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- A novel mean-field homogenization method with interfacial damage is proposed 

- Effective mechanical behavior of composite consisting of visco-hyperelastic matrix and 

elastic inclusion is precisely predicted on the time domain. 

- Interfacial damage is depicted as an interfacial spring and successfully implemented using 

an effective inclusion method. 

- This method is verified under various loading conditions and strain rates. 

Abstract 

Despite intense research on the homogenization methods, it still is a challenging task to predict 

the nonlinear mechanical responses of visco-hyperelastic particulate-reinforced composites. In 

this work, we propose the adaptive affine method, a novel mean-field homogenization method 

designed to ensure the consistency of the accumulated strain state and the concentration tensor, 

and apply the method to predict the mechanical response of the composite in the large strain 

regime under uniaxial, cyclic, and bi-axial loadings. Our method is also extended to predict the 

mechanical response in the presence of interfacial imperfections described by linear cohesive 

traction-separation laws. The analytic predictions are validated against finite element analyses 

of representative volume elements. We believe that our adaptive affine method can be extended 

to model various nonlinear responses of load-bearing composites including the effects of 

(visco)plasticity and finite deformation. 

  



3 

 

1. Introduction 

Particle reinforced composites have been widely adopted to enhance various physical 

properties including the structural, thermal, thermoelectric, piezoelectric properties, as well as 

to gain multi-functionality [1-4]. For the industrial development of composites, it is a 

prerequisite to predict their properties in terms of the composition of their constituents and 

applied external mechanical, thermal, and electrical stimuli. In that regard, the homogenization 

theory is well established for the prediction of effective physical properties of composites under 

a linear response regime. However, there is still room for improvement when it comes to the 

nonlinear response originated from geometric or material nonlinearity. One typical example of 

particle reinforced composite in which both geometric and material nonlinearities play a critical 

role is elastomeric matrix composites. For example, solid propellant materials, which consist 

of rubbery matrix and oxidizer particles such as aluminum or ammonium perchlorate, have 

been extensively studied due to their importance in designing high precision rocket and missile 

propulsion systems [5-10]. Besides solid propellants, visco-hyperelastic elastomer composites 

are widely used in stretchable electronics, soft robotics, wearable systems, automobile 

industries, etc. Accordingly, a variety of homogenization frameworks that can appropriately 

account for such nonlinear responses have been suggested. 

Many previous researchers have adopted mean-field homogenization (MFH) 

approaches to predict the effective properties of solid propellants [11-16]. For the linear elastic 

response, one can apply the well-established MFH approaches such as the Mori-Tanaka (M-T) 

scheme which provides a closed-form solution for the effective elastic properties of the 

composites by utilizing Eshelby’s solution for the single inclusion problem. However, for the 

prediction of inelastic behaviors, multiple methods were suggested to apply MFH and it 

remains controversial which frameworks provide numerically efficient and mathematically 

rigorous predictions. A frequency-domain homogenization method was established for linear 

viscoelastic composites in which the correspondence principle holds by utilizing the Laplace-

Carson transform (LCT) [17]. However, the reconstruction of the solution in the time domain 

involves a costly numerical inversion of the LCT. A similar procedure is followed for the MFH 

of elasto-viscoplastic composites with an integral affine formulation [18]. Besides being costly, 

the numerical inversion of the LCT by a collocation method might be inaccurate. Possible 

improvements have been studied by Rekik and Brenner [19].  
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On the other hand, significant efforts have been devoted to developing time-domain 

homogenization methods for the sake of mathematical simplicity and convenience. The linear 

comparison composite (LCC) concept was proposed to extend linear MFH theories to nonlinear 

constituents by approaching the actual response within a given time step via virtual linear 

materials. The LCC can be defined based on variational formulations [20, 21] or the 

linearization of the local constitutive models. Depending on the linearization scheme, secant or 

tangent operators are adopted [22-24]. The incrementally affine method was developed using 

the analogy between linearized elasto-viscoplasticity and thermoelasticity [25] and between 

linearized viscoelasticity-viscoplasticity and thermoelasticity [26]. However, the incrementally 

affine method tends to show stiff predictions in the viscoelastic regime. The prediction becomes 

stiffer in visco-hyperelastic material under finite deformation.  

Alternatively, the incremental secant method was developed which combines the 

advantages of secant modulus and tangent modulus methods [27-30]. The method showed 

acceptable predictability for materials with elasto-plasticity or elasto-viscoplasticity, but its 

extension to viscoelastic-viscoplastic composites has not been proposed yet.  

