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Abstract10

We deliver the first analysis of the 2021 cold spell in Texas which com-11

bines temperature dependent load estimates with temperature dependent12

estimates of power plant outages to understand the frequency of loss of13

load events, using a 71 year long time series of climate data. The expected14

avoided loss from full winterization is 11.74bn$ over a 30 years investment15

period. We find that large-scale winterization, in particular of gas infras-16

tructure and gas power plants, would be profitable, as related costs for17

winterization are substantially lower. At the same moment, the necessary18

investments involve risk due to the low-frequency of events – the 202119

event was the largest and we observe only 8 other similar ones in the set20

of 71 simulated years. Regulatory measures may therefore be necessary21

to enforce winterization.22

Keywords— Texas, extreme event, power systems, winterization23

Weather extremes such as storms can significantly affect the reliability of power24

systems [1]. The increasing use of variable renewable energies additionally exposes25

power systems to hazards caused by weather extremes [2, 3]. However, recently it was26

a gas power dominated system which was deeply impaired by a weather extreme: a cold27

spell over Texas, between February 10th and February 20th, 2021 with temperatures far28

below 0° caused a failure of large parts of the Texan power system. The combination29

of extraordinarily high winter electricity demand and more importantly the failure of30

significant power generation capacities, both due to low temperatures, resulted in up31

to 4.5 millions of Texans being cut-off from their electricity supply [4].32

Wu et al. [5] provide an open source grid simulation to conduct a very detailed33

analysis of the 2021 event, but do not put the 2021 event into a long-term climatic34

context. In contrast, Doss-Gollin et al. [6] have shown that lower temperatures than35

in February 2021 have been observed in the past 71 years, and heating demand pre-36

dicted from temperature data would also have been higher in the past, although the37
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2021 frost event was comparably long. There is therefore a striking gap between the38

occurrence probability of such an event, its large scale economic and social cost, and39

the lack in winterization efforts. Hence, we assess here how avoided loss due to win-40

terization compares to its cost. We do so in a simulation framework which allows to41

estimate the probability distribution of loss of load events, thus being able to derive42

the uncertainty of the magnitude of avoided loss within the investment period. Tech-43

nically, we combine estimates of temperature dependent load with a model of power44

plant outages, taking into account 71 years (1950–2021) of past climate from reanalysis45

data. Climate change, of course, may have an impact on temperatures. We therefore46

also assess if trends in the occurrence of extremely cold temperatures and loss of load47

events can be observed. Furthermore we conduct an extensive sensitivity analysis to48

show uncertainties arising from our modelling choices.49

What happened in February 2021?50

Starting on 10th of February 2021, temperatures in Texas began to fall, causing load to51

increase from around 40 GW to over 70 GW by February 14th–15th. On February 15th
52

the aggravating frost reached a critical level where substantial shares of generation53

capacities began to fail. Available capacities dropped below demand leading to a54

sustained power generation capacity deficit (Figure 1). Consequently, rolling blackouts55

had to be implemented to stabilize the grid and prices at the power market increased56

to the upper limit of 9000$/MWh. The deficit event continued until 20th February57

when rising temperatures allowed the system to recover.58

The highest load forecast in the February 2021 event was well above the highest59

load observed in winter in the period 2004–20201. Our estimate is in the range of60

observed extreme summer loads (see Appendix Figure A.1). In contrast, ERCOT61

forecasts of peak load during the cold spell have been higher by about 4GW compared62

to our estimates [10], indicating an almost record-high predicted load on the network.63

Our estimates therefore have to be considered to be conservative.64

Besides leading to high electricity load, the low temperatures also caused substan-65

tial outages of generation capacities. Gas capacity failures were responsible for the66

largest share in power outages. Out of 62GW of thermal capacity expected to be67

available in winter by ERCOT2, 25.4GW of thermal capacity failed in total, with the68

share of gas being 20.1GW. Based on the predicted demand and the observed load,69

we estimate that in total 1.19TWh of load were affected by blackouts. The maximum70

total outage capacity, including wind power, was 44.4GW, causing 24GW of peak lost71

load, when using our load prediction model. Loss of load occurred in 107 hours in the72

period from 2021-02-15 02:00 to 2021-02-19 12:00 local time.73

Outages of gas generation capacities started to increase rapidly at a gas power74

plant weighted temperature of -8.8°C, which is a record low temperature compared to75

the past 17 years (see Figure A.2). The outages were not only related to freezing of76

power plants, but also of gas supply infrastructure, including gas production equipment77

1The values of loss of load and load prediction in this section rely on our simulation and
may therefore differ from ERCOT reports to some extent. Served load and plant outages are
taken from ERCOT. As we focus on estimating the long-term frequency of such events, we
did not aim at reproducing the February 2021 model in highest detail.

