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Abstract A high penetration of renewable energy sources such as wind power generation and photo-

voltaic generation causes some problems in power systems such as the duck curve and unreliability due

to environmental variability. An effective solution to this problem is Demand Response (DR). Electric

Water Heaters (EWHs) are considered ideal candidates for DR due to their energy storage capability.

Due to the benefits, control strategies or techniques for EWHs have received considerable academic at-

tention. The energy sector has recently tapped into the disruptive artificial intelligence world to learn,

among other related priorities, how to enhance operations, maintain energy resilience and improve con-

sumer service. Consequently, this paper reviews the use of machine learning (ML) for optimization and

scheduling of EWHs. The main contributions of this review paper are, firstly, to identify state of the art

of energy optimization and scheduling of EWHs. Secondly, to review the current ML models for energy

optimization and scheduling of EWHs in smart grids and smart building environment. While classical

control strategies may deliver substantial improvements, optimum efficiency may not be reached. ML

has demonstrated clear advantages over classical control. Based on these conclusions, recommendations

for further research topics are drawn.

Keywords— electric water heaters, machine learning, supervised learning, unsupervised learning, reinforce-

ment learning, renewable energy

1 Introduction

Climate change and energy security are the pressing issues globally today. The buildings are one of the largest

users of electricity. The sector accounts for more than 40% of the global energy use and accounts for 30% of

greenhouse gases (GHG) emissions [1]. The effort to minimize GHG emissions involves a substantial improvement

in human activity in energy use, the manufacture of more environmentally sustainable goods, and the identifi-

cation and reduction of the sources of these undesirable emissions [2]. The convergence of ICT and Internet of

Things (IoT) concepts is moving today’s cities into the idea of smart cities, helping them to conserve energy and

becoming more energy efficient [3].

The current energy mix in the developing countries is still dependent on conventional fossil fuels which

accounts to more than 70% of the energy supply [4]. In 2014 Brazil, Russia, India, China and South Africa
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together were reported to contribute 38% of the total carbon emissions [5]. Moreover, renewable energy can

significantly reduce CO2 emissions by replacing carbon-intensive energy sources [6]. The share of renewable

energy accounts for 26% of global electricity generation in 2019. It also predicted that in 2050, under optimal

scenario, 63% of the global electricity generation will come from renewable energy [7].

At the same time, high penetration of renewable energy brings about challenges in the electric power system

because the availability of the energy is variable, and may therefore not align well with demand. For instance,

there can be cloudy, rainy and windless days and this will cause a rapid change in frequency. The volatility and

low generating inertia of these energy resources cause imbalance in the power system that can negatively affect

the stability the electric grid [8]. To maintain stability and reliability of power systems with high penetration of

renewable energy resources the balance between generation and demand must be consistently maintained.

Issues relating to the dynamics and control of electrical power systems with integration of renewable power

are discussed in ref [9–14]. A promising solution to deal with these challenges is DR. In times of high stress

on the electrical system, utilities have been utilizing conventional DR programmes for years to send information

to customers to minimize energy usage. A new generation of communication and control technology will now

facilitate ”demand flexibility” by allowing pre-selected loads to react continuously or regularly to changes in the

level of electricity supply and other market signals.

Energy for water heating is the largest source of households energy use [15]. In Europe, EWHs accounts for

about 87 TWh of electric energy in 43.5 million households [16]. Water heating load accounted for 17% of energy

consumption in European households in 2012 [17]. Furthermore, in China 15%–20% of the total residential electric

energy usage for an average family is used for water heating [18]. Due to their energy storage characteristics,

EWHs are considered ideal candidates for DR [19]. EWHs can therefore be used for frequency regulation and

power balancing [20][21][22]. Consequently, it is valuable to predict energy usage of EWHs, and subsequently

hot water usage, in residential sector to optimize their energy usage to achieve energy conservation to reduce

environmental impacts and for power system reliability.

Control strategies or techniques for EWHs have received considerable academic attention in recent years.

Ripple relays have been used to control EWHs in South Africa for more than half a century. However, ripple

relay technology uses a unidirectional controller with no consideration for the comfort of the user or customer.

The energy sector has recently taken advantage of the creative field of Artificial Intelligence (AI) to learn, among

other related objectives, how to improve processes, ensure energy resilience and enhance consumer service. One

of the key requirements to incorporate AI in domestic electric appliances is Demand Response (DR). In short, DR

can be defined as the behaviour of individual electricity customers that reduce or adjust their usage of electricity

over a given period of time, typically at peak hours, in response to a price signal or a grid reliability [23].

1.1 Motivation of this review

In the past, engineering and statistical methods were predominantly used to predict energy demand for energy

optimization. The engineering methods, also known as white-box methods, use physical principles to predict

energy behaviour [24]. These methods need detailed parameters and depend on complex physical principles to

predict or forecast energy consumption. However, these parameters are not always available.