In this work, we propose a new homogenization scheme, named the adaptive affine 

method, that can resolve the aforementioned problems. We found that existing methods suffer 

from the inconsistency of stress state at 𝑡௡ when performing the homogenization of linearized 

material in a given time step [𝑡௡, 𝑡௡ାଵ], i.e. the stress concentration tensor does not correctly 

indicate the relationship between the applied stress and the stress at the interior of 

reinforcements. To resolve the problem, we propose a method which adaptively adjusts the 

strain of each constituent at every step of the loading process to ensure the consistency of the 

accumulated strain state and the concentration tensor. We utilize the 4th order tangent operator 

as it is, which enables us to analyze general loading cases including cyclic loading and multi-

axial loading under finite deformation. Our method is then extended to predict the mechanical 

response in the presence of the interfacial imperfections described by a linear cohesive traction-

separation law. For the linear interfacial damage model, the interfacial damage is represented 

as finite compliance of interfacial spring, and the homogenization scheme is implemented using 

an effective inclusion method. Our homogenization model shows a good match with three-

dimensional (3D) finite element model (FEM) simulations. 
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This paper consists of the following sections. The modeling of visco-hyperelastic 

material is reviewed based on Simo’s model in Section 2. The adaptive affine method is 

introduced and compared with the incrementally affine method in Section 3. The adaptive 

affine method for interfacial damage cases is introduced in Section 4. The conclusion is reached 

in Section 5. 

Boldface letters indicate second- or fourth-order tensors and non-bold face letters 

indicate scalar values. (:) refers to double contraction and (⊗) refers to the dyadic product.  

𝒂: 𝒃 ൌ 𝑎௜௝𝑏௝௜;   ሺ𝑨: 𝒃ሻ௜௝ ൌ 𝐴௜௝௞௟𝑏௟௞ ሺ𝒂 ⊗ 𝒃ሻ௜௝௞௟ ൌ 𝑎௜௝𝑏௞௟ 

 

2. Visco-hyperelastic material modeling 

In this paper, we adopt Simo’s visco-hyperelastic model because of the following 

advantages [31-33]. First, the volumetric or deviatoric part can be selectively chosen as a 

source of viscosity because the formulation separates the volumetric and deviatoric parts. 

Second, the model uses a form of strain energy density for the constitutive equation, which 

allows most of the existing hyperelastic model to be combined. Third, the model can be 

extended to reflect thermal effects by using the time-temperature superposition principle.  

Elastic stress is derived from strain energy density ( 𝜓∘ ) which is additively 

decomposed into volumetric part (𝑈∘) and deviatoric part (𝑊ഥ ∘) as follows, 

𝜓∘ ൌ 𝑈∘ሺ𝐽ሻ ൅ 𝑊ഥ ∘ሺ𝑪ഥሻ (1) 

Then, the second Piola-Kirchhoff stress (𝑺ሺ𝑡ሻ) is derived from strain energy density with a 

viscous response as follows, 

𝑺ሺ𝑡ሻ ൌ 𝐽𝑃𝑪ିଵ ൅ 𝑯 (2) 

where 𝑃 ൌ න
𝐾ሺ𝑡 െ 𝑠ሻ

𝐾଴

𝜕
𝜕𝑠

൬
𝜕𝑈∘

𝜕𝐽
൰ 𝑑𝑠

௧

ିஶ
, (3) 

𝑯 ൌ න
𝜇ሺ𝑡 െ 𝑠ሻ

𝜇଴

𝜕𝑺ഥ∘

𝜕𝑠
𝑑𝑠

௧

ିஶ
, (4) 

𝑺ഥ∘ ൌ 𝐽ିଶ
ଷ𝑺෨∘ ൌ 𝐽ିଶ

ଷDEVሺ2𝜕௖̅𝑊ഥ ∘ሻ (5) 
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Here, 𝐾 and 𝜇 are bulk and shear moduli, respectively, 𝐽 is the determinant of deformation 

gradient (𝑭), and 𝑪 is the right Cauchy-Green strain tensor (𝑪) which is defined as 𝑪 ≡ 𝑭்𝑭. 