2Actual capacity available before the event has been higher, but transient stability require-
ments and reactive power demands have reduced the amount of load that has been covered
in the system [5]
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Figure 1: Observed load, predicted load, available capacity, temperatures and
outages during the February 2021 event (based on ERCOT load and outages [7,
8], ERA5 temperatures [9], and our load prediction model combining the two)

at gas fields. Power plants started failing rapidly when temperature weighted by gas78

fields dropped below -10.9°C. In the period 2004–2021, when no other outage events79

comparable to the one in 2021 was observed, this is a record low gas field weighted80

temperature (see Figure A.2). Therefore, gas supply infrastructure may have played81

an important role in the outage events. This is confirmed by ERCOT, which classified82

around 8GW of outages being related to limited fuel supply [11].83

Coal generation capacity came offline at average temperatures weighted by coal84

plant locations of below -10.2°C. This temperature is at the very lower end of the85

temperature distribution in the period 2004–2020. For both technologies, coal and86

gas, recovery time was substantial. Even when temperatures recovered back to over87

0°C, 11.3GW of thermal power plants, i.e. 18% of total available thermal capacity,88

stayed offline for another 16 hours.89

Temperatures weighted by wind power plant locations indicate that the failure90

of wind power plants may be a more frequent event. While temperatures at wind91

parks in Southern Texas were at the very lower end of the temperature range observed92

in the period 2004–2020, the average wind park temperature in Northern Texas was93

just below 0°C and well within the range of previously observed low temperatures.94

Compared to thermal power generation, wind power capacities began to fail much95

earlier and at higher temperatures. On February 13th, when gas outages summed up96

to only 5GW, ERCOT already reports 13GW of wind power outages (Figure 1).97
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How extreme was the February 2021 event?98

Our simulations of loss of load events using climate data from 71 years shows that99

the 2021 event was a record one3. In total, we estimate that eight other severe power100

deficit events would have occurred in the current system assuming climate from the101

period 1950-2021 (see Figure 2). The second largest power deficit event at 0.98 TWh102

is predicted when using climate data from 1989.103

In our model predictions, the loss of load event has a duration of 107 hours, and104

causes an aggregated deficit of 1.39TWh, at a peak capacity deficit of 25.9GW. There105

are several events with similar peak capacity deficits identified in the 1950–2001 period,106

but none of the events has a comparably long duration and a comparably high amount107

of loss of load (Figure 2). 1989 was the last time a similar frost event occurred. This108

long break in frost events of a significant magnitude may explain why the recent event109

hit an insufficiently winterized power production system.110

The 2021 record high loss of load is not caused by the frost magnitude alone but111

by a combination of a long, relatively cold frost event and an inopportune timing112

of the frost peak. According to Figure 1 the system failure occurred early and was113

prolonged by a long frost period afterwards. This is in contrast to other years when114

temperatures recovered more quickly after temperature minima had been reached (e.g.115

in 1951 and 1963). This finding is supported by the extreme value statistics of the116

frost spells shown in Figure A.3. 2021 was the longest frost event in seven decades. It117

has a return period of 141 years. Other events, however, were colder (1951, 1989) or118

had higher frost sums (1951).119

In terms of load, the highest predicted winter load in 2021 was slightly higher than120

the highest predicted winter load in the complete 71 year time series (Figure A.1),121

although temperatures were lower in the 1989 event. A particular combination of time122

of day, day of week, and low temperature caused this particularly high load in 2021.123

It may also have been expected that frost events would have decreased due to124

global warming. However, our analysis does not show any significant trend in the125

loss of load time series (Figure A.9). Still, average temperatures in Texas significantly126

increased due to climate change since 1951 (Figure A.10). This result is confirmed127

by others, however, the increase in mean temperature is not genuinely transferable128

to extreme temperatures [12]. A stratified analysis of annual frost events (minimum129

annual temperature) below temperature thresholds from 0 to -10 °C reveals that there130

is indeed no significant observed change of severe frost events below -2 °C (Section131

