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Abstract 

We propose a micromechanics-based mean-field homogenization scheme for the viscoelastic-

viscoplastic particulate-reinforced composite which is applicable to predict its mechanical 

response under complex loading conditions. We apply a formulation based on an incrementally 

affine scheme by using algorithmic tangent operators, while adaptively adjusting the strain of 

each constituent at every step of the loading process to ensure the consistency of the 

accumulated strain state and the concentration tensor. We name the method adaptive 

incrementally affine method. Despite mathematically rigorous derivation, the method has some 

errors in plastic deformation regime. We propose an assumption for better prediction which 

dropping out the affine strain and affine stress in adaptive scheme. We show that the adaptive 

incrementally affine scheme is able to predict the viscoelastic response very well. Still, it is 

inevitable that the plastic deformation of the composite is initiated earlier than our mean-field 

theoretical prediction because of the local stress concentration near the particulate. Hence, we 

propose a yield reduction method that enforces the earlier initiation of the plastic deformation 

in the matrix phase when obtaining an effective mechanical response. We show that the 

predictions from the adaptive incrementally affine scheme adjusted with the yield reduction 

match well with various numerical simulations on particulate-reinforced composites 

considering viscoelastic, elastic-viscoplastic, and viscoelastic-viscoplastic matrices under 

uniaxial, cyclic, and bi-axial loadings.  
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1. Introduction 

Rate-dependent viscoelastic-viscoplastic behavior occurs in many polymers and 

polymer composites. The viscoelastic-viscoplastic materials show not only a rate-dependent 

stress-strain response but also the various characteristic responses such as stress relaxation 

under constant strain, creep with constant stress, and residual strain under unloading to zero 

stress. This paper aims to propose a micromechanics-based mean-field homogenization scheme 

so called adaptive incrementally affine method that can predict the effective mechanical 

behavior of composite consisting of the viscoelastic-viscoplastic materials.  

For the linear elastic response, various mean-field homogenization models have been 

studied, including the Eshelby method (Eshelby, 1957), Mori-Tanaka method (Mori and Tanaka, 

1973), self-consistent method (Hershey, 1954; Hill, 1965), differential method (McLaughlin, 

1977; Norris, 1985), and double inclusion method (Hori and Nemat-Nasser, 1993). The 

homogenization models for the linear elasticity are first extended to thermo-elasticity 

(Camacho et al., 1990; Lielens, 1999; Pierard et al., 2004), and then to nonlinear responses 

involving viscosity or plasticity based on the similarity between the thermo-elastic constitutive 

equation and the linearized equations concerning viscoelastic, plastic, and viscoplastic 

responses. The homogenization methods for the viscoelastic composites were developed based 

on the correspondence principle (Friebel et al., 2006; Hashin, 1965, 1970; Laws and 

McLaughlin, 1978). In this line of studies, the local constitutive law in the time domain is 

converted to the Laplace-Carson domain before the application of the homogenization scheme. 

Then, the effective behavior of composite in the time domain is calculated from the inverse 

Laplace transform. This framework is extended to study the elasto-viscoplastic composites 

(Masson and Zaoui, 1999; Pierard, 2006; Pierard and Doghri, 2006a; Pierard et al., 2007). 

Unfortunately, the inversion of Laplace transform is mathematically complex even for the very 
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simple elasto-viscoplastic model, and its numerical implementation is complex and tricky for 

practical application.  

Hence, most recent studies have attempted to apply the homogenization scheme 

directly in the time domain without relying on the Laplace-Carson transform. An incremental 

method with a self-consistent scheme is proposed (Hill, 1965), Mori-Tanaka approach is 

applied with secant modulus (Tandon and Weng, 1988), and a similar approach with tangent 

modulus is suggested (Doghri and Ouaar, 2003). However, the prediction from the 

aforementioned incremental methods turned out to be significantly stiffer than the effective 

mechanical response of the composites measured in experiments or computed from elaborate 

finite element analyses (FEA). To resolve the issue, an incremental secant method relying on 

fictitious secant moduli is suggested (El Ghezal et al., 2019; Wu et al., 2013a, b). However, the 

proposed secant method can only be applied to monotonic loading or proportional loading. 

Additionally, several other methods have been proposed including incremental variational 

principle (Lahellec and Suquet, 2007a, b, c), interaction law (Mercier and Molinari, 2009; 

Molinari, 2002; Molinari et al., 1997), asymptotic homogenization (Frank and Brockman, 

2001), and cell model (Kim and Muliana, 2010). For the sake of accuracy, some researches 

consider second-order moments reflecting the variation of field (Doghri et al., 2011; Wu et al., 

2017; Wu et al., 2015). However, none of the aforementioned works offered the solution for 

resolving both the stiff prediction and limited loading issues. 

Recently, the incrementally affine method is devised as an alternative for resolving 

both problems (Doghri et al., 2010; Miled et al., 2013). The primary advantage of the 

incrementally affine method is that it is applicable under multi-axial loading as well. However, 

the predictions from the incrementally affine method also turned out to be significantly stiffer 

than the experiments and the FEA results. To soften its prediction, a heuristic isotropization 
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method was suggested that extracts the isotropic projection of anisotropic tangent operator for 

the homogenization procedure (Castañeda, 1996; Pierard and Doghri, 2006b). The 

regularization method which reduces the dependency of time increment has also been shown 

to soften the prediction as well (Doghri et al., 2010; Miled et al., 2011). However, both 

isotropization and regularization are empirical methods without rigorous mathematical 

reasoning or physical interpretation (Chaboche et al., 2005). It is found that, even with the 

isotropization and regularization methods, predictions from the incrementally affine method 

are still stiff.  

In the present study, we discussed the origin of the stiff prediction from the 

incrementally affine method and suggested the adaptive incrementally affine homogenization 

scheme that can be applied to analyze the viscoelastic-viscoplastic composites under complex 

loading conditions. We revealed that the inconsistency of accumulated stress caused the 

incorrect prediction of effective stiffness of the composites, and proposed a method to 

adaptively adjust the strain of each constituent at every step of the loading process to ensure 

the consistency of the accumulated strain state and the concentration tensor (Kim, 2020). We 

found that the adaptive incrementally affine method is able to correctly predict the viscoelastic 

response, while it cannot correctly describe the viscoplastic response despite mathematically 

rigorous derivation. So, we proposed an assumption for better prediction which dropping out 

the affine strain and affine stress in adaptive scheme. Although non-uniform stress distribution 

exists within the matrix near the particle-matrix interface (hence, the plastic deformation 

initiated locally near the particle), the strain/stress is determined from the average strain/stress 

over the entire matrix region in the mean-field homogenization. So, we proposed a yield 

reduction method to tune the prediction on the viscoplastic response, and validated the 

prediction from the homogenization scheme against the mechanical response of viscoelastic-
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viscoplastic composites under various loading conditions. The adaptive incrementally affine 

method has the following advantages. 