Deviatoric parts of the deformation gradient (𝑭ഥ) and right Cauchy-Green strain tensor (𝑪ഥ) are 

expressed as 𝑭ഥ ൌ 𝐽ିଵ/ଷ𝑭 and 𝑪ഥ ≡ 𝐽ିଶ/ଷ𝑪, respectively. 𝜕௖̅ refers to partial derivative with 

respect to 𝑪ഥ. DEVሺ൉ሻ refers to deviatoric projection operator in the material description which 

is defined as follows,  

DEVሺ൉ሻ ൌ ሺ൉ሻ െ
1
3

ሾሺ൉ሻ: 𝑪ሿ𝑪ି𝟏 (6) 

Viscoelastic properties are represented with the Prony series as follows,  

𝜇ሺ𝑡ሻ ൌ 𝜇ஶ ൅ ෍ 𝜇௜ expሺെ𝑡/𝜏௜ሻ
ூ

௜ୀଵ

 (7) 

where 𝜇଴ ൌ 𝜇ሺ0ሻ, 𝑔ሺ𝑡ሻ ≡ ఓሺ௧ሻ

ఓబ
, 𝑔ஶ ≡ ఓಮ

ఓబ
, 𝑔௜ ≡ ఓ೔

ఓబ
  

𝐾ሺ𝑡ሻ ൌ 𝐾ஶ ൅ ෍ 𝐾௝ exp൫െ𝑡/𝜂௝൯

௃

௝ୀଵ

 (8) 

where 𝐾଴ ൌ 𝐾ሺ0ሻ   

In this paper, we take only the deviatoric part as a source of viscosity for simplicity, which 

implies that every 𝐾௝ is taken to be zero. The elastic tangent operator (𝑳∘) is expressed as 

follows,  

𝑳∘ ൌ 𝑳∘ഥ ൅ 4 ቆ
𝜕ଶ𝑈∘

𝜕𝐽ଶ

𝜕𝐽
𝜕𝑪

⊗
𝜕𝐽
𝜕𝑪

൅
𝜕𝑈∘

𝜕𝐽
𝜕ଶ𝐽

𝜕𝑪𝜕𝑪
ቇ (9) 

𝑳∘ഥ ൌ 𝑳ௗ
∘തതത െ

2
3

ቆ𝑺ഥ∘ ⊗ 𝑪ି𝟏 ൅ 𝑪ି𝟏 ⊗ 𝑺ഥ∘ ൅ 𝐽ିଶ/ଷሺ2𝜕௖̅𝑊ഥ ∘: 𝑪ሻ ൬𝑰𝑪ష𝟏 ൅
1
3

𝑪ି𝟏 ⊗ 𝑪ି𝟏൰ቇ (10)

𝑳ௗ
∘തതത ൌ 4𝐽ିସ/ଷ ൤𝜕𝑪ഥ𝑪ഥ

ଶ 𝑊ഥ ∘ ൅
1
9

൫𝑪: 𝜕𝑪ഥ𝑪ഥ
ଶ 𝑊ഥ ∘: 𝑪൯𝑪ି𝟏 ⊗ 𝑪ି𝟏 െ

1
3

𝑪ି𝟏 ⊗ ൫𝜕𝑪ഥ𝑪ഥ
ଶ 𝑊ഥ ∘: 𝑪൯

െ
1
3

൫𝜕𝑪ഥ𝑪ഥ
ଶ 𝑊ഥ ∘: 𝑪൯ ⊗ 𝑪ି𝟏൨ 

(11)
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where 𝑰𝑪షభ ≡
𝜕ሺ𝑪ିଵሻூ௃

𝜕𝑪௄௅
ൌ െ

1
2

ൣሺ𝑪ିଵሻூ௄ሺ𝑪ିଵሻ௃௅ ൅ ሺ𝑪ିଵሻூ௅ሺ𝑪ିଵሻ௃௄൧ (12)

The elastic tangent operator also can be considered as an instantaneous operator. The first term 

in Eq. (9) corresponds to the deviatoric part while the second term corresponds to the 

volumetric part. In the case of Neo-Hookean solids, 𝑳ௗ
∘തതത goes to zero. Numerical calculation 

of the stress including the viscoelastic effect can be obtained as below. Substituting Eq. (7) into 

Eq. (4), second Piola-Kirchhoff stress at 𝑡௡ାଵ is expressed as follows,  

𝑺௡ାଵ ൌ 𝐽௡ାଵ
𝜕𝑈∘ሺ𝐽௡ାଵሻ

𝜕𝐽
𝑪௡ାଵ

ିଵ ൅ 𝑔ஶ𝑺ഥ௡ାଵ
∘ ൅ ෍ 𝑔௜

ே

௜ୀଵ

𝐽௡ାଵ

ିଶ
ଷ DEV௡ାଵሺ𝑯௡ାଵ

௜ ሻ (13)

𝑯௡ାଵ
௜  is called an internal algorithmic variable which has an integral form. The detailed 

process to calculate 𝑯௜ is shown below.  