Statistical methods, also known as black-box methods, on the other hand, establishes the relationship between

energy usage and influencing variables on the historical data through the empirical models. For non-linear

relationships, statistical methods are appropriate and prevent the errors of engineering methods [25]. For example,

Lomet et al. used a statistical model to develop an auto regressive moving average (ARMA) model to forecast

the daily domestic hot water consumption. In [26], Fisher et al. proposed a stochastic behavioural model for

domestic hot water (DHW) and space heating demands. A correlation of 92% and a mean relative error of 3%

of the daily load profile for DHW usage were recorded by the author against the calculated data for German
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single-family houses. Rouleau et al.[27] developed a unified probabilistic model that forecasts the numbers of

people in many households, the use of DHW and non-HVAC electricity usage in multiple residences. The authors

recorded 97% of the DHW usage profiles and 92% of the electricity usage profiles as a correlation between the

simulated and calculated results. Using consumption forecasting through statistical modelling, Denis et al. [28]

evaluated the energy savings that can be achieved in DHW output. The authors reported the energy savings

of 3.6% to 12.8%. Nevertheless, statistical methods are constrained by the fact that they require data, large

amounts of high-quality historical data that need to be gathered over a long period and that large computing

memory needs to be taken into account.

To overcome the limitations of each previous method Machine Learning (ML) method was proposed and devel-

oped. In recent years, numerous ML techniques have been proposed for predicting building energy consumption

and to control heating, ventilation and air conditioning (HVAC) systems [29][30][31][32][33]. Nevertheless, the

utilization of ML methods for energy conservation of thermostatically controlled loads (TCLs) remains in an

infancy stage. We expect that ML methods could have a great contribution in this field.

1.2 Organization

The rest of this review report is organized as follows: Section 2 reviews the current ML models for energy

usage optimization and scheduling of EWHs. Section 3 introduces the concept of ML and its models. Section 4

provides the novelty and the review approach. Section 5 highlights research and development challenges. Section

6 presents a summary of lessons learned and provides direction for future research.

2 State of the art of electric water heaters control techniques

Over the recent years, a number of scientific research has covered different DR strategies for EWHs. Control

strategies can enable significant energy efficiency improvement of the hot water production systems and generate

cost savings [17][34]. In this section, two classes of control strategies for EWHs are discussed, namely, rule-based

and model-based.

2.1 Rule-based control

Rule-based (RB) control strategies use pre-defined conditions to change the current state of a system. Concerning

water-heating systems, these pre-defined conditions can be the temperature of water inside the tank and the

users’ comfort. This control technique involves, in particular, state machine control, threshold control and power

monitoring to ensure that the key components function in the most efficient environment [35]. This technique

is beneficial because of its simplicity of execution and the reliability of temperature control [36]. This type of

control can be classified according to flexible objectives, namely, energy reduction, energy cost reduction, load

shifting, and provision of ancillary services [37]. Application of RB control techniques on EWH are reviewed in

this subsection.

2.1.1 Energy and cost reduction

Using EWHs and binary particle swarm optimization, an optimum load demand plan approach was proposed by

Sepulveda et al. [38] to minimize the peak load demand while optimizing the degree of consumer comfort. A

1-node model has been used to formulate the optimization by minimizing the peak load while maximizing the

heaters temperature to ensure user comfort. However, in 1-node model the temperature of the EWH can be

modelled precisely as long as no large water is drawn because large water draws cause stratification between the

warm body of water and the large volume of cold water entering the tank, which is not modelled by the 1-node
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model [39]. Booysen et al. [40] used a 2-node hybrid model for horizontal EWHs to verify savings achieved in

lab and field experiments by scheduled operation. The scheduled control of EWHs reduced energy usage by 29%

compared to thermostat control. However, this model is only valid for horizontally mounted EWHs. Laurent et

al. [41] proposed an optimization based approach to produce heating schedules. The 1-node model was used to

formulate a linear optimization problem for peak load minimization. The method of generation of columns was

used to divide the problem into independent parts. This model is expensive to compute. In 1-node model the

temperature of the EWH can be modelled precisely as long as no large water is drawn.

Zimmerman et al. [42] proposed a linear programming model under which the client-side agent applies cost

management techniques within the real-time pricing scheme. A range of acceptable water temperatures was

proposed to define users’ comfort. However, the model presumed that the inlet temperature is constant and tank

heat loss per hour are set. Similarly, Mueller et al. [43] proposed a linear optimization scheduling technique

based on real-time pricing. The authors successfully implemented an operation of a group of five EWHs by

ripple control in a field test. In response to the time-of-use price, Shah et al. [44] proposed an optimization

schedule of EWHs to reduce the electrical cost. However, their algorithm is complicated and complex, and

could result in incorrect calculations of standby losses. Similarly, Safouri and Kapsalis [45] developed a heuristic

algorithm that sets out the EWHs. To reduce energy costs without substantially reducing the perceived degree

of comfort, the proposed algorithm takes into account the comfort needs of the consumer and forecasts hot water

consumption and electricity prices. Unlike the model presented in [44], the benefit of this algorithm is that it is

less complex. Moreover, to address the issue of complexity, Atikol [46] proposed a less complex approach for DSM

scheduling technique of EWHs for regions with weak technical infrastructures. He analysed lab results on the

thermal behaviour of EWHs and concluded the need to use accurately designed switching programs for successful

reduction of peak load at high system efficiency. Goh and Apt [47] recommended three separate methods aimed

at generating optimum electricity cost reductions under dynamic pricing. The goal of these methods is to adjust

the temperature between the minimum and the highest value, based on the price of energy. This technique does

not consider the comfort factor and, thus, does not always guarantee an appropriate water tank temperature. In