A.7). Only very mild frost events showed a significant attenuation (2.6 °C over the132

past seven decades), but such events are irrelevant for frost related failures of the133

power system comparable to the 2021 event.134

Overall, extreme value statistics show that the event of 2021 was severe because135

of its long frost duration and its frost dynamics. Against the background of seven136

decades of observed climate data, the frost event had to be expected, especially as we137

could not find evidence for a decrease of severe frost events due to climate change.138

This suggests that similar events comparable to the one in 2021 have to be expected139

again and need to be mitigated even in a future, warmer climate.140

3Please observe that the results on the 2021 event in this section differ slightly from the
previous section, as we used simulated plant outages instead of outages provided by ERCOT
here.
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Figure 2: Population weighted temperature and predicted capacity deficit of
severe frost events within the 1950-2021 period. Labels in the graph refer to
temperature minima and deficit maxima

Comparing avoided loss to costs of winterization141

A bootstrap of loss of load events from our 71 years of simulated capacity deficits yields142

an expected loss of load due to a cold weather event in a typical 30 year investment143

period of 2.55TWh with a 68% confidence interval of [1.09TWh, 4.02TWh]4. The144

current maximum market price regulated by ERCOT is 9 000$/MWh [13]. The avoided145

loss for electricity consumers under full winterization is therefore 11.74bn$ at a 5%146

discount rate5.147

4This confidence interval is a result of bootstrapping different loss of load events from
different weather years and does not take into account other model uncertainties.

5We emphasize here that this loss does not represent full societal cost of load shedding.
However, the value is an indicator of incentives to winterize in the system.
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Expected marginal avoided loss is higher than winterization cost for most of the148

failed gas, wind, and coal power infrastructure (Figure 3). For the first winterized149

GW of gas power capacity, expected marginal avoided loss over a 30 years period is at150

0.98bn$/GW, but drops to 0.52bn$/GW at 11GW of winterization. Marginal avoided151

loss for coal power plant winterization is slightly lower per GW, and significantly lower152

for wind power. For all technologies, the spread of the marginal avoided loss is high:153

The 68% confidence interval is at double or half of the expected marginal avoided loss.154

In 1.7% of all cases, there is no deficit event in a 30 year period, which is the worst155

case scenario in case of investment in winterization, because there is no avoided loss.156

Significant winterization measures can be implemented under our estimates of157

expected marginal avoided loss. In particular, we estimate that the winterization158

of gas wells in combination with winterization of gas power plants will cost about159

450M$/GW (see section A.8). This cost is below the marginal avoided loss up to160

the 13th GW of winterized capacity. Winterization of coal and wind power plants161

is significantly cheaper, as fuel supply infrastructure does not have to be winterized.162

Winterization costs assumed at 10% of initial plant investments of coal power plants163

are far below marginal avoided loss up to full winterization of all failed coal capacity. In164

fact, one could even assume winterization cost of 30% of initial plant investments and165

winterization cost would still be lower than the marginal avoided loss for the completely166

winterized capacity. For wind turbines, our estimates of marginal avoided loss are half167

those of coal, but are still substantially higher than the costs of winterization which168

are reported to be 5% of investment costs [14].169

How reliable are our estimates?170

Estimates of loss of load events depend mainly on the assumptions on outage tem-171

peratures for gas power plants, as their failure has by far the biggest impact on the172

magnitude of loss of load events. An increase in outage temperatures from -8.8°C173

to -5.8°C increases loss of load from 6.04–6.48TWh to 12.61–13.18TWh in 71 years,174

depending on the respective recovery temperature (see Figure 4). In contrast, the175

outage temperatures assumed for wind and coal power plants have a minor impact176

on the estimates of loss of load, if they are changed for one technology only (in the177

range of 5.67–6.34TWh). A concurrent increase of outage temperatures of all power178

generation technologies changes loss of load from 5.92–6.54TWh to 15.92–16.94TWh179

when increasing the outage temperature by 3°C. In contrast, recovery temperatures180

do not change our estimates of loss of load significantly, as loss of load shows less than181

1TWh difference within a variation of outage temperature of 3°C. Lowering outage182

temperatures decreases our estimates likewise. For a temperature decrease of 3°C, the183

loss of load predictions are less than a third of our base estimate (1.61–1.90TWh).184

Our finding that 2021 was the largest simulated loss of load event in the period185