𝑯௜ሺ𝑡ሻ ≡ න expሾെሺ𝑡 െ 𝑠ሻ/𝜏௜ሿ
𝑑𝑺෨∘

𝑑𝑠
𝑑𝑠

௧

ିஶ
 (14)

𝑯௡ାଵ
௜ ൌ expሺെΔ𝑡/𝜏௜ሻ 𝑯௜ሺ𝑡௡ሻ ൅ න exp

௧೙శభ

௧೙

ሾെሺ𝑡௡ାଵ െ 𝑠ሻ/𝜏௜ሿ
𝑑𝑺෨∘

𝑑𝑠
𝑑𝑠 (15)

𝑯௡ାଵ
௜ ൌ expሺെΔ𝑡/𝜏௜ሻ 𝑯௡

௜ ൅ expሺെΔ𝑡/2𝜏௜ሻ ൫𝑺෨௡ାଵ
∘ െ 𝑺෨௡

∘ ൯ (16)

𝑯෩ ௜ is newly defined from 𝑯௜ to separate variables within the time step [𝑡௡, 𝑡௡ାଵ].  

𝑯෩ ௡
௜ ≡ expሺെΔ𝑡/𝜏௜ሻ 𝑯௡

௜ െ expሺെΔ𝑡/2𝜏௜ሻ 𝑺෨௡
∘  (17)

𝑯௡ାଵ
௜ ≡ 𝑯෩ ௡

௜ ൅ expሺെΔ𝑡/2𝜏௜ሻ 𝑺෨௡ାଵ
∘  (18)

Using 𝑯෩ ௜, the algorithmic tangent operator is obtained as follows.  

𝑳௡ାଵ
௔௟௚ ൌ 4 ቆ

𝜕ଶ𝑈∘

𝜕𝐽ଶ

𝜕𝐽
𝜕𝑪

⊗
𝜕𝐽
𝜕𝑪

൅
𝜕𝑈∘

𝜕𝐽
𝜕ଶ𝐽

𝜕𝑪𝜕𝑪
ቇ ൅ 𝑔ሺ∆𝑡/2ሻ𝑳௡ାଵ

∘തതതതതത

൅ ෍ െ
2
3

𝑔௜𝐽௡ାଵ
ିଶ/ଷ ቆDEV௡ାଵ൫𝑯෩ ௡

௜ ൯ ⊗ 𝑪௡ାଵ
ିଵ ൅ 𝑪௡ାଵ

ିଵ ⊗ DEV௡ାଵ൫𝑯෩ ௡
௜ ൯

𝒏

𝒊ୀ𝟏

൅ ൫𝑯෩ ௡
௜ : 𝑪௡ାଵ൯ ൬𝑰𝑪೙శభ

షభ ൅
1
3

𝑪௡ାଵ
ିଵ ⊗ 𝑪௡ାଵ

ିଵ ൰ቇ

(19)

A detailed derivation of the elastic tangent operator and algorithmic tangent operator is 

presented in the literature [34]. 
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3. Adaptive affine homogenization in the absence of interfacial imperfection 

3.1 Adaptive affine homogenization  

We propose the adaptive affine homogenization method which is designed to resolve 

a common drawback of existing methods, the inconsistency of the accumulated strain state and 

the concentration tensor. Our method utilizes the Euler forward algorithm in order to avoid an 

iterative process for numerical integrations and to facilitate the convergence to an accurate 

solution with small time steps. We use the primary procedure of the incrementally affine 

method [25, 26] as a preliminary homogenization step to consider inelastic stress change. In 

the process, each phase of the composite is given the same affine deformation to have the same 

stress. And then, macro deformation is assigned to remove the virtually loaded affine 

deformation through the conventional homogenization process, which resulted in the strain 

increments as below, 

∆𝜺ଵ ൌ 𝑨ଵ
ఌ: ሼ∆𝛆ത ൅ 𝑐଴𝕻: ሺ∆𝝈଴

௥ െ ∆𝝈ଵ
௥ሻሽ,  ∆𝜺ത ൌ 𝑐଴∆𝜺଴ ൅ 𝑐ଵ∆𝜺ଵ (20)

where 𝑐଴ and 𝑐ଵ are volume fraction of the matrix and particle, respectively, ∆𝜺ത, ∆𝜺଴, and 