[48], Kapsalis and Hadellis suggested a dynamic pricing approach to set up Dijkstra’s algorithm [49], which deals

with the scheduling of EWH operations using a day-to-day real-time pricing tariff. In their analysis, Dijkstra’s

algorithm is used to identify control behavior that resulted in savings of between 23% and 29%. The objective

function aims to optimise the energy cost and the user’s comfort. Vanthournout et al. [50] considered DLC

based on the idea of an accurate estimate of the state of charge of the EWHs. A state of charge model is used

to formulate the scheduling algorithm. This work formulates the DR problem by using a multi-node model to

incorporate stratification within the tank. Du and Lu [51] proposed a model for the lowest cost scheduling for

a thermostatically controlled appliance, according to customer comfort settings. The authors have analysed the

influence of shifts in the defined hot-water temperature levels on the optimum EWH schedule. Their model also

take into account the uncertainties in price forecasting and hot water usage. However, the article does not explain

how the expected demand for water is modified [52].

2.1.2 Load shifting

Lu and Katipamula [53] proposed strategies for power management of EWH loads, based on shifting energy usage

from the high-cost to the low-cost period to reduce the peak-load and electricity cost, while maintaining tank

water temperature beyond minimum level. The focus of their load shifting algorithm did not include analysis

of the grid capacity. Wang et al. [54] proposed an optimization approach to solve the uncertainties in two

fundamental factors, namely hot water demand and ambient temperature, for residential EWHs load scheduling.

Due to high expense of commercial optimizer it makes it impossible to apply the approach in low-cost embedded

controllers. Belov et al. [55] developed a two-stage deterministic optimization method of EWHs in a double-price

4



tariff, in which both the energy-comfort and expense-comfort issues are considered. The authors analyzed the

impact of economic benefits on implementing EWHs load shifting. Ericson [56] investigated the effects of direct

load control (DLC) on 475 Norwegian households. His interpretation of the data found that shifting the load

created a new, higher peak load. Klaasen et al. [57] have used a binary integer optimization to calculate the

optimal scheduling of 30 000 water heaters regarding total load variations. By comparing results with classical

fixed schedules, the potential for dynamic scheduling was successfully demonstrated. Nehrir et al. [58] introduced

a fuzzy logic method that can shift the domestic EWH load from peak to off-peak hours. This approach require

a complex modelling process and significantly affect the temperature of the EWHs output water, resulting in

customer discomfort.

2.1.3 Provision of regulation services

Diao et al. [59] proposed a centralized control for frequency regulation using EWHs. The evaluation was based

on a grid simulation comprising multiple EWHs using 2-mass composite models. In the case of a hot water

drawdown, the model is based on converting from a 1-node model to a 2-node model, resulting in a partial

depletion stage of the tank. This model is only true for vertically aligned EWHs because it does not take into

account the cross-sectional region of the EWH. The model accuracy is not validated with measured data. Kondoh

et al. [60] proposed a control algorithm of EWH systems to regulate the aggregated power usage to stabilize a

network supplied with renewable resources. The author used an additional thermostat in the control circuit of a

EWH design with two heating elements to provide regulation service. A 2-node model has been used to simulate

the uni- and bi-directional regulation signals. However, the cost of bidirectional devices with communication

hardware may prevent implementation of this proposed method.

Diduch et al. [61] proposed a system for clustering EWHs for aggregation in a virtual power plant to deliver

ancillary services. A forecasted day-to-day model is used and control commands are transmitted based on the

expected results. However, owing to an inaccurate predictive rate of 33.3%, this would restrict its utility in

providing reliable ancillary services. Similarly, Gelažanskas and Gamage [62] proposed a method for scheduling

residential EWHs to mitigate the inaccuracy in day-to-day wind generation prediction. Every 5 minutes, the

control system schedules heating times for the next 12 hours to shift the demand to balance the supply. This

study aimed to balance wind energy production with multiple EWH energy usage. The user’s comfort was

not taken into account with the optimization of EWH operation. Tammam et al. [63] proposed a multistage

stochastic optimization model for the reduction of EWH loads in the presence of renewable energy connected to

the grid. This model computes the optimal day-ahead energy usage of aggregated EWHs under various levels of

wind power production. The authors claim that their day-ahead forecasted model is accurate and does facilitate

the integration of renewable energy into the power system. Despite these claims, their model is expensive to

implement.