1950–2021 is sensitive to the assumed outage temperature. If outage temperatures of186

power plants are simultaneously increased by 1.5°C, 2021 becomes the second largest187

event while 1983 becomes the largest event. If additionally the recovery temperature188

falls by 1.5°C, 2021 becomes the third largest event, as 1983 and 1989 are larger. The189

loss of load event in 2021, however, in none of the sensitivity simulations has a rank190

lower than 3 in terms of total loss of load.191

While it is certain that climate change affects average temperatures, our analysis192

indicates that it may not have caused a trend of decreasing extreme cold events. Nev-193

ertheless, we assessed how the number and magnitude of power deficit events would194
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Figure 3: Comparison of marginal avoided loss (bn$/GW of winterized capacity
in a 30 year period) to marginal costs for winterizing existing power generation
capacity

change if temperature extremes would follow the same trend as average temperature.195

Under such assumptions, we find that the number of severe loss of load events is196

reduced from 9 to 8, while the loss of load drops from 6.11TWh to 4.37TWh and197

3.66TWh, assuming 2021 and 2050 as years for simulation, respectively (see section198

A.7 for modeling details). We emphasize here that our approach is in contrast to199

observations (see A.5) and should only be understood as sensitivity analysis. Never-200

theless, even under such a scenario, the loss of load is still significant and - a however201

reduced - extent of winterization would be profitable.202

Instead of using aggregated outage curves by technology, as we do in our analysis,203

we have also developed plant level outage curves. When using those, the number204

of events increases from 9 to 48, however, the total deficit increases from 6.11TWh205
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to 9.72TWh only, as most events are minor. Such a high number of outage events206

is unrealistic, as they were not observed in the period 2004–2021, for which data207

is available. We conclude that at the moment the used outage data provided by208

ERCOT does not allow to derive temperature dependent plant level outages that209

represent reasonable loss of load events. Our aggregated approach also is associated210

with significant uncertainty (see A.4), but is more consistent with observed real world211

loss of load events.212

Estimating the avoided loss from full winterization without using the 2021 event213

decreases slightly our estimates from 11.74bn$ to 9.24bn$. However, winterization of214

coal and wind is still highly profitable, and the corresponding winterized capacity for215

gas power is only 4GW lower than in a scenario including 2021. This indicates that216

even before the occurrence of the 2021 event, significant loss of load events had to be217

expected.218

Finally, the assumed discount rate has a significant impact on results. When219

increasing the rate from 5% to 7%, the avoided loss under full winterization is reduced220

from 11.74bn$ to 9.74bn$. While winterization of coal and wind power still fully pays221

off under these assumptions due to low winterization cost, the profitable winterization222

of gas infrastructure and gas power is reduced from 13GW to 10GW.223
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Discussion224

We have shown that the Texas loss of load event in February 2021 was among the225

top three extreme events when simulating the power generation system under climate226

conditions of the last 71 years. In particular winterization of gas power plant and gas227

supply infrastructure is crucial to prevent future events.228

Our analysis indicates that events of significant loss of load had and have to be229

expected, which make considerable winterization efforts profitable on average. How-230

ever, we have also shown that significant risk is associated with such investments, as231

the spread of avoided loss implies high uncertainty. Furthermore, our estimates of232

avoided loss are based on the price cap in the electricity market. The incentives of233

different actors in the power system to avoid that loss will depend on their long and234
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short position in the market. Due to both, high risk and a somehow complex incentive235

structure, we see the need for regulatory intervention to enforce winterization. Apart236

from winterization, other flexibility measures, in particular strong demand response237

measures and an expansion of transmission capacities to neighbouring states, may be238

beneficial for the system not only during cold spells, but also to make the system239

more stable during the ongoing transition to a larger share of renewable energies in240

the power generation mix.241

In a broader societal perspective the actual costs of load shedding to society, in242

particular during catastrophic, long-lasting events, may not be represented by the243

regulated price cap. This implies that benefits from winterization may even be signif-244

icantly higher than our analysis indicates. Higher estimates for the value of lost load245

can be found in literature [15] and others have determined the costs to society implied246

by the 2021 event in Texas being an magnitude of order higher than ERCOT’s price247

cap [5].248

Of course, our results have to be considered in the light of a continuously evolving249

power system. We assume 30 years of lifetime for all installed capacities, however some250

capacities may soon be retired and their winterization may not be profitable therefore.251