- Derivation without isotropization or regularization 

- Applicability to the cyclic and multi-axial loading conditions 

- Accurate prediction of the mechanical response of composites with viscoelastic, elasto-plastic, 

elasto-viscoplastic, and viscoelastic-viscoplastic properties.  

 This paper is organized as follows. Constitutive equations for modeling viscoelastic-

viscoplastic behavior are summarized in Section 2.1 Prony series is used for the linear 

viscoelastic model, and hardening function and viscoplastic function are introduced for the 

viscoplastic model. The return mapping algorithm is presented in Section 2.2. The adaptive 

incrementally affine method is described in Section 3. Rigorous derivation of adaptive 

incrementally affine method is presented in Section 3.1. Adaptive incrementally affine method 

with an assumption for better prediction is introduced in Section 3.2. Sprit of yield reduction 

method is introduced in Section 3.3. Prediction of the adaptive incrementally affine method is 

validated against the finite element method (FEM) results, and the results are discussed in 

Section 4. Conclusions are drawn in Section 5. 

Boldface letters indicate second- or fourth-order tensor and non-bold face letters 

indicate scalar values. (:) refers to double contraction and (⊗) refers to the dyadic product.  

𝒂: 𝒃 𝑎 𝑏 ;  𝑨: 𝒃 𝐴 𝑏 𝒂 ⊗ 𝒃 𝑎 𝑏  

 

2. Material modeling and numerical method 

2.1. Viscoelastic-viscoplastic modeling 
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We introduce the linear viscoelastic-viscoplastic model adopted in the present study, 

following the description of previous studies (Miled et al., 2013; Miled et al., 2011). In the 

viscoelastic-viscoplastic constitutive model, the total strain appears as the sum of the 

viscoelastic strain (𝜺𝒗𝒆) and viscoplastic strain (𝜺𝒗𝒑) as follows, 

𝜺 𝜺𝒗𝒆 𝜺𝒗𝒑. (1)

In linear viscoelastic modeling, Cauchy stress 𝝈 𝑡  is obtained by using the Boltzmann’s 

hereditary integral (Boltzmann, 1878) which include strain history over [ ∞, 𝑡] as 

𝝈 𝑡 𝑪 𝑡 𝜏 :
𝜕𝜺𝒗𝒆

𝜕𝜏
𝜕𝜏. (2)

Here, fourth-order stiffness tensor 𝑪 𝑡  for isotropic materials is defined as 

𝑪 𝑡 2𝐺 𝑡 𝑰 3𝐾 𝑡 𝑰  (3)

𝑰
1
3

𝟏 ⊗ 𝟏; 𝑰 𝑰 𝑰 ; 

where 𝟏 is second-order identity tensor and 𝑰 fourth-order identity tensor. 𝑰  and 𝑰  

are volumetric and deviatoric part of the fourth-order identity tensor, respectively. 𝐺 𝑡  and 

𝐾 𝑡  are elastic shear modulus and bulk modulus, respectively. The shear modulus and bulk 

modulus can be expressed in the form of prony series as follows, 

𝐺 𝑡 𝐺 𝐺 exp
𝑡

𝑔
 (4)

𝐾 𝑡 𝐾 𝐾 exp
𝑡

𝑘
 (5)

where 𝐺  and 𝐾  are long-term shear modulus and bulk modulus, 𝐺  and 𝐾  are 

relaxation moduli, and 𝑔  and 𝑘  are corresponding relaxation times. Substituting the Eq. (3) 

into Eq. (2), stress can be decomposed into a deviatoric part, 𝒔 𝑡 , and volumetric part, 𝜎 𝑡  

as follows,  
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𝒔 𝑡 2𝐺 𝝃𝒗𝒆 𝑡 𝒔𝒊 𝑡  (6)

𝜎 𝑡 3𝐾 𝜀 𝑡 𝜎 𝑡  (7)

where 𝝈 𝑡 𝒔 𝑡 𝜎 𝑡 𝟏; 𝜺𝒗𝒆 𝑡 𝝃𝒗𝒆 𝑡 𝜀 𝑡 𝟏 

where 𝝃𝒗𝒆 𝑡  and 𝜀 𝑡  are the deviatoric part and volumetric part of viscoelastic strain, 

respectively. Here, viscous stress 𝒔𝒊 𝑡  and 𝜎 𝑡  are defined as follows, 

𝒔𝒊 𝑡 ≡ 2𝐺 exp
𝑡

𝑔
exp

𝜏
𝑔

𝜕𝝃𝒗𝒆

𝜕𝜏
d𝜏 (8)

𝜎 𝑡 ≡ 3𝐾 exp
𝑡

𝑘
exp

𝜏
𝑘

𝜕𝜀
𝜕𝜏

d𝜏 (9)

One can rewrite Eqs. (8) and (9) to represent the update of viscous stress values within a single 

time step 𝑡 ∈ 𝑡 , 𝑡  as follows, 

𝒔𝒊 𝑡 exp
∆𝑡
𝑔

𝒔𝒊 𝑡 2𝐺 exp
𝜏 𝑡

𝑔
𝜕𝝃𝒗𝒆

𝜕𝜏
d𝜏 (10)

𝜎 𝑡 exp
∆𝑡
𝑘

𝜎 𝑡 3𝐾 exp
𝜏 𝑡

𝑘
𝜕𝜀

𝜕𝜏
d𝜏 (11)

For the numerical integration of Eq. (10, 11), one can either approximate the strain rates 

𝝃𝒗𝒆
,  within the time step 𝑡 , 𝑡  to be constant (Frank and Brockman, 2001), or 

apply the mid-point rule (Simo and Hughes, 2006). We use the first scheme for this study 

because the first method is rather insensitive to the time increment, ∆𝑡 , under constant 

viscoelastic strain rate (𝜀 ) condition (Miled et al., 2011). Then, the viscous stresses in Eq. 