Nehrir et al. [64] implemented a load model that is appropriate for voltage regulation, reducing the power

grid peak load while maintaining the user comfort. Authors find that the peak of EWHs demand and the overall

peak of residential demand are highly correlated. However, the modelling process was not described in detail.

Similarly, Malik and Havel [65] developed a centralized DLC of EWHs to facilitate the load under high PV

penetration in the Czech electricity market, to mitigate the imbalances between generation and demand within

the controlled area. The authors showed that their proposed technique improved voltage profile and reduced

energy loss.

2.2 Model-based predictive control

Model-based control strategies rely on a model of the system to project its behaviour in the future. This

type of control strategy is mostly used to solve optimization problems [66]. There are several phases in the
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implementation of mode based control, this includes the selection of accurate models, the estimation of model

parameters, estimation of the state of the system, and the prediction of independent variables [67]. Compared to

rule-based controls, model-based controls are more complex. These types of control methods have been applied

to EWHs for different problems using different approaches. Applications of model-based control strategies are

discussed in this subsection.

Booysen et al. [68] suggested three distinct types of methods to control the EWHs. The three model-based

controls decide the optimal schedule and the best temperature set point in the storage tank to accomplish specific

objectives. These objectives involve matching the delivery temperature, matching the delivered energy in the hot

water, and ensuring Legionella sterility. The study evaluates 30 water heaters for 20 days. When the results were

evaluated, the temperature matching method resulted in an energy saving of 7.9%, the energy matching method

gave an energy saving of 17.8% and energy matching for daily Legionella sterilization gave an energy saving of

13.1%. Ritchie et al. [69] performed a similar study using predicted usage profiles for 77 water heaters in which

stratification was taken in place and found savings ranging from 2.2% and 9.6%. Kepplinger et al. [70] proposed

the use of a dynamic programming strategy for optimizing the cost and energy usage of EWHs. The approach

required an hourly optimization of EWHs to be implemented. This method has been demonstrated to be an

alternative grid-balancing solution for domestic EWHs. Lin et al. [71] analyzed the minimization of the energy

cost of the water heater thus satisfying the convenience needs of hot water consumers utilizing neural networks.

A nonlinear autoregressive network with external input (NARX) using a neural network was used to achieve the

comfort requirement with minimum energy usage.

Bomela et al. [72] conducted a similar study where a general thermostatically controlled loads (TCL) model-

based control was proposed to develop a continuous oscillator model of a TCL and compute its phase response to

changes in temperature and applied power. In [73], Vanhoudt et al. applied a model-based control algorithm to

maximize the profit of a small scale district heating system heated by a combined heat and power plant (CHP).

The authors reported that the presented control algorithm influence the heat demand profile of the connected

buildings. Wei et al. [74] proposed a model-based real-time two-stage optimization model for multiple TCL

groups to smooth the power fluctuation in the distribution network. The authors showed that the proposed

approach effectively decrease the net exchange power fluctuation as well as regulation costs.

Zhang et al. [75] applied a Model Predictive Control (MPC) strategy to derive optimal switching times

regarding costs and user comfort. The algorithm uses a nonlinear least-squares formulation. This model assumes

the physical properties of the tank, which in most existing systems is typically an unreal assumption. Sossan

et al. [76] proposed MPC technique for optimizing PV self-usage in the household setting, taking advantage of

the flexible demand of EWHs. Although their results are encouraging, the model is assumed to be perfect. The

inaccuracies of their prediction model were not taking in to account. Liu and Shi [77] proposed a model in which

MPC control is used to regulate the aggregated temperature of TCLs to provide frequency regulation services.

The model aims to determine the TCL to turn on/off to monitor the frequency regulation whilst maintaining the

temperatures within a certain range. Zong et al. [78] proposed MPC approach that utilizes aggregated EWHs

as a grid-scale storage resource. The simulation results show that aggregated EWHs can efficiently be operated

with MPC to provide reserve services for renewable energy resources.

Knudsen and Petersen [79] used the Economic Model Predictive Controller (EMPC) to control the water

heater system that is used to increase the supply temperature in ultra-low temperature district heating since

it can easily manage time-varying tariffs. Awadelrahman et al. [80] also proposed an EMPC to maximize

heating energy costs with varying electricity price signals in a residential building. It was shown that while the

temperatures in the systems were kept within limits, EMPC shifted the electricity demand based on the price.

Despite the mentioned successful implementations and the benefits of MPC, this control technique has several

disadvantages [81]. To list a few, in order for MPC to accurately predict the relevant variables namely, the model
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parameters, the state of the system, and the exogenous variables the model has to be highly accurate and precise

[82]. Moreover, MPC also requires a wealth of high quality input data during operation, as a result the system

has to detect and filter out erroneous input data [67]. This makes MPC an expensive technique to implement

[83].

3 Background to Machine Learning

3.1 Overview

ML evolved from Artificial Intelligence (AI). ML methods are used to characterize algorithms that learn from

existing data and these algorithms use a large amount of data for the learning process with a very limited

number of input features [28]. There are three major ML methods available for behavioural analysis. Namely,

the supervised learning, unsupervised learning and reinforcement learning. Figure 3.1 summarizes the learning

algorithms of ML.

