking condition is met. The horizontal yellow dashed lines correspond to ˆ̄εp = 1.1 and
ˆ̄εp = 2. For interpretation of the references to color in this figure, the reader is referred to the web version of this article.

Nneck and fragments Nfrag versus the normalized Lagrangian neck spacing L̂neck and the normalized Lagrangian

fragment size L̂frag, respectively. The results correspond to three different velocities Vr = 50 m/s, 250 m/s and

500 m/s. The scatter in the size of the necks and fragments decreases with the loading velocity. Namely, for

50 m/s, the neck spacing varies within the range 5.72 < L̂neck < 15.48, with an average value of 9.78. The scatter

in the spatial distribution of necks is apparent in the contour plots shown in Fig. 30, where the necks nucleated

in the ring are numbered. Note that only two of these five necks eventually grow until fracture, leading to the

formation of long fragments. On the other hand, for 500 m/s, the necks spacing varies within a narrower range,

namely 3.01 < L̂neck < 5.75, with an average value of 4.27. The range of variation of the fragments size is relatively

similar, 4.82 < L̂frag < 7.08, because most of the necks incepted develop into fractures (8 fractures out of the 12

necks). Note that the ratio necks-to-fragments for 500 m/s (67%) is significantly greater than for 50 m/s (40%),

illustrating that the spatial distribution of fractures is more uniform as the velocity increases. These results suggest

that the stabilizing effect of inertia regularizes the necking pattern and enables the activation of additional fracture

sites.
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Figure 29: Histograms showing (a) the number of necks Nneck as a function of the normalized Lagrangian neck spacing L̂neck and (b)
the number of fragments Nfrag as a function of the normalized Lagrangian fragment size L̂frag. The calculations correspond to the
microstructure INC1Z and the realization R1. Comparison between results obtained with three different loading velocities Vr: 50 m/s,
250 m/s and 500 m/s.
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Fig. 31 shows the evolution of the average normalized Lagrangian neck spacing L̂avgneck and the average normalized

Lagrangian fragment size L̂avgfrag versus the inertia parameter Ĥ−1 for finite element results obtained with the

microstructure INC1Z and realization R1. Recall from Section 4 that the inertia parameter does not include

explicitly the potential effect of strain hardening, strain rate hardening and thermal softening on the necking

behavior of the materials, since it only accounts for a reference stress level. Recall also from Section 4.2 that

L̂avgneck =
πRext

2hNneck
, and similarly L̂avgfrag =

πRext
2hNfrag

. A comparison is performed with the ring expansion experiments

carried out by Grady and Benson (1983) with Aluminium 1100 − O and OFHC copper specimens. Note that the

reference stress level used to compute the value of the inertia parameter in the experiments of Grady and Benson

(1983) is obtained from the static characterization tests reported therein. There is reasonable qualitative and

quantitative agreement between finite elements and experimental data, notably for the results for with Aluminium

1100 − O, which practically overlap with the numerical calculations. This agreement may suggest that the neck

spacing and fragment size is more sensitive to inertia than to porosity on the one hand and to constitutive behavior

(strain and strain rate sensitivity) on the other hand. Nevertheless, this conclusion should be substantiated

in future works with additional experimental and numerical results. The finite element results for the average

normalized Lagrangian neck spacing and the average normalized Lagrangian fragment size are fitted with the

functions L̂avgneck = 1.7898
(

1
Ĥ

)−0.3
and L̂avgfrag = 1.5946

(
1
Ĥ

)−0.51
, respectively, illustrating the nonlinear decrease

of both L̂avgneck and L̂avgfrag with the increase of inertia (consistent with the trends obtained in other experiments

available in the literature, see Zhang and Ravi-Chandar (2006)). Notice that the gap between L̂avgneck and L̂avgfrag

predicted by the finite elements gradually decreases as Ĥ−1 increases, in agreement with the calculations reported

by Rodŕıguez-Mart́ınez et al. (2013a) and Vaz-Romero et al. (2019).