∆𝜺ଵ  are the strain increments of the composite, matrix, and particle at a given time step, 

respectively. In the present paper, subscripts 0 and 1 indicate state variables of the matrix and 

inclusion phase, respectively. Inelastic stress changes, i.e., stress relaxation of both phases due 

to viscosity, are shown as ∆𝝈଴
௥ and ∆𝝈ଵ

௥. 𝑨ଵ
ఌ and 𝑩ଵ

ఌ are strain concentration tensors which 

are defined in the linear elastic regime as follows,  

𝑨ଵ
ఌ ൌ 𝑩ଵ

ఌ: ሾ𝑐଴𝑰 ൅ 𝑐ଵ𝑩ଵ
ఌሿିଵ where ∆𝜺ଵ ൌ 𝑨ଵ

ఌ: ∆𝜺ത   (21)

𝑩ଵ
ఌ ൌ ሾ𝑰 ൅ 𝕻: ሺ𝑳ଵ െ 𝑳଴ሻሿିଵ where ∆𝜺ଵ ൌ 𝑩ଵ

ఌ: ∆𝜺଴ (22)

Here, 𝑰 and 𝕻 are the fourth-order identity tensor and Hill tensor [35]. 𝑳଴  and 𝑳ଵ  are 

tangent operator of the matrix and particle, respectively. Detailed explanation for the 

incrementally affine method can be found in previous papers [25, 26]. 

In addition to the procedure prescribed by the incrementally affine method, the 

adaptive affine method considers the modulus change in the deformed state. Because the 

modulus change over applied loading or time occurs in most nonlinear composites, our method 
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can be expanded to most types of LCC schemes of nonlinear composite homogenization. We 

note that the modulus change during each incremental deformation step leads to the mismatch 

between average strains over each phase and the strain concentration tensor. Moreover, such 

mismatch accumulates with the repeated incremental deformation procedures. Thus, in the 

adaptive affine method, a fictitious uniform strain (∆𝜺∗) is augmented to each phase of the 

composite in order to ensure equality, ∆𝜺ଵ ൌ 𝑩ଵ
ఌ: ∆𝜺଴. After the augmentation of the fictitious 

uniform strain, the stress states of matrix and inclusions are written as below,  

𝝈଴
∗ ൌ 𝑳଴: ∆𝜺∗ ൅ 𝝈଴ሺ𝑡௡ሻ (23)

𝝈ଵ
∗ ൌ 𝑳ଵ: ∆𝜺∗ ൅ 𝝈ଵሺ𝑡௡ሻ (24)

The fictitious strain is then tuned to impose the consistency of the strain tensor at the deformed 

state at 𝑡௡ାଵ, as below, 

𝑳ଵ
ିଵሺ𝑡௡ାଵሻ: 𝝈ଵ

∗ ൌ 𝑩ଵ
ఌ: 𝑳଴

ିଵሺ𝑡௡ାଵሻ: 𝝈଴
∗ . (25)

Substituting Eq. (23) and Eq. (24) into Eq. (25), fictitious uniform strain (∆𝜺∗) is expressed as 

follows,  

∆𝜺∗ ൌ ሺ𝑰 െ 𝑩ଵ
ఌሻିଵ: ൣ𝑩ଵ

ఌ: 𝑳଴
ିଵሺ𝑡௡ାଵሻ: 𝝈଴ሺ𝑡௡ሻ െ 𝑳ଵ

ିଵሺ𝑡௡ାଵሻ: 𝝈ଵሺ𝑡௡ሻ൧ (26)

Afterwards, as in the incrementally affine method, an identical macro strain is applied to the 

composite in order to remove the fictitious deformation. Following the procedure visualized in 

Fig. 1, the incremental strain change of inclusion satisfying the equality after the incremental 

deformation is expressed as follows,  

∆𝛆ଵ
௡∗

ൌ 𝑐଴𝑨ଵ
ఌ: ൫𝑳଴

ିଵ: 𝝈଴ሺ𝑡௡ሻ െ ሼ𝑰 ൅ 𝕻: ሺ𝑳ଵ െ 𝑳଴ሻሽ: 𝑳ଵ
ିଵ: 𝝈ଵሺ𝑡௡ሻ൯. (27)