3.2 Supervised Machine Learning

Supervised Learning (SL) is the development of algorithms that can create hypotheses with external instances to

forecast the events of the future [84][85]. In other words, supervised algorithms use the labelled training data set

to construct contingent functions for mapping new instances [86]. The main purpose of SL methods is to learn

how to predict a random variable based on a set of random variables. SL consists of techniques for automatically

building a predictive function that maps the predictor attributes to the target variable.

SL method has two types of categories, namely, the classification and regression [87]. The key distinction

between both types of definitions is that the output variable for regression is empirical, while the output variable

for classification is numerical. Both the classification and regression algorithms involves two steps in the pre-

processing phase, namely, the feature extraction phase and the feature selection phase. In the feature extraction

phase, the numerical features are extracted from the data set. In the feature selection phase, statistical approaches

are used to find correlations between the predictor attributes and the target variables to eliminate attributes with

low predictive accuracy [88]. The SL algorithms comprise of Support Vector Machine (SVM), linear regression,

logistic regression, neural networks, decision tree, random forest, naive Bayes, and K-nearest neighbour.

3.3 Unsupervised Machine Learning

This ML approach has gained significant interest in the study of building energy since it has proved valuable

in the implementation of energy benchmarking where evaluating baseline buildings is essential for measuring

energy performance [89]. Unsupervised Learning (USL) is applied to unlabelled data such that it can be grouped

based on function similarity. USL has two types of categories, namely, the clustering and association rule mining.

However, clustering is the most popular algorithm used for the prediction of energy usage [90].
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To classify correlation between data elements that are unlabelled and uncategorized, the clustering algorithm

is used. The purpose of clustering is to find different classes in a collection of results. K-means, which iteratively

searches for a local limit, is the most popular clustering algorithm employed in energy prediction. The algorithm

starts with a random set of K-centroids (cluster centre), each of which is attributed to the closest centre point.

So the mean of all data points in a category is used to recalculate all centroids.

3.4 Reinforcement Learning

Reinforcement Learning (RL) is an AI algorithm focused on the agent in which agents learn the optimal set of

actions to optimize a numerical reward signal, i.e. learn what to do. RL is also extended to topics concerning

sequential dynamics and the optimization of a scalar goal of output. The main goal of RL is to train information

and to find a single input value that maximizes the total amount of rewards over the sequence of decisions

[91][92]. RL algorithms operate in two distinct groups, namely model-based and model-free RL. The model is

first trained in the model-based RL and then used in a scheduling process, such as Least-Square Policy Iteration

(LSPI) or fitted Q-iteration. In the model-free method, the agent learns to associate optimal behaviour for each

state without specifically deciding the probability of transfer between states. Model-free RL interaction-based

algorithms include techniques such as Q-learning and State-Action-Reward-State-Action (SARSA) [93]. Model-

free RL control solutions are regarded as a valuable substitute or complement to model-based RL control solutions

[94]. Due to its simplicity, regardless of the implementation area, Q-learning, introduced by Watkins and Dayan

[95], is the most commonly used model-free RL technique [96].

4 Novelty and review approach

4.1 Contribution

To the best of our knowledge, this is the first survey that covers the recent advancements made in energy

consumption optimization and scheduling of individual EWH in smart homes and aggregated EWHs from the

perspectives of data analytics, and ML. The main contributions of our review are to:

(a) Identify state of the art models for energy optimization and scheduling of EWHs.

(b) Review the current ML models for load management of EWHs in smart grids and smart building environ-

ment.

(c) Identify and discuss research challenges and directions for EWH energy usage optimization and scheduling

using ML.

4.2 Literature Search

To provide an overview of the existing research, a literature search has been conducted from Web of Science (WoS),

IEEE Xplore, Google Scholar, and Scopus. The search strings defined in Table 4.1 were used to identify relevant

literature. The selection of the literature was carried out based on the consideration of energy consumption

prediction of EWHs for optimization and scheduling. The focus is on ML based algorithms. Further, the

approach used in the search was such that different papers published between 2010 and 2020 dealing with the

use of ML models as methods of data analysis were included. The literature search was performed using the

following notation, TITLE-ABS-KEY (A AND (B OR (C AND D)). Where the parameters A, B, C and D are to

the search terms shown in Table 4.1. The results of the search are presented in Table 4.2. The reviewed papers

were classified based on the learning method and associated algorithms.
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Table 4.1: Search Queries