6. Summary and conclusions

In this paper we have developed a novel methodology to identify the effect of porous microstructure on dynamic

localization and fragmentation of ductile metallic materials. Firstly, we have performed X-ray tomography of 12

additively manufactured cylindrical specimens with diameter and height of 6 mm made of 4 different materials

–aluminium alloy AlSi10Mg, stainless steel 316L, titanium alloy Ti6Al4V and Inconel 718L– that were printed of

parallel and perpendicular to the longitudinal axis of the samples. The tomograms have shown that the initial void

volume fraction of the specimens varies between ≈ 0.0007% and ≈ 2%, with the pores being nearly spherical for

most of the samples, with diameter ranging from ≈ 6 µm to ≈ 110 µm. The pore size distributions recorded in the

12 tomograms have been fitted to a Log-normal statistical function, which has been used in conjunction with a Force

Biased Algorithm that models the experimentally observed random spatial distribution of the voids, to generate
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Figure 31: Average normalized Lagrangian neck spacing L̂avg
neck and average normalized Lagrangian fragment size L̂avg

frag versus inertia

parameter Ĥ−1. Finite element results obtained in this work for the microstructure INC1Z with realization R1. Comparison with the
ring expansion experiments carried out by Grady and Benson (1983) with Aluminium 1100 − O and OFHC copper specimens. The
finite element results obtained in this work for the average normalized Lagrangian neck spacing and the average normalized Lagrangian

fragment size are fitted with the curves L̂avg
neck = 1.7898

(
1

Ĥ

)−0.3

and L̂avg
frag = 1.5946

(
1

Ĥ

)−0.51

, respectively.

ring expansion finite element models in ABAQUS/Explicit (2016) which include actual porous microstructures

representative of the materials tested. For each of the 12 porous microstructures analyzed, we have generated

three realizations of void size and position distribution fulfilling the same Log-normal function parameters in order

to take into account the potential scatter in the finite element results coming from the randomness in spatial void

dispersion. The finite element calculations have been carried out for expansion velocities ranging from 50 m/s to

500 m/s, and the material behavior has been modeled using isotropic linear elasticity and von Mises plasticity.

The calculations carried out to identify the role of porous microstructure on dynamic localization have been

performed considering ideal plasticity, so that the formation of multiple necks is solely controlled by stress multiax-

iality, inertia and porosity, which facilitates the interpretation of results. Indeed, we have shown that both porous

microstructure and inertia play a main role in the resulting necking patterns, so that while the microstructure

imposes the nucleation of necks at specific locations (weak points) of the specimen for all the velocities investi-

gated, inertia delays localization and favors the formation of additional necks at higher loading rates. In addition,

we have established individualized correlations between the main features of the porous microstructure and the

necking pattern. Specifically, the finite element calculations have shown that both number of necks and necking

time decrease linearly with the logarithm of the void volume fraction and with the maximum diameter of the voids,
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this decrease being more pronounced for the necking time ≈ 120% than for the number of necks ≈ 20%. On the

other hand, while the increase of the average size of the voids also leads to a decrease of ≈ 20% in the number of

necks, it does not show any connection with the necking time for the porous microstructures investigated in this

work.

The calculations carried out to investigate the influence of porous microstructure on dynamic fragmentation

have been performed considering that the yield stress evolves with the effective plastic strain, the effective plastic

strain rate and the temperature. In addition, we have assumed adiabatic conditions of deformation, and a failure

criterion based on the element deletion technique available in ABAQUS/Explicit (2016) so that material fails when

a critical value of the accumulated plastic strain is reached. Like the necking time, the fracture time decreases

linearly with the logarithm of the void volume fraction and with the maximum diameter of the voids. In contrast,

the number of fragments, unlike the number of necks, slightly increases with the level of porosity in the specimen

and the maximum size of the pores. On the one hand, the resemblance with the results obtained for the elastic

perfectly-plastic material suggest that the relationships found out in this paper between porosity, nucleation of

necks and formation of fragments are valid for different material behaviors. On the other hand, we are aware that

additional finite element simulations shall be performed in future works to further substantiate the conclusions

obtained in this work. The finite element calculations have also shown that as the loading rate increases the

number of fragments and the proportion of necks that develop into fractures increases, reducing the scatter in the

distribution of fragment sizes. These results suggest that the stabilizing effect of inertia regularizes the necking

pattern and enables the activation of additional fracture sites. In addition, the finite element results have been

compared with the ring expansion experiments performed by Grady and Benson (1983) with aluminium and copper

specimens, and reasonable qualitative and quantitative agreement has been found for the average neck spacing and

the average fragment size.