𝑳଴ and 𝑳ଵ are newly obtained tangent operators within [𝑡௡, 𝑡௡ାଵ] which are different from the 

tangent operators within ሾ𝑡௡ିଵ, 𝑡௡ሿ . We note that even though 𝜺଴ሺ𝑡௡ሻ  and 𝜺ଵሺ𝑡௡ሻ  are 

adjusted by ∆𝛆଴
௡∗

 and ∆𝛆ଵ
௡∗

 in the adaptive affine method, the macro strain of the composite 

does not change during the process and satisfies the following condition, 

𝑐଴∆𝜺଴
௡∗

൅ 𝑐ଵ∆𝜺ଵ
௡∗

ൌ 0. (28)

 

3.2 Application to visco-hyperelastic material  
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In the finite deformation scheme, there are several options of conjugate stress and strain 

variables and the corresponding tangent operators. As discussed in the literature [36], it is 

appropriate to use nominal stress rate, deformation gradient rate, and nominal tangent operator 

because these stress and strain measures automatically satisfy the basic relation between macro 

measure and volume-weighted average scheme as follows,  

𝑭ഥሶ ൌ 𝑐଴𝑭ሶ ଴ ൅ 𝑐ଵ𝑭ሶ ଵ (29)

𝑷ഥሶ ் ൌ c଴𝑷ሶ ଴
் ൅ cଵ𝑷ሶ ଵ

் (30)

where 𝑷ሶ ் ൌ 𝑫: 𝑭ሶ ,  

Here, 𝑷்  refers to the nominal stress, and 𝑫 refers to the nominal tangent operator. The 

superposed dot represents the material time derivative. ሺ∙ሻതതത refers to volume averaged value. 

Our adaptive affine method is applied to study the mechanical response of a highly nonlinear 

visco-hyperelastic material under finite deformation. The nonlinearity of visco-hyperelastic 

material has two primary origins. First, the tangent modulus changes with the strain as in a 

typical hyperelastic material. Second, the nonlinear viscoelastic stress relaxation occurs as in a 

typical viscoelastic material. The choice of a tangent operator is a critical issue to apply the 

adaptive affine method and the incrementally affine method to the visco-hyperelastic 

composite. In section 2, the elastic (instantaneous) and algorithmic tangent operators were 

presented. The difference between elastic and algorithmic tangent operators depends on time. 

The elastic tangent operator is defined at the time 𝑡௡ and thus the elastic tangent operator is 

identical to the instantaneous tangent operator. However, the algorithmic tangent operator is 

defined within the time-span ሾ𝑡௡, 𝑡௡ାଵሿ. Since the stress relaxation occurs with deformation, 

the algorithmic tangent operator is usually softer than the elastic tangent modulus mainly by 

the factor of 𝑔ሺΔt/2ሻ. From this point of view, it is reasonable to use the elastic tangent 

operator for the adaptive affine method while the algorithmic tangent operator for the 

incrementally affine method. Thus, in this paper, the following pseudo-code is devised.  

1. Calculate elastic tangent operator of the matrix and inclusion at 𝑡௡  

2. Convert all material tangent operators (𝑳଴
∘  and 𝑳ଵ

∘ ) to nominal tangent operators (𝑫଴
∘  and 

𝑫ଵ
∘ ) as follows,  

𝐷௄௜௅௝
∘ ൌ 𝑆௄௅𝛿௜௝ ൅ 𝐹௜ெ𝐹௝ே𝐿௄ெ௅ே

∘ . (31)
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3. Apply adaptive affine method to get adaptive deformation gradients (∆𝑭଴
௡∗

 and ∆𝑭ଵ
௡∗

, Here, 

∆𝜺௜
௡∗

 and 𝝈௜ in Eqs. (27, 28) are replaced to ∆𝑭௜
௡∗

 and 𝑃௜
், respectively).  

4. Calculate algorithmic tangent operators of the matrix and inclusion for time step [𝑡௡, 𝑡௡ାଵ].  

5. Convert algorithmic material tangent operators (𝑳଴
௔௟௚ and 𝑳ଵ

௔௟௚)  to algorithmic nominal 

tangent operators (𝑫଴
௔௟௚ and 𝑫ଵ

௔௟௚) 

6. Apply incrementally affine method with macro deformation gradient (∆𝑭ഥ).  

7. Update deformation gradient increments (∆𝑭௜) and stress increments of each phase and go 

to step 1 for the next deformation increment.  