A B C D

Electrical water heater Machine Learning Energy consumption Prediction

Hot water Supervised Learning Demand response Forecasting

Unsupervised Learning Optimization

Reinforcement Learning Scheduling

Table 4.2: Summary of the papers reviewed

Ref Year Learning Method Algorithm Objectives

[97] 2008 SL ANN Energy, cost reduction

[98] 2009 SL ANN Energy, cost reduction and comfort

[99] 2014 SL ANN Peak reduction

[100] 2016 SL SVR Energy, cost reduction

[71] 2017 SL ANN Energy, cost reduction and comfort

[101] 2019 SL SVM Energy, cost reduction and comfort

[102] 2019 SL SVM Energy, cost reduction

[103] 2019 SL ANN Energy cost reduction, comfort

[104] 2019 SL FNN Energy, cost reduction and peak reduction

[105] 2019 USL K-Means Energy, cost reduction

[106] 2018 USL K-Means Energy conversation

[107] 2019 USL RNN Energy, cost reduction and comfort

[108] 2012 RL Q-Learning Ancillary service

[109] 2014 RL Fuzzy Q-learning Energy reduction

[110] 2014 RL BRL Cost reduction

[111] 2016 RL BRL Energy, cost reduction and comfort

[112] 2017 RL Actor-critic Q-learning Cost reduction

[113] 2017 RL BRL Integration of renewable energy

[32] 2017 RL Q-iteration Energy, cost reduction and comfort

[114] 2018 RL Auto-encoder network Energy, cost reduction

and fitted Q-iteration

5 Machine learning based demand response of electric water

heater in smart grid

Learning-based methods, commonly known as model-free predictive models, are less complex in modelling and

solving an optimal control problems than model-based predictive and rule-based controls. This is achieved using

algorithms to derive a control trajectory to forecast the price and demand [115]. Model-free predictive control

methods have been applied to EWHs for different problems using different approaches. Each one is summarized

separately below. We will start first discuss the application of neural network (NN) models in water heating

systems and we will then place more focus on the application of machine learning algorithms/techniques for

water heating systems.

Bartecsko-Hibbert et al. [98] developed a nonlinear autoregressive network with external input (NARX) using

artificial neural network (ANN) for electric water heaters to predict the temperature characteristics of EWHs.

The model was trained used a Generic Algorithm (GA). The main objective of their study was to minimise the

cost of energy while maintaining the user’s comfort. An optimization problem, based on the NARX water heater

model, is formulated to optimize energy management of the water heater in a day-ahead, dynamic electricity

price framework. However, their proposed models showed a relatively high error rate. The findings indicate that
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the models trained on three separate systems yield errors fewer than 11%.

Sonnekalb and Lucia [103] also proposed ANN to optimize the heating schedule of water heaters to achieve

significant energy savings. 18 months data sets from 17 different domestic water heaters (DWHs) in Ireland were

simulated. The authors used Gaussian processes to train the model to learn individual human behaviour based

on hot water usage data. The authors claim that their proposed method saved between 20% and 34% of the

energy. However, this method requires a huge amount of historic data. The challenge is that in most of the cases

this data is not available.

Maltais and Gosselin [107] developed a predicting model for DWH demand using recurrent neural networks

(RNN). They implemented their study to a 40-unit residential building in Quebec City, Canada, in order to

predict the usage. The author claimed that the evaluated performance indices for the prediction of the next

demand are satisfying with an R2 of 0.71. However, this proposed method does not tackle the prediction errors.

To address the above mentioned challenges of NN, ML algorithms incorporated with NN are used.

5.1 Supervised Machine Learning

NN is the widely employed supervised ML technique to predict energy performance due to its ability to handle

complex and nonlinear problems [116]. Bakker et al. [97] used ANN with the heat demand profile input from

the previous day and previous week, as well as the weather data to forecast 24 hours heat demand. The model

has been shown to have good estimates of daily hot water usage, but updates are required to provide additional

variables relevant to user activity as inputs for the model. In [99], Shaad et al. developed a prediction module

that uses NN to forecast the aggregated EWHs energy usage in real-time. The mean absolute error rate was

recorded in the range of 6.5 kW to 7.8 kW when predicting aggregated data from 95 water heaters. Qu et al. [104]

developed a control method using fuzzy neural network to manage thermostatically controlled loads (TCLs) in

the smart grid to ensure a stable frequency of the grid. The results of the simulation showed that the developed

model has significant advantages of monitoring accuracy without modelling the aggregated TCLs. However, the

main disadvantage of NN is a large amount of computational time [117].

Support vector machines (SVM) have shown great potential in forecasting electricity prices and estimation

of power usage over NN [118]. Aki et al. [100] proposed a bottom-up strategy using SVR for the prediction of

EWH energy usage. The proposed model predicts the cumulative hot water usage for the next day by taking into

account of recent trends of historical data. Cao et al. [101] used SVM to predict the shower behavior of occupants

to forecast the hot water usage. The authors collected data from seven occupants and the results showed that,

compared to a traditional control method, the proposal can reduce heat loss by up to 33%. Guo and Nariman

[102] developed a ML methodology using SVMs to classify days into three groups (hot, cold and mild) based on

the data from aggregated EWHs on substation level. The findings of the simulation show an accuracy of over

88%. However, the drawback of supervised learning techniques is that they require a large amount of historical

data, which could be hard to access.