In summary, the methodology developed in this paper can be used to obtain new insights into the performance

of additively manufactured metals in energy absorption applications where protective structures are subjected to

impact and shock loading (Kristoffersen et al., 2020). A future work is to perform additional simulations with

controlled and systematic variation of the void volume fraction and the maximum void size (e.g. fixed pores size

and different void volume fractions, fixed void volume fraction and different voids size, etc.) to obtain additional

insights into the microstructural features that control the localization and fragmentation processes. Moreover, it

has to be highlighted that the conclusions derived in this paper are substantiated on the basis of rather simple

descriptions of the constitutive behavior of the material. In this regard, a natural continuation of this research is to

consider constitutive models which account for the specific features which characterize the mechanical behavior of
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metallic printed materials, including plastic anisotropy and tension/compression asymmetry (Ghorbanpour et al.,

2020; Ferreri et al., 2019). On the other hand, since the size of the pores may be of the order of magnitude of

the material grains (Liu et al., 2019), using crystal plasticity to describe the mechanical behavior of the matrix

material would allow to include additional microstructural features into the finite element models developed in

this paper, see Dequiedt and Denoual (2021). In addition, the microstructurally-informed finite element models

devised in this work can be employed to validate dynamic porous plasticity theories, like the microinertia-based

approach developed by Molinari and co-workers (Molinari and Mercier, 2001; Czarnota et al., 2008), which are

generally used to determine flow and fracture of porous materials at high strain rates (Czarnota et al., 2017, 2020).
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Rodŕıguez-Mart́ınez, J.A., Vadillo, G., Fernández-Sáez, J., Molinari, A., 2013a. Identification of the critical

wavelength responsible for the fragmentation of ductile rings expanding at very high strain rates. Journal

of the Mechanics and Physics of Solids 61, 1357–1376.
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Vaz-Romero, A., Rodŕıguez-Mart́ınez, J.A., Mercier, S., Molinari, A., 2017. Multiple necking pattern in nonlinear

elastic bars subjected to dynamic stretching: The role of defects and inertia. International Journal of Solids and

Structures 125, 232 – 243.

Wesenberg, D., Sagartz, M., 1977. Dynamic fracture of 6061-T6 aluminium cylinders. Journal of Applied Mechanics

44, 643–646.

Xue, Z., Vaziri, A., Hutchinson, J.W., 2008. Material aspects of dynamic neck retardation. Journal of the Mechanics

and Physics of Solids 56, 93–113.



59

Zhang, B., Li, Y., Bai, Q., 2017. Defect formation mechanisms in Selective Laser Melting: A review. Chinese

Journal of Mechanical Engineering 30, 515 – 527.

Zhang, H., Ravi-Chandar, K., 2006. On the dynamics of necking and fragmentation - I. Real-time and post-mortem

observations in Al 6061-O. International Journal of Fracture 142, 183–217.

Zhang, H., Ravi-Chandar, K., 2008. On the dynamics of necking and fragmentation - II. Effect of material

properties geometrical constraints and absolute size. International Journal of Fracture 150, 3–36.

Zhang, H., Ravi-Chandar, K., 2010. On the dynamics of localization and fragmentation-IV. Expansion of Al

6061-O tubes. International Journal of Fracture 163, 41–65.

Zhou, F., Molinari, J.F., Ramesh, K.T., 2006. An elasto-visco-plastic analysis of ductile expanding ring. Interna-

tional Journal of Impact Engineering 33, 880–891.