(10, 11) can be arranged as follows, 

𝒔𝒊 𝑡 exp
∆𝑡
𝑔

𝒔𝒊 𝑡 2𝐺 ∆𝝃𝒗𝒆 (12)

𝜎 𝑡 exp
∆𝑡
𝑘

𝜎 𝑡 3𝐾 ∆𝜀  (13)

where 𝐺 ∆𝑡 ≡ 𝐺 1 exp
∆𝑡
𝑔

𝑔
∆𝑡

, (14)
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𝐾 ∆𝑡 ≡ 𝐾 1 exp
∆𝑡
𝑘

𝑘
∆𝑡

. (15)

Given the viscous stress, strain, and strain increment at 𝑡 , deviatoric stress and volumetric 

stress at 𝑡  are expressed as 

𝒔 𝑡 2𝐺 𝝃𝒗𝒆 𝑡 exp
∆𝑡
𝑔

𝒔𝒊 𝑡 2𝐺∆𝝃𝒗𝒆 (16)

𝜎 𝑡 3𝐾 𝜀 𝑡 exp
∆𝑡
𝑘

𝜎 𝑡 3𝐾∆𝜀 . (17)

Here, incremental relaxation moduli 𝐺 and 𝐾 are defined as follows,  

𝐺 ∆𝑡 ≡ 𝐺 𝐺  (18)

𝐾 ∆𝑡 ≡ 𝐾 𝐾 . (19)

Having introduced the viscoelastic part, we turn our attention to the viscoplastic 

response. Here, we adopted the classical 𝐽  viscoplastic model with isotropic hardening, rate-

dependent viscoplastic function. Yield function 𝑓 is defined as follows,  

𝑓 𝜎 , 𝑝, 𝜺 ≡ 𝜎 𝜎 𝜺 𝑅 𝑝 where 𝜎
3
2

𝒔: 𝒔 (20)

where 𝜎  is von mises equivalent stress, 𝑝  is accumulated plastic strain, 𝜺  is time 

derivative of strain, 𝜎  is yield stress, and 𝑅 𝑝  is hardening stress. The accumulated plastic 

strain 𝑝  is obtained by integrating the accumulated plastic strain rate 𝑝  over time as 

follows,  

𝑝 ≡ 𝑝 𝜏 d𝜏 where 𝑝
2
3

𝜺𝒗𝒑: 𝜺𝒗𝒑 (21)

For hardening response beyond the yield, isotropic hardening law is adopted with the power-

law as,   
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𝑅 𝑝 𝑘𝑝  (22)

where 𝑘 is hardening modulus and 𝑛 is hardening exponent. We note that the formulation 

can be readily extended to model nonlinear isotropic hardening and kinematic hardening 

(Doghri et al., 2010). Plastic strain rate 𝜺𝒗𝒑  follows the plastic flow rule as follows, 

𝜺𝒗𝒑 𝑝
𝜕𝑓
𝜕𝝈

𝑝𝑵 (23)

𝑵 ≡
𝜕𝑓
𝜕𝝈

3
2

𝒔
𝜎

 (24)

Here, the accumulated plastic strain rate 𝑝  is determined by a viscoplastic function, 

𝑔 𝜎 , 𝑝, 𝜺 , which is given in terms of von mises equivalent stress, accumulated plastic strain, 

and strain rate as follows, 

𝑝
𝑔 𝜎 , 𝑝, 𝜺 if 𝑓 0

0 if 𝑓 0.
 (25)

We note that the methodology proposed in this study can be applied to various forms of 

viscoplastic function (𝑔 ) such as Norton’s power law. In the numerical examples in the present 

study, we adopted the widely used viscoplastic function with a power-law, 

𝑔 𝜎 , 𝑝 𝜅
𝑓

𝜎 𝑅 𝑝
if 𝑓 0

0 if 𝑓 0
 (26)

where 𝜅 and 𝑚 are viscoplastic modulus and exponent, respectively.  

2.2. Return mapping algorithm for viscoelastic-viscoplastic materials 

For the numerical tracking of the inelastic response, we applied the return mapping 

algorithm which consists of predictor and corrector steps. The Cauchy stress at 𝑡  is expressed 

by the sum of Eq. (6) and Eq. (7) as follows,  

𝝈 𝑡 𝑪 : 𝜺𝒗𝒆 𝑡 𝒔𝒊 𝑡 𝜎 𝑡 𝟏 (27)
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where 𝑪 2𝐺 𝑰 3𝐾 𝑰 . 

First, by considering the elastic deformation only, the predictor stress, 𝝈𝒕𝒓𝒊𝒂𝒍, is obtained from 

Eq. (27) and Eqs. (16, 17) as follows, 

𝝈𝒕𝒓𝒊𝒂𝒍 𝑡 𝑪 : 𝜺𝒗𝒆 𝑡 𝑪: ∆𝜺 exp
∆𝑡
𝑔

𝒔𝒊 𝑡

exp
∆𝑡
𝑘

𝜎 𝑡 𝟏 

(28)

where 𝑪 2𝐺𝑰 3𝐾𝑰 . 

Then, one determines if the plastic deformation is involved by considering the trial yield 

function, 𝑓 , as follows,  

𝑓 𝜎 𝜎 𝜺 𝑅 𝑝 where 𝜎
3
2

𝝈𝒕𝒓𝒊𝒂𝒍: 𝝈𝒕𝒓𝒊𝒂𝒍  (29)

If 𝑓 0, deformation remains elastic region (∆𝜺𝒗𝒑 0) and the corrector step is not 

necessary (𝝈 𝑡 𝝈𝒕𝒓𝒊𝒂𝒍 𝑡 ). If 𝑓 0, which implies plastic deformation is involved, 

Cauchy stress at 𝑡  is adjusted as the correction of predictor stress as follows, 

𝝈 𝑡 𝝈𝒕𝒓𝒊𝒂𝒍 𝑡 𝑪: ∆𝜺𝒗𝒑. (30)

Combining Eq. (27) and Eq.(30), stress increment (∆𝝈 ≡ 𝝈 𝑡 𝝈 𝑡 ) over time step (𝑡 , 

𝑡 ) is expressed as follows, 

∆𝝈 𝑪: ∆𝜺 ∆𝜺𝒗𝒑 1 exp
∆𝑡
𝑔

𝒔𝒊 𝑡

1 exp
∆𝑡
𝑘

𝜎 𝑡 𝟏 

(31)

For the evaluation of the stress increment (∆𝝈) in Eq. (31), we approximate the viscoplastic 

strain increment (∆𝜺𝒗𝒑) from the flow rule (Eq. (23)) as 
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∆𝜺𝒗𝒑 ∆𝑝𝑵. (32)

For the unknown ∆𝑝 and 𝜎 , Eq. (33) and Eq. (34) should be satisfied at the same time. 