As winterization of new capacity is cheaper and easier to implement than winterization252

of existing one, winterization standards for installing new power plants and associated253

infrastructure should have high priority. The ongoing transformation of the Texan254

power system can therefore be considered an opportunity to ensure robustness during255

future cold events.256

Methods257

We use a chain of statistical and simulation models to derive loss of load events, and258

expected avoided loss from winterization6. The data sets which feed the models and259

model interactions are shown in Figure 5. A detailed explanation of all involved mod-260

els and data sets is given below.261

262

Estimation of temperature induced electricity deficits: To estimate the263

amount of deficits in the power system, we simulate the difference between the ex-264

pected, temperature dependent electricity demand and the available generation ca-265

pacity.266

Formally this can be described by defining the capacity deficit dy,h as the difference267

between the demandy,h and the available generation capacity cy,h in year y in hour of268

year h:269

dy,h = demandy,h − cy,h (1)

The total loss lof load dtoty in a year is the sum over dy,h for all hours where capacity270

deficit was larger than 0:271

dtoty =
∑
h,

demandy,h≥cy,h

dy,h (2)

6Code related to this analysis will be available upon final publication at https://github.

com/inwe-boku/texas-power-outages
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Demand is simulated from load in the past using a linear regression model. Avail-272

able generation capacity is obtained by reducing the total available capacity by tem-273

perature dependent outages:274

cy,h = cthermal − ogasy,h − ocoaly,h + wy,h

cwind − owind
y,h

cwind
(3)

where cthermal is the total available thermal capacity in winter according to ER-275

COT, and ogasy,h, ocoaly,h and owind
y,h are the temperature dependent power plant outages,276

respectively. Current wind power generation wy,h, simulated from wind speeds as-277

suming full capacity, is reduced to the share of working wind power capacity, i.e. the278

difference between installed capacity cwind and wind power outages owind
y,h , divided by279

total installed capacity. We do not model nuclear and solar PV outages, as their over-280

all generation capacity and their contribution to outages was low (Figure 1). We also281

neglect transmission of power from neighbouring states, which is of minor magnitude.282

According to ERCOT [16], 67.5GW of capacity was available during the 2021 win-283

ter, but 5GW of these may have been under maintenance. We therefore assume a284

value of 62GW for cthermal to match our simulation with available capacity during the285

event, as indicated by served load.286

287

Demand prediction: We predict demandy,h from temperatures using a regres-288
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sion model (equation (4)). For each year y in the period 2018–2020 we estimate a289

model for demand in winter (December–February, the three coldest months on aver-290

age), taking into account seasonality (sine and cosine terms depending on the hour of291

the year h), and the temperature ty,h. Furthermore, we include dummy variables for292

the hour of day δhodi,y,h, the weekdays δdowi,y,h, and for holidays δholdy,h . We include t4y,h into293

the equation as with falling temperatures, load shows a highly non-linear increase. We294

tested a quadratic, a cubic and a quartic term and the regression with the quartic295

term showed the highest fit.296

demandy,h = β0 +

7∑
i=1

βiδ
dow
i,y,h +

31∑
j=8

βjδ
hod
j,y,h + β32δ

hold
y,h +

β33 sin

(
2πh

8760

)
+ β34 cos

(
2πh

8760

)
+ β35ty,h + β36t

4
y,h

(4)

We applied the models estimated with data from the years 2018, 2019 and 2020,297

respectively, to 2021. The total load differs by a maximum of 2% in the three years.298

When predicting with the models for January 2021, the 2020 model shows the highest299

fit (RMSE 1.75GW, R2 0.87, 2019: RMSE 2.31, R2 0.77, 2020: RMSE 2.96, R2 0.62).300

However, using the 2019 and 2020 model substantially and consistently underestimates301

loads at very low temperatures. This is probably due to relatively warm winters in302

these years. The 2018 model performs better under these conditions, although load303

estimates are still lower than observed at the lower temperature end (Figure 6). In304

particular in 2021, all three models underestimate the load in the hours before the305

blackouts, although temperatures weren’t record low during this time. This warrants306

further research.307
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Figure 6: Difference between predicted and observed load applying the regres-
sion model estimated from 2018, 2019 and 2020 data to the period 2018–2021/01
and the days before the blackout (2021/Feb/01–2021/Feb/14)

Temperature dependent generator outages: The power plant outages in309

Texas were caused by a systemic failure, as a substantial amount of capacity tripped310

in a short period of time [11]. Most of the capacity failed due to weather events, but311

the lack of fuel supply was also relevant. Additionally, non- weather related equipment312
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failures and, to a smaller amount, frequency problems in the grid caused problems at313

generation units. This implies that temperature at single power plants alone cannot314

fully explain outages. We derived infrastructure fragility curves [17] from our data315

and they show that 25% of gas power plants, about 30% of wind power plants, and316