 

3.3 Validation using FEM for perfect interfacial bonding case 

Our homogenization model is verified with the FEM calculation results, using a virtual visco-

hyperelastic composite material in which finite deformation and viscoelastic relaxation affect 

its mechanical response significantly. Commercial software ABAQUS and user-defined 

material (UMAT) are utilized for homogenization and FEM. We choose the Neo-Hookean 

model and prony series for the visco-hyperelastic matrix as follows,  

𝜓 ൌ
𝐾
2

ሺ𝐽 െ 1ሻଶ ൅
𝐺
2

൬𝐽ିଶ
ଷtrሺ𝑪ሻ െ 3൰. (32)

The inclusion also obeys a Neo-Hookean material, but it is much stiffer than the matrix and 

thus undergoes very small deformation. The material properties are summarized in Table 1. For 

the viscous response, only the deviatoric part is taken as a source of viscosity. We refer to 

values for normalized Prony series from a previous paper [17] as shown in Table 2. The face 

centered cubic (FCC) structure is adopted as the RVE model for FEM due to two reasons. First, 

the stress-strain curves of different structures are not very different, and stress-strain curves of 

randomly distribution structure converge to that of FCC structure with the number of inclusions 

as shown in Fig. 2. Second, the FCC structure is symmetrical reducing computational cost with 

good accuracy. Uniaxial cyclic loading tests with different strain rates are conducted to 

compare our homogenization model and FEM results as shown in Fig. 3. Bi-axial cyclic 

loading tests with different strain rates are conducted in Fig. 4. As shown in Fig. 3 and Fig. 4, 
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our homogenization model shows quite a good accuracy. Multi-axial loading tests with a given 

loading profile are conducted for the different volume fraction of inclusions in Fig. 5. The 

results show that our model can be applied in a general loading case for visco-hyperelastic 

composite with good accuracy. 

 

4. Adaptive affine homogenization with interfacial damage 

4.1 Linear interfacial damage model-Effective inclusion method 

When interfacial damage exists between the matrix and inclusion, the overall mechanical 

response becomes softer than that of a perfect interfacial bonding case. One of the widely 

adopted interfacial damage models is the interfacial spring model originally suggested by Qu 

et al [37, 38] in which the interfacial damage is described by a linear spring layer of vanishing 

thickness [39]. For the sake of mathematical simplicity, the model has been adopted in the 

mean-field homogenization scheme by either constructing the modified Eshelby tensor [39-41] 

or considering an effective inclusion incorporating the interfacial spring compliance [42, 43].  

In this paper, we extend the effective inclusion method to finite deformation regimes and 

implement the method in our homogenization process. Schematics of perfect bonding, 

interfacial spring model, and effective inclusion model are presented in Fig. 6. In contrast to 

the perfect bonding case, the interfacial spring model has a displacement jump at the interface 

originated from the imperfect bonding or damage. The displacement jump increases linearly 

with increasing interfacial traction because the virtual spring with compliance ( 𝛽 ) 

proportionally relates the displacement jump to the interfacial traction. In this scheme, one has 

to consider several steps to calculate the modified Eshelby tensor and modified strain 

concentration tensor to implement the damage into the homogenization process. Here, modified 

Eshelby tensor and modified strain concentration tensor refer to Eshelby tensor and strain 

concentration tensor in the presence of interfacial damage, respectively. On the other hand, in 

the effective inclusion method, the displacement jump effect (interfacial damage) is fully 

considered by lowering the stiffness of the inclusion. After obtaining the damaged inclusion 

stiffness tensor, the user can regard it as a perfect bonding case. The detailed process to 

calculate the damaged inclusion stiffness tensor is shown below. The displacement jump is 



13 

 

expressed by the compliance of the interfacial spring as in the interfacial spring model. 

Δ𝑢௜ ൌ 𝛽𝛥𝑃௃௜𝑁௃ (33)

where ∆𝒖 and β are the displacement jump and the compliance of the interfacial spring, 

respectively. 𝑵 is the normal vector of the interface in the reference configuration. Due to the 

displacement jump, macro deformation gradient increment (Δ𝑭ഥ) is expressed as follows, 

Δ𝑭ഥ ൌ 𝑐଴Δ𝑭଴ ൅ 𝑐ଵΔ𝑭ଵ ൅ 𝑐ଵ
1
𝑉ଵ

න ሺΔ𝒖 ⊗ 𝑵ሻ𝑑𝑺
ப௏భ

 (34)

ൌ 𝑐଴𝛥𝑭𝟎 ൅ 𝑐ଵ𝛥𝑭𝟏 ൅ 𝑐ଵ
𝛽
𝑎

𝛥𝑷ଵ
் (35)