∆𝑝 𝑔 ∆𝑡 0 (33)

𝜎 3𝐺∆𝑝 𝜎 0 (34)

The accumulated plastic strain increment, ∆𝑝, is now can be obtained by iteratively solving  

Eq. (33) and Eq. (34) with Newton’s method (Doghri, 2013). 

 

3. Adaptive incrementally affine linearized homogenization  

In the present section, by improving the original incrementally affine scheme, we aim 

to propose a physically justifiable homogenization scheme based on the algorithmic tangent 

operator (𝑪𝟎
𝒂𝒍𝒈 , 𝑪𝟏

𝒂𝒍𝒈 ) without isotropization or regularization. In the incrementally affine 

method, stress for each phase (𝝈𝟎, 𝝈𝟏) are updated by accumulating their increments (∆𝝈𝟎, 

∆𝝈𝟏) at each time step. Stress increments (∆𝝈𝟎, ∆𝝈𝟏) are determined by tangent operators at 

𝑡  (𝑪𝟎
𝒂𝒍𝒈 𝑡 , 𝑪𝟏

𝒂𝒍𝒈 𝑡 ) and rather independent to the history of tangent operators 

(𝑪𝟎
𝒂𝒍𝒈 𝑡 , 𝑪𝟏

𝒕𝒂𝒍𝒈 𝑡  𝑡 ∈ 0, 𝑡 ) . However, the inconsistency between accumulated stresses 

(𝝈𝟎 𝑡 , 𝝈𝟏 𝑡 ) due to the change in tangent operators and the shape change of reinforcing 

particles is not taken into account in previous studies. We introduce the adaptive strain to 

correct the inconsistency. 

3.1. Adaptive incrementally affine method with rigorous derivation  

The previous study derived the relationship between stress increment (∆𝝈) and strain 

increment (∆𝜺) based on the incrementally affine linearization and defined the affine strain 

increment (∆𝜺𝒂𝒇) as follows (Miled et al., 2011), 
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∆𝝈 𝑪𝒂𝒍𝒈 𝑡 : ∆𝜺 ∆𝜺𝒂𝒇 . (35)

Algorithmic tangent operator (𝑪𝒂𝒍𝒈) is expressed as follows, 

𝑪𝒂𝒍𝒈 𝑪
2𝐺

𝟐

ℎ
𝑵 ⊗ 𝑵 2𝐺

𝟐 𝜎 ∆𝑝

𝜎 3𝐺∆𝑝

𝜕𝑵
𝜕𝝈

2𝐺
ℎ 𝑔,

𝑵 ⊗ 𝑔,𝜺 (36)

where ℎ ≡
1

∆𝑡 𝑔,
3𝐺

𝑔,

𝑔,
 (37)

𝑔, ≡
𝜕𝑔
𝜕𝜎

; 𝑔, ≡
𝜕𝑔
𝜕𝑝

; 𝑔, ≡
1

∆𝑡
𝜕𝑔
𝜕𝜺

; (38)

 

When the viscoplastic function (𝑔 ) is given as Eq. (26), Eq. (38) is arranged as follows. 

𝑔, 𝑚
𝑔
𝑓

;  𝑔, 𝑚𝑔
𝑑𝑅
𝑑𝑝

1
𝑓

1
𝜎 𝑅 𝑝

; 

ℎ
𝑓

∆𝑡 𝑚𝑔
3𝐺

𝑑𝑅
𝑑𝑝

𝜎
𝜎 𝑅 𝑝

; 
(39)

Affine strain increment (∆𝜺𝒂𝒇) is expressed as follows, 

∆𝜺𝒂𝒇 ≡ ∆𝜺𝐞𝐯𝐩
𝒂𝒇 𝑪 𝟏: 1 exp

∆𝑡
𝑔

𝒔𝒊 𝑡

1 exp
∆𝑡
𝑘

𝜎 𝑡 𝟏  

(40)

 

Here, the first term of Eq. (40) is related to inelastic strain increment and the second term of 

Eq. (40) is related to viscoelastic relaxation. In classical 𝐽  viscoplastic model, ∆𝜺𝐞𝐯𝐩
𝒂𝒇  is 

expressed as follows, 

∆𝜺𝐞𝐯𝐩
𝒂𝒇 𝑔 𝑡 ∆𝑡 𝑵 𝑡 𝑵 𝑡

𝑔, 𝑡 ∆𝑡
1 𝑔, 𝑡 ∆𝑡

. (41)

In incrementally affine formulation, linearized homogenization is developed using the analogy 

between thermo-elastic and viscoelastic-viscoplastic constitutive equations. Having obtained 

the linearized relationship, the Mori-Tanaka method, a representative mean-field 

homogenization scheme, is applied. When affine strain increments (∆𝜺𝟎
𝒂𝒇, ∆𝜺𝟏

𝒂𝒇) are zero, local 
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concentration tensor, 𝑩𝜺 , which links the averaged strain increment of the matrix to the 

averaged strain increment of the reinforcing particles is expressed as follows, 

〈∆𝛆〉 𝑩𝜺: 〈∆𝛆〉 when ∆𝜺𝟎
𝒂𝒇 ∆𝜺𝟏

𝒂𝒇 𝟎 (42)

𝑩𝜺 𝑰 𝑺: 𝑪𝟎
𝒂𝒍𝒈 ∶ 𝑪𝟏

𝒂𝒍𝒈 𝑪𝟎
𝒂𝒍𝒈  (43)

where 〈•〉 , 〈•〉  refer to the volume average over the matrix and particles, respectively. 