50% of coal power plants failed when temperatures were above 0°C and in many cases317

have not been below 0°C in the days before failure. Other weather conditions besides318

freezing temperatures may be partly responsible, but at least wind conditions at the319

time of failure were not particularly extreme. Besides freezing temperatures, which320

caused failure of power plant components and of gas production and gas distribution,321

there are also systemic reasons for failure therefore.322

We do not use infrastructure fragility curves for modeling outages, but estimate323

threshold temperatures and outage capacities during catastrophic failure by technol-324

ogy: we derive the temperature, at which the largest increase in outages occurred, from325

the 2021 outage data. Furthermore, we estimate an outage level in terms of tripping326

capacity. Finally, we also define a constant recovery rate, which describes how outages327

decreased after the recovery temperature is reached. This is an aggregate approach328

and will omit smaller outages, but it accounts better for the inter-dependency of fail-329

ures. A detailed outline of how we derived the outage parameters from the 2021 data330

in Texas is given in section A.4. The resulting outage models are subsequently applied331

to the 71 years of climate data to obtain capacity availability during this period. In332

a sensitivity analysis, we have also tested how loss of load changes if a similar outage333

model on the level of individual plants is used instead.334

335

Estimating avoid loss of winterization: We use the price cap of 9 000$/MWh336

regulated by ERCOT [4] as estimate of the value of lost load. We first derive the loss337

of load dtoty,p,w for different scenarios, where a capacity w of power plants of technology338

p (gas, coal or wind in North or South Texas) are winterized. This is done similar to339

equation (2) but the maximum outage level for a technology in the outage functions340

opy,h used in equation (3) is reduced by w. We estimate total loss of load dtoty,p,w using341

temperature data of all years in the period 1950–2021. We combine temperature342

dependent demand estimates, simulated wind power generation for the same years343

from ERA5 reanalysis wind speeds (for further details see [18]), and the temperature344

dependent power plant outage functions for that purpose. The 71 different weather345

years therefore serve as a set of different weather realisations where we bootstrap346

from. We assume that the power system is equivalent to today’s system. For each347

bootstrapping iteration b, we sample 30 years of lost loads dbooti,b,p,w for i = 1, . . . , 30348

from the set of dtoty,p,w, y = 1950, . . . , 2021. This is done for 10 000 iterations, b =349

1, . . . , 10 000. Subsequently, total economic loss lb,p,w over a typical investment period350

of 30 years is calculated, as shown in equation (5), r = 0.05 being the discount rate:351

lb,p,w = 9 000

30∑
i=1

dbooti,b,p,w(1 + r)−i (5)

This results in 10 000 different samples lb,p,w, allowing to derive a distribution of352

economic losses under different scenarios of winterization. To calculate avoided loss353

from winterization by technology p, we derive lavoidb,p,w in the following way:354

lavoidb,p,w = lb,p,0 − lb,p,w (6)

We eventually take the first differences of lavoidb,p,w to derive the marginal avoided loss355

12



from winterization.356

357

Frequency analysis of frost and power deficit events: The frequency analy-358

sis of extreme events follows well-established methods of hydrological drought analysis359

[19], where deficit events are defined as periods when the variable of interest is below360

a certain threshold. Here, we use two different threshold concepts. First, we analyse361

temperature, and define a constant threshold of 0°C to define deficit events in analogy362

to drought events in drought statistics. Deficit events in the power system, resulting363

from low temperatures, are simply defined for periods when the capacity deficit >364

0GW (equation (1)). In each case, the result is a derived deficit time series, which is365

further investigated using Yevjevich’s theory of runs [20]. During a frost period, minor366

thaw episodes or other disturbances may split an event in several smaller events. As a367

remedy, pooling procedures have been recommended [21]. In this study, an inter-event368

time criterion of 1 day is used to define the deficit event series. In case that multiple369

events occur in a year the event with the absolutely largest accumulated deficit is used370

for further analysis. The series so derived are characterized by three deficit charac-371

teristics: duration (measured in hours), intensity (minimum temperature / maximum372

power deficit), and severity (aggregated frost sum / power deficit over the event), each373

of which constitutes an annual extreme value series. These are further analyzed us-374

ing extreme value statistics to determine the return period of each frost and capacity375

deficit characteristic according to natural hazard management standards. Our analy-376

sis was conducted using the R-software package lfstat [22], which provides a collection377

of state-of-the-art methods that are fully described in the World Meteorological Or-378

ganization’s manual on low flow estimation and prediction [23]. The resulting winter379

power deficit events are shown in Figure 2, their extreme value statistics are shown in380