5.2 Unsupervised Machine Learning

Two main techniques that are widely used in the predicting energy consumption in buildings for unsupervised

learning are K-means and hierarchical clustering methods [119][120]. In the K-means clustering process, the

algorithm starts by randomly choosing K-centroids, and each data is allocated to the nearest centre point. All

the centroids would be recalculated using the mean of all the data points in the group. This method proceeds

until a stopping condition is reached [89]. In [106], Wu et al. proposed an energy usage diagnosed method based

on ML algorithm to solve the energy diagnosed problem of boiler hot water heat supply. The authors used the

clustering method, K-means algorithm, to filter the data that has better energy conservation performance from
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all data. Gong et al. [105] proposed a bottom-up forecasting model using Markov-based error reduction approach

to predict the power usage of aggregated EWHs. To group data samples of small aggregated EWHs, the K-means

algorithm was used to predict the power usage of large aggregated EWHs. The authors claim that the method

proposed improved the accuracy of the forecast by about 20% to 80%. However, the proposed approach does not

fix the cost and hot water usage estimation errors. Zuniga et al. [121] proposed an EWH control strategy based

on the dynamic programming and power usage profile classification using the K-means clustering algorithm.

Based on the analysis and simulation, the authors suggest that this algorithm can be implemented to control

aggregated EWH to reduce the peak demand and to meet the hot water demand.

5.3 Reinforcement Learning

Q-learning is the most often employed RL methodology applied to a demand response [122]. After every interac-

tion with the environment, the Q-learning system utilizes temporal difference learning to update its state-action

meaning feature [123]. Al-Jabery et al. [109] suggested a load control strategy of EWHs utilizing Q-learning

and the action-dependent heuristic dynamic programming (ADHDP) for the demand-side management of EWHs.

Their findings reveal that their suggested algorithm of Q-learning offers better convergence than the traditional

Q-learning. In terms of cost savings, customer satisfaction and load peak reduction, the ADHDP approach ob-

tained the best performance. In a different study, Al-Jabery et al. [112] extended their work by applying an

actor-critic Q-learning approach network to control a water heater and demonstrated that it achieved a better

performance than the Q-learning controller. The disadvantage of Q-learning is that after each state update the

given observation is discarded. This will require more iteration for already known state space. In [108], Kara et

al. employed Q-learning technique utilising thermostatically controlled load to offer short-term auxiliary services

to the power grid. Kazmi et al. [111] proposed a general occupant-driven optimization model-based RL algorithm

to improve the energy efficiency for domestic hot water (DHW) production in residential buildings. The study

applied to 32 homes showed a 20% reduction in the energy usage for water heating and no loss in user comfort.

In [113], De Somer et al. implemented a Batch Reinforcement Learning (BRL) model-based technique that

learns the behaviour of the occupants and forecasts the output of solar PV to monitor the heating cycle of a

domestic water heater to optimize the use of energy from a local solar PV system. Using this algorithm, the

authors conducted an experiment with six residential buildings and the findings revealed that the self-consumption

of solar PV production increased by 20% relative to the default thermostat control. In [110], Ruelens et al.

implemented a model-free BRL algorithm to control a cluster of 100 water heaters. Their simulation findings

revealed that, relative to a hysteresis controller, the BRL technique can lower the energy cost during a learning

span of 40-45 days. Inspired by the developments in BRL, Ruelens et al. [32] continued their work by evaluating

the benefits of Q iteration on a water heater in a laboratory and observed a 15% reduction in energy usage in as

little as 40 days. In [114], the authors merged the auto-encoder network and the fitted Q-iteration to minimize

the cost of energy usage of EWHs. To test this proposed model, a simulation-based experiment using EWH with

50 temperature sensors was used. The authors claim that this approach has been able to reduce the average cost

of EWH energy use by 15%.

6 Discussion

In the previous sections, we have performed detailed reviews of control strategies used for energy optimization

and scheduling of EWHs. In this section, we analyze and discuss those articles that involved the application of

DR in EWHs, particularly those that provide ancillary services and facilitate the integration of renewable energy

resources in the power system. These articles are summarized in Table 6.1. We also discuss the key opportunities

and challenges of the various control methods that were identified by our study.
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It is noted that the application of rule-based controls can yield good results in terms of providing ancillary

services in the power system. This has been successfully applied in the references [53][64][60][59][62] as shown

in Table 6.1. The main advantage of this control resides in its simplicity. Rule-based control does not require

complex models and algorithms. However, this method has several limitations that affects its implementation.

Rule-based control does not adapt to changing of environment or external conditions, the objective functions of

this control are fixed, for instance the temperature set points or threshold. Moreover, rule-based control strategies

are poor in dynamics, adaptation and anticipation of the behaviour of the system [37].