Subscript zero and one refer to the matrix and particles, respectively (ex. 𝑪𝟎
𝒂𝒍𝒈 refers to the 

algorithmic tangent operator of the matrix and 𝑪𝟏
𝒂𝒍𝒈 refers to the algorithmic tangent operator 

of the particle). 𝑺 is the Eshelby’s tensor which is a function of material properties of the 

matrix and shape of the particle. The relationship between Eshelby’s tensor (𝑺) and Hill’s 

polarization tensor (𝑷) is defined as follows (Masson, 2008), 

𝑃 ≡ 𝑺: 𝑪𝟎
𝒂𝒍𝒈 𝟏 1

4𝜋
𝑀 sin 𝜙 d𝜃d𝜙 (44)

where 𝑀
1
4

𝑁 𝜂 𝜂 𝑁 𝜂 𝜂 𝑁 𝜂 𝜂 𝑁 𝜂 𝜂   

𝜂
sin 𝜙 𝑐𝑜𝑠 𝜃

𝑎
; 𝜂

sin 𝜙 sin 𝜃
𝑎

; 𝜂
cos 𝜙

𝑎
;  

𝑁 𝑪𝟎
𝒂𝒍𝒈 𝜂 𝜂 ;

𝑥
𝑎

𝑥
𝑎

𝑥
𝑎

1  

where 𝑎 , 𝑎 , and 𝑎  are the length of the half-axis of the ellipsoidal particle. Global 

concentration, 𝑨𝜺, which links macro strain increment (∆�̅�) to strain average increment of the 

particle with zero affine strain increments is expressed as follows, 

𝑨𝜺 𝑩𝜺: 𝑣 𝑰 𝑣 𝑩𝜺  (45)

where 𝑣  and 𝑣  are volume fraction of the matrix and particles. Strain increments of the 

matrix and particle satisfy the following equation,  

∆𝜺 𝑣 〈∆𝛆〉 𝑣 〈∆𝛆〉 . (46)

The idea of this study is to correct the inconsistency between accumulated stresses (𝝈𝟎 𝑡 , 
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𝝈𝟏 𝑡 ) due to the change in tangent operators and the shape change of reinforcing particles. 

Each phases has stress and strain state at 𝑡  as as shown in Fig. 1 (a). In the sense of linearized 

comparison composite (LCC), stress and strain state can be related as follows, 

𝝈𝒊 𝑡 𝑪𝒊
𝒂𝒍𝒈: 𝜺𝒊 𝑡 𝝈𝒊

𝒂𝒇 𝑡 𝑪𝒊
𝒂𝒍𝒈: 𝜺𝒊 𝑡 𝜺𝒊

𝒂𝒇 𝑡  (47)

where 𝝈𝒊
𝒂𝒇 𝑡 𝑪𝒊

𝒂𝒍𝒈: 𝜺𝒊
𝒂𝒇 𝑡 . (48)

Subscript 𝑖 can be zero or one, which refers to state variable for the matrix and particle, 

respectively. We note that the sum of the affine strain increment (∆𝜺𝒊
𝒂𝒇) is not equal to the affine 

strain at 𝑡  because the modulus changes with strain. 

𝜺𝒊
𝒂𝒇 𝑡 ∆𝜺𝒊

𝒂𝒇 𝑡

𝒏

𝒌 𝟏

 (49)

Strain increment (∆𝜺𝒊) of each phase can be decomposed by strain increment in incrementally 

affine method (∆𝜺𝒊
𝒊𝒂) and strain increment in adaptive scheme (∆𝜺𝒊

𝒂𝒅) as follows, 

∆𝜺𝒊 𝜺𝒊 𝑡 𝜺𝒊 𝑡 ∆𝜺𝒊
𝒊𝒂 ∆𝜺𝒊

𝒂𝒅. (50)

∆𝜺𝒊
𝒊𝒂  is the term related to macro strain increment (∆𝜺), and ∆𝜺𝒊

𝒂𝒅  is the term related to 

correction of inconsistency between accumulated stresses. Similarly, the stress increment (∆𝝈𝒊) 

of each phase can be decomposed by stress increment in incrementally affine method (∆𝝈𝒊
𝒊𝒂) 

and strain increment in adaptive scheme (∆𝝈𝒊
𝒂𝒅) as follows, 

∆𝝈𝒊 𝝈𝒊 𝑡 𝝈𝒊 𝑡 ∆𝝈𝒊
𝒊𝒂 ∆𝝈𝒊

𝒂𝒅. (51)

Strain increment of particle in incrementally affine scheme, ∆𝜺𝟏
𝒊𝒂, is expressed as follows, and 

detailed explanation can be found in previous study (Miled et al., 2011). 

∆𝜺𝟏
𝒊𝒂 𝑨𝜺: ∆𝜺 𝑨𝜺 𝑰 : 𝑪𝟏

𝒂𝒍𝒈 𝑪𝟎
𝒂𝒍𝒈 : ∆𝝈𝟏

𝒊𝒂 𝑪𝟏
𝒂𝒍𝒈: ∆𝜺𝟏

𝒊𝒂 ∆𝝈𝟎
𝒊𝒂

𝑪𝟎
𝒂𝒍𝒈: ∆𝜺𝟎

𝒊𝒂  
(52)

In adaptive scheme, we aim to obtain strain which satisfy the strain concentration with updated 
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algorithmic tangent operators and shape of particles. Considering stress-strain state of Eq. (47), 

the strain concentration is calculated by following four steps, using the mathematical analogy 

between thermo-elastic and viscoelastic-viscoplastic. 

Step 1. Assuming affine stresses of each phase (𝝈𝒊
𝒂𝒇 𝑡 ) are zero and macro strain 𝜺 𝑡  is 

subjected to composite, strain of the particle is obtained as follows,  

𝜺𝟏
𝒔𝟏 𝑡 𝑨𝜺: 𝜺 𝑡 . (53)

Step 2. In the presence of affine stresses, strain increment, ∆𝜺𝒔𝟐, is imposed to each phase so 

that each phase has uniform strain and uniform stress state as follows, 

∆𝝈 𝑪𝟎
𝒂𝒍𝒈: ∆𝜺𝒔𝟐 𝝈𝟎

𝒂𝒇 𝑡 𝑪𝟏
𝒂𝒍𝒈: ∆𝜺𝒔𝟐 𝝈𝟏

𝒂𝒇 𝑡  (54)

∆𝜺𝒔𝟐 𝑪𝟏
𝒂𝒍𝒈 𝑪𝟎

𝒂𝒍𝒈 𝟏
: 𝝈𝟏

𝒂𝒇 𝑡 𝝈𝟎
𝒂𝒇 𝑡 . (55)

Step 3. Composite is subjected to macro strain increment, ∆𝜺𝒔𝟑, to eliminate the macro strain 

increment of step 2, which implies ∆𝜺𝒔𝟑 ∆𝜺𝒔𝟐.  

∆𝜺𝟏
𝒔𝟑 𝑨𝜺: ∆𝜺𝒔𝟑 𝑨𝜺: ∆𝜺𝒔𝟐 (56)

Step 4. Superposing the strains of step 1-3, strain of particle satisfies following relationship. 