Figure A.3.381

382

Data: Temperature at 2m above ground is taken from the ERA5 reanalysis [9].383

We weight temperature over Texas by population density [24] to derive a temperature384

index for modeling electricity demand. For estimating outages in the power system385

due to low temperatures, we also weight temperature by capacities of wind [25], coal386

and natural gas power plants [26], which were the power generation technologies most387

affected by failure during the extreme temperature event of February 2021. For wind388

power plants, we split into a North and South region (along the latitude of 30°),389

since temperatures at wind parks in the North and South of Texas differ substantially.390

Since the failure of the power system might be related to infrastructure at gas fields391

supplying these power plants [27], we also determine a gas field weighted temperature392

index, using the distribution of natural gas production by county [28] to complement393

our analysis. Load data used for demand prediction were retrieved from ERCOT [7]394

for the period 2004–2021/02. Since the focus of this study is on cold events in winter,395

only winter load data (Dec–Feb) is used. Outage data is provided in the period since396

10th of February 2021 by ERCOT [8] and is aggregated by power generation technology397

for the analysis.398
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A Appendix516

A.1 Load and temperature extremes517
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Figure A.1: Observed loads for 17 years (2004–2021/01) for winter (Dec–Feb)
and summer (Mar–Nov)) periods, predicted winter loads for 17 years (2004–
2021/01) and 71 years (1950–2021/01) and extreme loads on February 15th and
16th 2021
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Figure A.2: Winter temperatures weighted by natural gas and power plant
capacity, gas field production and wind power plant capacity in North and
South Texas compared to temperatures during the 15/16 Feb 2021 event
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A.2 Extreme value statistics of temperature and power518
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Figure A.3: Extreme value statistics of population weighted temperature (left
panels) and predicted capacity deficit (right panels) of frost events in Texas
from seven decades of of climate data. Shown are the empirical (circles) and
theoretical (lines) quantile functions of the three deficit characteristics, duration
(upper), severity (centre) and intensity (lower). The return period (inferred from
a GEV distribution) and magnitude of the 2021 event are annotated in blue
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A.3 Visualization of load prediction model520
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Figure A.4: Predicted load from 2018 data with constant time parameters for
the range of Texas temperatures and load data for the winter period of 2018

A.4 Approximation of outage functions521

We model the outages of the sum of capacities by technological group, defining an522

outage model with 4 segments: (1) constant outage level before major critical failure,523

(2) constant outage level during critical failure, (3) declining outage in recovery period,524

and (4) constant outage level after recovery period (see Figures A.5 to A.8). (1) The525

level of the first segment is defined by the first data point in the outage time series. The526

first segment ends when the single largest increase in outage within one hour occurs527

(i.e. the maximum of the first differences of the outage time series). The average power528

plant capacity weighted temperature at that point is defined as outage temperature.529

(2) The second segments starts at that point and ends when the temperature increases530

above the recovery temperature, which is set to 0°C consistently for all technologies.531

However, we neglect any hours with temperatures above the recovery temperature532

within the first 10 hours after the start of the second segment. The level of the533

plateau is derived by ensuring that the area below the real outage curve is the same534

as the area below our modelled outage. (3) and (4) We extract the outage data from535

the point of recovery to the end of the timeseries on the 25th of January. We then536

fit a model to the data, which minimizes least squares. It contains two segments:537

one falling recovery segment, and one constant segment at the end of the timeseries -538

the level of that constant segment is defined as the average of the last ten points in539

the time series. For segment (3), we can derive a slope after fitting, which is used as540
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parameter to simulate recovery. These models are applied to the whole 71 year long541

time series of temperature data, removing the constant outages at the beginning (1)542

and the end (4). An outage starts in the model, whenever the power plant capacity543

weighted temperature falls below the outage threshold. The full outage lasts until the544

temperature increases above the recovery temperature, but at least 10 hours. From545

that moment on, a linear, falling outage is assumed, until the outages is reduced to546