ൌ 𝑐଴𝛥𝑭଴ ൅ 𝑐ଵ ൬𝑰 ൅
𝛽
𝑎

𝑫ଵ൰ : 𝑫ଵ
ିଵ: 𝛥𝑷ଵ (36)

where 𝑎 represents the radius of the spherical inclusion. Compared to the perfect bonding case, 

the only difference is the third term in Eq. (34). As a result, the damaged inclusion stiffness 

tensor (𝑫ଵ
ௗ) can be defined as follows,  

𝑫ଵ
ௗ ൌ 𝑫ଵ: ൬𝑰 ൅

𝛽
𝑎

𝑫ଵ൰
ିଵ

 (37)

By replacing all 𝑫ଵ with 𝑫ଵ
ௗ in the original homogenization process (Eq. (20) and Eq. (27)), 

the linear interfacial damage can be implemented on the homogenization.  

 

4.2 Validation using FEM for interfacial damage case 

The same material properties and structure as in Section 3.3 are used for the validation 

of interfacial damage cases. The interfacial damage is implemented by cohesive elements on 

the inclusion surface in FEM. Uniaxial tension tests are conducted with different values of 𝛽 

as shown in Fig. 7. Our model shows a good match with FEM results, but errors increase 

gradually with strain. We suspect that the errors originate from the difference in reference 

configuration between homogenization and FEM. The virtual interface spring is defined in the 

initial configuration in our model while it is redefined in every current configuration in FEM.  

 

5. Conclusion  
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In this study, we proposed the adaptive affine method which resolves a common limitation of 

existing homogenization methods, the inconsistency between the strain concentration tensor 

and the accumulated strain states. The homogenization method shows a good match against 

FEM simulation results of RVEs under uniaxial or bi-axial cyclic loading conditions or even 

with multi-axial loading conditions with different loading profiles. We extend our model to 

interfacial damage cases by adopting an effective inclusion method, which also shows a good 

match against FEM results for different values of linear interfacial compliance. Although this 

paper mainly focuses on visco-hyperelastic composite, we believe that the key idea of the 

adaptive affine scheme can be extended to various nonlinear homogenization models based on 

the LCC scheme where a dramatic change of tangent operators is involved.  
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Tables 

Table 1. Initial elastic properties of each phase. 

 Inclusion Matrix 

Shear modulus (𝐺଴) [MPa] 292.32 25.5 

Bulk modulus (𝐾଴) [MPa] 633.34 60.0 

 

 

Table 2. Viscoelastic properties of the matrix. 

𝑔ஶ 𝑔௜ 𝜏௜ 

0.003967 0.001497 0.032 
 0.00596 0.1 
 0.033513 0.316 
 0.188428 1 
 0.595955 3.162 
 0.118909 10 
 0.029869 31.623 
 0.011891 100 
 0.007502 316.228 
 0.001497 1000 
 0.001012 3162.28 
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Figures and captions 

 

Fig. 1. Schematic of adaptive correction for each strain ( ∆𝜺𝟎
𝒏∗

, ∆𝜺𝟏
𝒏∗

) satisfying stress 
concentration between the matrix and particle. 
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Fig. 2. Biaxial tension tests for visco-hyperelastic composite with different structures. The 
strain rate is 0.5%/min and the volume fraction of inclusion is 5%. 
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Fig. 3. Uniaxial cyclic loading tests are conducted for visco-hyperelastic composite. 
Predictions of the homogenization model (lines) are compared with FEM results (symbol). 
Strain rates are (a) 500%/min and (b) 0.5%/min, respectively. The volume fraction of inclusion 
is 5%. 
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Fig. 4. Bi-axial cyclic loading tests are conducted for visco-hyperelastic composite. Predictions 
of the homogenization model (lines) are compared with FEM results (symbol). Strain rates are 
(a) 500%/min and (b) 0.5%/min, respectively. The volume fraction of inclusion is 5%. 
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Fig. 5. Multi-axial loading tests are conducted for visco-hyperelastic composite (a) Loading 
profile is presented. (b, c) Predictions of the homogenization model (lines) are compared with 
FEM results (symbol). Volume fraction of inclusions are (b) 5% and (c) 10%, respectively.
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Fig. 6. Schematics of perfect bonding, interfacial spring model, and effective inclusion model. 
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Fig. 7. Uniaxial tension tests with different values of 𝛽 are conducted. Predictions of the 
homogenization model (lines) are compared with FEM results (symbol). The strain rate is 
500%/min and the volume fraction of inclusion is 5%. 