𝜺𝟏 𝑡 𝑨𝜺: 𝜺 𝑡

𝑨𝜺 𝑰 : 𝑪𝟏 𝑪𝟎
𝟏: 𝝈𝟏 𝑡 𝑪𝟏

𝒂𝒍𝒈: 𝜺𝟏 𝑡 𝝈𝟎 𝑡

𝑪𝟎
𝒂𝒍𝒈: 𝜺𝟎 𝑡  

(57)

Here, algorithmic tangent operators (𝑪𝟎
𝒂𝒍𝒈 , 𝑪𝟏

𝒂𝒍𝒈) in Eqs. (53-57) are defined in time step 

(𝑡 , 𝑡 ). On the other hand, the algorithmic tangent operators and shape of particle are 

updated in time step (𝑡 , 𝑡 ). The idea of this study is to correct the inconsistency between 

accumulated stresses (𝝈𝟎 𝑡 , 𝝈𝟏 𝑡 ) by considering the strain adjustments in the matrix and 

particle ( ∆𝜺𝟎
𝒂𝒅, ∆𝜺𝟏

𝒂𝒅 ). The unknown strain adjustments ( ∆𝜺𝟎
𝒂𝒅, ∆𝜺𝟏

𝒂𝒅 ) satisfiy following 

relationship with updated algorithmic tangent operator and shape of particle.  
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𝜺𝟏 𝑡 ∆𝜺𝟏
𝒂𝒅 𝑨𝜺: 𝜺 𝑡

𝑨𝜺 𝑰 : 𝑪𝟏
𝒂𝒍𝒈 𝑪𝟎

𝒂𝒍𝒈 : 𝝈𝟏 𝑡 ∆𝝈𝟏
𝒂𝒅

𝑪𝟏
𝒂𝒍𝒈: 𝜺𝟏 𝑡 ∆𝜺𝟏

𝒂𝒅 𝝈𝟎 𝑡 ∆𝝈𝟎 𝑪𝟎
𝒂𝒍𝒈: 𝜺𝟎 𝑡 ∆𝜺𝟎

𝒂𝒅  

(58)

where ∆𝝈𝟎
𝒂𝒅 and ∆𝝈𝟏

𝒂𝒅 are stress changes in adaptive scheme. Here, the strain changes for 

each phase satisfy following condition so that the macro strain increment in adaptive scheme 

is zero. 

∆𝜺𝒂𝒅 𝑣 ∆𝜺𝟎
𝒂𝒅 𝑣 ∆𝜺𝟏

𝒂𝒅 0 (59)

Combining Eq. (52) and Eq. (58), strain of the particle at 𝑡  (𝜺𝟏 𝑡 ) is obtained as 

follows, 

𝜺𝟏 𝑡 𝜺𝟏 𝑡 ∆𝜺𝟏
𝑨𝜺: 𝜺 𝑡

𝑨𝜺 𝑰 : 𝑪𝟏
𝒂𝒍𝒈 𝑪𝟎

𝒂𝒍𝒈 : 𝝈𝟏 𝑡 𝑪𝟏
𝒂𝒍𝒈: 𝜺𝟏 𝑡 𝝈𝟎 𝑡

𝑪𝟎
𝒂𝒍𝒈: 𝜺𝟎 𝑡 . 

(60)

Eq. (60) is an implicit equation of ∆𝜺𝟏 because strain incrment of the matrix is determined by 

Eq. (46) and the algorithmic stiffness tensors and stress increments for each phase are 

determined by its strain increments. So, ∆𝜺𝟏 is obtained by backward iterative method and 

then other variables are determined. Macro stress increment is computed using the strain 

increments of each phase as follows,  

∆𝝈 𝑣 𝑪𝟎
𝒂𝒍𝒈: 〈∆𝜺〉 ∆𝜺𝟎

𝒂𝒇 𝑣 𝑪𝟏
𝒂𝒍𝒈: 〈∆𝜺〉 ∆𝜺𝟏

𝒂𝒇 . (61)

The effective algorithmic tangent operator of composite, 𝑪, is expressed as follows, 

𝑪 𝑣 𝑪𝟎
𝒂𝒍𝒈 𝑣 𝑪𝟏

𝒂𝒍𝒈: 𝑩𝜺 : 𝑣 𝑰 𝑣 𝑩𝜺 . (62)

To summarize, the adaptive incrementally affine homogenization proceeds following orders:  

1. Initialize the strain increment of the particles as macro strain increment 

〈∆𝜺〉 ∆�̅� 

2. Compute the algorithmic tangent operator ( 𝑪𝟏
𝒂𝒍𝒈 ) from Eq. (36) using 〈∆𝜺〉  and 
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〈𝜺 𝑡 〉  as inputs.  

3. The strain increment of the matrix is calculated from Eq. (46) 

4. Compute the algorithmic tangent operator ( 𝑪𝟎
𝒂𝒍𝒈 ) from Eq. (36) using 〈∆𝜺〉  and 

〈𝜺 𝑡 〉  as inputs. 

5. Eshelby’s tensor (𝑺) and local concentration tensor (𝑩𝜺) are computed from Eq. (44) and 

(43) using 𝑪𝟎
𝒂𝒍𝒈. 

6. Residual tensor 𝑹 is computed as follows,  

𝑹 𝑨𝜺: 𝜺 𝑡 𝜺𝟏 𝑡

𝑨𝜺 𝑰 : 𝑪𝟏
𝒂𝒍𝒈 𝑪𝟎

𝒂𝒍𝒈 : 𝝈𝟏 𝑡 𝑪𝟏
𝒂𝒍𝒈: 𝜺𝟏 𝑡 𝝈𝟎 𝑡

𝑪𝟎
𝒂𝒍𝒈: 𝜺𝟎 𝑡 . 

(63)

7-1. If |𝑹| tolerance, go to step 2 with a new trial from Eq. (64). 

〈𝜺𝟏 𝑡 〉 ← 〈𝜺𝟏 𝑡 〉 𝑹 (64)

7-2. If |𝑹| tolerance, then go to step 8. 

8. Macro stress increment and effective tangent operator are obtained from Eq. (61) and Eq. 

(62) 

 

3.2. Adaptive incrementally affine method for better prediction  

The adaptive incrementally affine method introduced in section 3.1 is mathematically rigorous, 

but it seems to involve some errors in the plastic deformation regime with finite particle volume 

fraction. In this section, we would like to suggest a method for better prediction by making an 

assumption. As shown in Fig. 1 (a), linearized state includes affine strain and affine stress. In 

this section, when we take the linearization for each phase, we made an assumption excluding 

affine strain and affine stress as shown in Fig. 1 (b). At this time, the algorithmic tangent 
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operator can be seen as a secant tangent operator considering the newly defined strain 

𝑪𝒊
𝒂𝒍𝒈 𝟏

: 𝝈𝒊 𝑡 . With the assumption, adaptive strain increments (∆𝜺𝟎
𝒂𝒅, ∆𝜺𝟏

𝒂𝒅) are derived in 

the following procedures.  