0GW.547
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Figure A.5: Gas outages and temperature at gas power plants and approximated
outage model
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Figure A.6: Coal outages and temperature at coal power plants and approxi-
mated outage model
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Figure A.7: Wind outages and temperature at wind power plants in Northern
Texas and approximated outage model
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Figure A.8: Wind outages and temperature at wind power plants in Southern
Texas and approximated outage model
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A.5 Trends in extreme events548
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Figure A.9: Loss of load events in the period 1950–2021 with non-significant
trend line (p-value=0.31)

A.6 Modeling climate change trends in temperature549

Figure A.10 shows mean yearly population weighted temperatures over the past 71550

years. Regression indicates a clear trend towards higher average temperatures with an551

annual increase of 0.017°C.552

In order to introduce an artificial linear trend to past temperatures, we increased all553

past temperatures by the trend observed in average temperature since 1950 assuming554

the linear trend of average temperatures would also translate to extreme tempera-555

tures, although there is no evidence of this phenomenon. Using the estimated average556

temperature trend of 0.017°C per year in the period 1950–2020, temperatures in the557

time series are updated in the following way:558

ttrendy,h = ty,h + 0.017(yref − y) (7)

We calculated two scenarios, using 2021 and 2050 as yref . These are the boundaries559

for our analysis, when considering a 30 years investment period.560

A.7 Trends in extreme temperature561

The predicted outage relies on the stationarity assumption for the temperature time562

series, in particular on the assumption that there is no trend in temperatures. We563
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Figure A.10: Trends in population weighted annual mean temperatures

use past climate data to simulate outages. Due to climate change, we however ob-564

serve an increase in average temperatures in Texas. Our estimates may therefore be565

biased. Still, extreme events in the power system, in our model, occur at extremely566

low temperatures for the Texan context. These extreme cold events do not necessar-567

ily follow the trend in the average increase of temperatures [12]. Our model uses a568

minimum threshold of -10.2 °C for coal, -8.8 °C for gas, -10.9 for gasfields, -1.2 °C for569

wind in Northern Texas and -3.1 °C for wind outages in Southern Texas. Therefore,570

we specifically need to examine stationarity of annual minimum temperatures below571

this threshold. By conducting a robust trend analysis for annual temperature minima572

below the threshold for different temperature thresholds, we find that extreme frost573

events in Texas only show a trend if the temperature threshold is set to -1°C or above,574

i.e. very high. For temperature thresholds below -1°C, no trend can be confirmed (see575

Table A.1). Assuming a trend in a reduction of extreme cold events below -1°C can576

therefore not be confirmed by the 71 years of temperature data available to us.577

578

A.8 Calculation of winterization costs579

There is very limited information on winterization costs available from media reports.580

For gas wells, costs of 50,000$ for winterization are reported [27]. Winterizing all581

123,000 gas wells in Texas [29] would therefore yield a total cost of 6.15bn$. 18GW of582

gas power capacity failed during the 2021 event according to our simulation. Conser-583

vatively assuming that winterization costs of gas fields can be split according to failed584

gas power capacity, winterization costs for gas fields of 342 Mio$/GW of gas power585

plant capacity can be derived. This is equivalent to around 250GWh of pipe storage586

for methane, which could be installed on the site of gas power plants to secure supply587

under cold conditions as alternative [30]. Assuming costs of gas power plant winteri-588

zation to be 10% of investment costs, total winterization costs result in 453 Mio$/GW589

of gas power capacity at an investment costs for gas power plants of 1.12bn$/GW [31].590
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Table A.1: Trends in cold temperature with different temperature thresholds
temperature
threshold

events slope
yearly

slope 71
years

p-value

0 71 0.037 2.65 0.029
-1 70 0.037 2.61 0.033
-2 63 0.020 1.43 0.256
-3 55 0.004 0.30 0.816
-4 38 -0.005 -0.38 0.810
-5 30 -0.002 -0.11 0.948
-6 25 0.013 0.95 0.547
-7 20 0.018 1.27 0.474
-8 10 -0.028 -1.96 0.316
-9 8 -0.017 -1.22 0.422
-10 5 -0.013 -0.89 0.491

For coal and wind power plants, no infrastructure has to be winterized. Therefore, win-591

terization costs will be significantly lower than for gas. Winterization of wind turbines592

is about 5% [14] of investment costs. Assuming investment costs of to 1.3bn$/GW593

[32], this yields 65 Mio$/GW of wind power capacity as estimate of winterization costs594

for wind turbines.595

For coal power plants, we did not find any estimate, and assume 10% of investment596

costs. At investment costs for coal power plants of 2.24 bn$/GW [31], winterization597

costs of 224 Mio$/GW are obtained.598
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