The most researched control strategy applied to EWHs for DR is model-based control strategy, such as MPC

[76][77][78]. Despite the mentioned successful implementations and the benefits of MPC, listed in Table 6.1, this

control strategy has several disadvantages [81]. Model-based control requires a wealth of high-quality input data

during operation, as a result the model has to detect and filter out erroneous input data [67]. This makes model-

based control an expensive technique to implement [83]. Additionally, implementation of model-based control

strategy depends on an accurate and detailed model of the system, whereas such models are not available in

certain circumstances and time-consuming to access [124]. As a result, model-based control does not satisfy the

demand for autonomous and adaptable forecasting, which is essential for load management in a power system.

ML methods have shown great potential as an alternative solution that can address the drawbacks discussed

previously, since they have proven to operate by interacting with the environment and by learning from these

interactions [108][99][109][102][104]. However, none of the proposed ML models present a solution that fully

provides ancillary services under high penetration of renewable energy sources, as shown in Table 6.2. This area

has not been studied thoroughly and application of ML in water heating systems seems to be the trending topic

in the near future.
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Table 6.1: Table summarising all related work and methods for control

Type of Ref. Year Authors Control method Ancillary services

control class and technique provided

Rule-based [53] 2005 Lu and Optimal control strategy Peak load reduction

Katipamula and lead shifting

[64] 2007 Nehrir et al. Energy flow analysis Voltage control

and load reduction

[60] 2011 Kondoh et al. A dual-element model Frequency regulation,

and load shifting and

peak load reduction

[59] 2012 Diao et al. 2-mass composite model Frequency regulation

[62] 2016 Gelazanskas Thermocline edge detectors Integration of wind

and Gamage power

Model-based [41] 1995 Laurent et al. Binary Particle Swarm Minimising peak load

Optimization (BPSO)

[38] 2010 Sepulveda et al. BPSO Peak load reduction

[57] 2012 Klaassen et al. Monte-Carlo based Load shifting

aggregate model

[61] 2012 Diduch et al. Binary integer Load shifting and

optimization peak load reduction

[76] 2013 Sossan et al. MPC Maximizing PV

self-consumption

[70] 2014 Kepplinger et al. Dynamic programming Peak load reduction

[77] 2016 Liu and Shi MPC Load frequency control

[78] 2017 Zong et al. MPC Load frequency control

Model-free [108] 2012 Kara et al. RL, Minimising peak load

Q-learning

[99] 2014 Shaad et al. SL, ANN Minimising peak load

[109] 2015 Al-Jabery et al. RL, Q-learning Minimising peak load

[102] 2018 Guo and RL, SVM Minimising peak load

Mahdavi

[104] 2019 Qu et al. SL, FNN Load frequency control

Table 6.2: Major research gaps in related works

Ref. year ML Algorithm Load Peak Frequency or Integration of

Method shifting reduction Voltage control renewable energy

[108] 2012 RL Q-Learning No Yes No No

[99] 2014 SL ANN No Yes No No

[109] 2015 RL Q-Learning No Yes No No

[102] 2018 SL SVM No Yes No No

[104] 2019 SL FNN No No Frequency Control No

7 Conclusion

In this study, different control strategies, namely the rule-based, model predictive control and model-free control,

for load management with EWHs have been reviewed. Even though rule-based controller and model predictive

controller can enable significant energy efficiency improvement of EWHs and generate cost savings however, their
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accuracy in forecasting energy usage of EWHs is doe not satisfy the demand for fast and accurate forecasting,

which is essential for load management for providing ancillary services in the power system. The present work

was based on the review of existing studies addressing the use of ML for optimization and scheduling EWHs

energy usage summarizing the available information on this topic for future research studies and identifying key

shortcomings in current research that should be addressed in the future. Several shortcomings identified in the

literature that relate to residential EWHs used for providing power system ancillary services: the need for ML

models for energy optimization and scheduling of EWHs in a smart buildings and smart grid that provide power

system ancillary services; the need for aggregate EWH load model that can be used to analyse potential capacity

reductions in a renewable grid; and the need for load-shifting models that shift EWH load from low renewable

resource and high demand periods to high renewable resource and low demand periods.
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[62] L. Gelažanskas and K. A. Gamage, “Distributed energy storage using residential hot water heaters,” En-

ergies, vol. 9, no. 3, pp. 1–14, 2016.

[63] A. I. Tammam, M. F. Anjos, and M. Gendreau, “Balancing supply and demand in the presence of

renewable generation via demand response for electric water heaters,” Annals of Operations Research, vol.

292, no. 2, pp. 753–770, 2020. [Online]. Available: https://doi.org/10.1007/s10479-020-03580-1

[64] M. H. Nehrir, R. Jia, D. A. Pierre, and D. J. Hammerstrom, “Power management of aggregate electric

water heater loads by voltage control,” 2007 IEEE Power Engineering Society General Meeting, PES, no. 1,

2007.

[65] O. Malik and P. Havel, “Active Demand-Side Management System to Facilitate Integration of RES in

Low-Voltage,” IEEE Transactions on Sustainable Energy, vol. 5, no. 2, pp. 673–681, 2014.

[66] C. Bordons Alba and E. F. Camacho, Model Predictive Control. Springer-Verlag London, 1998.
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