Step 1. When a fictitious strain increment ∆𝜺𝒔𝟏 is added to each phase at 𝑡  with updated 

𝑪𝒂𝒍𝒈 𝑡 , fictitious stresses (𝝈𝟎
∗ , 𝝈𝟏

∗ ) are evolved as follows, 

𝝈𝟎
∗ 𝑪𝟎

𝒂𝒍𝒈 𝑡 : ∆𝜺𝒔𝟏 𝝈𝟎 𝑡  (67)

𝝈𝟏
∗ 𝑪𝟏

𝒂𝒍𝒈 𝑡 : ∆𝜺𝒔𝟏 𝝈𝟏 𝑡  (68)

At this time, ∆𝜺𝒔𝟏 is set to satisfy the following local concentration condition, 

𝑪𝟏
𝒂𝒍𝒈 𝑡 : 𝝈𝟏

∗ 𝑩𝜺: 𝑪𝟎
𝒂𝒍𝒈 𝑡 : 𝝈𝟎

∗  (69)

Substituting the Eq. (67) and Eq. (68) into Eq. (69), the fictitious strain (∆𝜺𝒔𝟏) is expressed as 

follows,  

∆𝜺𝒔𝟏 𝑰 𝑩𝜺 : 𝑩𝜺: 𝑪𝟎
𝒂𝒍𝒈 𝑡 : 𝝈𝟎 𝑡 𝑪𝟏

𝒂𝒍𝒈 𝑡 : 𝝈𝟏 𝑡  (70)

Step 2. ∆𝜺𝒔𝟐 ∆𝜺𝒔𝟏  is applied to the composite sequentially, so that macro strain 

increment by fictitious strain is zero. When ∆𝜺𝒔𝟐 is applied to the composite, 𝑨𝜺: ∆𝜺𝒔𝟐 of 

strain change occurs in particles. The procedure of step 1 to step 2 is illustrated in Fig. 2. 

∆𝜺𝟏
𝒔𝟐 𝑨𝜺: ∆𝜺𝒔𝟐 𝑨𝜺: ∆𝜺𝒔𝟏 (71)

Step 3. Considering Eq. (55) and Eq. (56), strain increment of the particle by affine strain 

increment in adaptive scheme is obtained as follows, 

∆𝜺𝟏
𝒔𝟑 𝑨𝜺 𝑰 : 𝑪𝟏

𝒂𝒍𝒈 𝑪𝟎
𝒂𝒍𝒈 : 𝝈𝟏 𝑡 ∆𝝈𝟏

𝒂𝒅 𝑪𝟏
𝒂𝒍𝒈: 𝜺𝟏 𝑡 ∆𝜺𝟏

𝒂𝒅

𝝈𝟎 𝑡 ∆𝝈𝟎 𝑪𝟎
𝒂𝒍𝒈: 𝜺𝟎 𝑡 ∆𝜺𝟎

𝒂𝒅  
(72)

Step 4. Strain incremental of the particle in adaptive scheme is obtained by superposing step 

1-3 as follows, 
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∆𝜺𝟏
𝒂𝒅 𝑰 𝑨𝜺 : 𝑰 𝑩𝜺 : 𝑩𝜺: 𝑪𝟎

𝒂𝒍𝒈 𝑡 : 𝝈𝟎 𝑡 𝑪𝟏
𝒂𝒍𝒈 𝑡 : 𝝈𝟏 𝑡

𝑨𝜺 𝑰 : 𝑪𝟏
𝒂𝒍𝒈 𝑪𝟎

𝒂𝒍𝒈 : 𝝈𝟏 𝑡 ∆𝝈𝟏
𝒂𝒅

𝑪𝟏
𝒂𝒍𝒈: 𝜺𝟏 𝑡 ∆𝜺𝟏

𝒂𝒅 𝝈𝟎 𝑡 ∆𝝈𝟎 𝑪𝟎
𝒂𝒍𝒈: 𝜺𝟎 𝑡 ∆𝜺𝟎

𝒂𝒅  

(73)

Then, combining Eq. (52) and Eq. (73), strain increment of the particle during time step 

(𝑡 , 𝑡 ) is expressed as follows, 

〈∆𝜺〉 𝑨𝜺: ∆𝜺

𝑨𝜺 𝑰 : 𝑪𝟏
𝒂𝒍𝒈 𝑪𝟎

𝒂𝒍𝒈 : 𝝈𝟏 𝑡 𝑪𝟏
𝒂𝒍𝒈: 𝜺𝟏 𝑡 𝝈𝟎 𝑡

𝑪𝟎
𝒂𝒍𝒈: 𝜺𝟎 𝑡

𝑰 𝑨𝜺 : 𝑰 𝑩𝜺 : 𝑩𝜺: 𝑪𝟎
𝒂𝒍𝒈 𝑡 : 𝝈𝟎 𝑡

𝑪𝟏
𝒂𝒍𝒈 𝑡 : 𝝈𝟏 𝑡  

(74)

Here, only difference from Section 3.1 is that Eq. (75) and Eq. (76) are used instead of Eq. (63) 

and Eq. (64) for the procedure explained in Section 3.1. 

𝑹 𝑨𝜺: ∆𝜺 〈∆𝜺〉

𝑨𝜺 𝑰 : 𝑪𝟏
𝒂𝒍𝒈 𝑪𝟎

𝒂𝒍𝒈 : 𝝈𝟏 𝑡 𝑪𝟏
𝒂𝒍𝒈: 𝜺𝟏 𝑡 𝝈𝟎 𝑡

𝑪𝟎
𝒂𝒍𝒈: 𝜺𝟎 𝑡

𝑰 𝑨𝜺 : 𝑰 𝑩𝜺 : 𝑩𝜺: 𝑪𝟎
𝒂𝒍𝒈 𝑡 : 𝝈𝟎 𝑡

𝑪𝟏
𝒂𝒍𝒈 𝑡 : 𝝈𝟏 𝑡  

(75)

〈∆𝜺〉 ← 〈∆𝜺〉 𝑹 (76)

Adaptive incrementally affine method explained in this section is used for verification of 

Section 4 instead of mathematically rigorous formulas in Section 3.1.  

 

3.3. Yield reduction method 

Despite the elaborate formulation, we still find that the plastic deformation in FEM simulations 

is initiated earlier than in homogenization based on the adaptive incrementally affine method. 

This is expected because, while non-uniform stress occurs within the matrix around the 

particle-matrix interface in FEM, the strain/stress is determined from the average strain/stress 
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over the entire matrix region in mean-field homogenization. Hence, in the homogenization 

scheme, plastic deformation is not considered until the averaged mean-field stress satisfies the 

yield condition, while the region with local stress concentration undergoes the plastic 

deformation in FEM simulations. The non-uniformity of stress-field increases with the particle 

volume fraction due to enhanced particle-particle interaction. Hence, the greater discrepancy 

exists between the homogenization and FEM results for composites involving more reinforcing 

particles. To resolve the problem, we propose the yield reduction method (Eq. 77) which 

enforce the earlier initiation of the plastic deformation in the homogenization scheme as 

follows,  

𝜎 ← 1 𝑣 𝜎   for the matrix in homogenization (77)

A greater reduction of yield stress is applied with a larger volume fraction of particles to 

account for enhanced particle-particle interaction. The yield reduction method is applied only 

to the matrix not to the particles because the stress/strain field within ellipsoidal/spherical 

inclusions are almost uniform under the elastic regime and even after the initiation of the local 

plastic deformation 

 

4. Result and discussion 

We test the validity of our homogenization scheme against the FEM simulations of particle-

reinforced composites under complex loading conditions by varying the volume fraction and 

shape of particles. The commercial software ABAQUS (Abaqus, 2017) with UMAT code is 

used for FEM. FCC structured unit cells which have the ideal dispersion of particles in three-

dimensional space are used as shown in Fig. 3. Periodic boundary conditions are applied to 

every face of unit cells. For the unit cell with spherical particles (Fig. 3 (a)), 220,779 and 
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243,717 of quadratic tetrahedral elements are used for 5% and 15% of volume fraction, 

respectively. For the unit cell with ellipsoidal particles (Fig. 3 (b)), 343,311 of quadratic 

tetrahedral elements are used for 15% of volume fraction. Our homogenization scheme is 

implemented as the UMAT code in ABAQUS. Strain, strain increment, and stress are passed 

to UMAT at every step, and then UMAT returns the Cauchy stress and tangent operator of the 

next step according to the adaptive incremental affine method. While FEM is performed with 

numerous elements, a single brick element is used to obtain the prediction from the adaptive 

incrementally affine method. Various simulations are carried out for the cases considering 

viscoelastic, elastic-viscoplastic, and viscoelastic-viscoplastic matrices under uniaxial, cyclic, 

and bi-axial loading. Different strain rate are used for each tests (5 [1/s], 0.5 [1/s], 0.005 [1/s]) 

to test if the rate-dependency is well accounted for via our homogenization scheme. We note 

that verification is conducted using adaptive incrementally affine method introduced in Section 

3.2. 

 

4.1. Viscoelastic-viscoplastic matrix with elastic particles 

The material properties of the matrix and particles are shown in Table. 1. For the validation 

of viscoelastic behavior, a composite of the viscoelastic matrix reinforced with elastic spherical 

particles is tested. The yield stress of the matrix is set to infinity (𝜎 → ∞) to model viscoelastic 

behavior. Predictions from the adaptive incrementally affine method are compared to FEM 

results at 15% of the volume fraction in Fig. 4. While the incrementally affine method showed 

stiff prediction in viscoelastic composite (Miled et al., 2013), the adaptive incrementally affine 

method in Fig. 4 shows a very good match with FEM results (less than 1.3% of error). These 

results confirm that adaptive strain compensates for the inconsistency of accumulated stress 

according to the shape change of the particles, which was not considered in the previous 
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incrementally affine method.  

A composite of the elastic-viscoplastic matrix reinforced with elastic spherical particles is 

tested. Relaxation moduli in Table. 1 are set to zero to model elastic-viscoplastic behavior (𝐺

𝐾 0). Predictions are compared to FEM results at 5% and 15% of volume fractions in Fig. 

5. Predictions show a good match at 5% of volume fraction, but a notable discrepancy between 

predictions and FEM is observed at 15% of volume fraction in the plastic deformation region. 

On the other hand, the incrementally affine method with isotropization and regularization 

technique from the previous paper has some error even in small volume fraction (Fig. S.1). In 

the sense of mean-field homogenization, predictions should have good accuracy at low volume 

fraction, and error increases with volume fraction due to the interaction between particles. 

Comparing Fig. 5 and Fig. S.1, the adaptive incrementally affine method is assured to show 

better prediction in both small and finite volume fraction. Fig. 5 shows that the discrepancy 

between prediction and FEM results is caused because the plastic deformation initiates earlier 

in FEM than in the homogenization. As shown in Fig. 6, in FEM, plastic deformation initiate 

in local areas due to stress concentration while most areas still undergo elastic deformation. On 

the other hand, in homogenization, plastic deformation starts when mean-stress satisfies the 

yield condition. To compensate for the difference between FEM and homogenization, the yield 

reduction method (Eq. (77)) is applied to yield stress of the matrix in homogenization. Results 

from the adaptive incrementally affine method with yield reduction method for different strain 

rates are shown in Fig. 7. Predictions and FEM results with a different viscoplastic exponent 

(𝑚) are compared in Fig. 8. Predictions show a very good match with FEM results (less than 

2% of error). A maximum error is observed near the yield point. 

A composite of the viscoelastic-viscoplastic matrix reinforced with elastic spherical particles 

is tested. Fig. 9 (a, b) show predictions of the adaptive incrementally affine method without 
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yield reduction method, and Fig. 9 (c, d) show predictions of the adaptive incrementally affine 

method with yield reduction method. As we discussed before, predictions without yield 

reduction show better predictions at low volume fraction and notable errors at high volume 

fraction. On the other hand, predictions with yield reduction show a good match with FEM 

results (less than 2.3% of error). Results for 20% and 30% of volume fractions are shown in 

Fig. S.2 showing good prediction up to 20% of volume fraction. Results for adaptive 

incrementally affine with rigorous derivation explained in Section 3.1 are shown in Fig. S.3. 

The adaptive incrementally affine with rigorous derivation seems to involve error in plastic 

deformation regime. 

 Relaxation tests are conducted for the viscoelastic-viscoplastic matrix reinforced with 

elastic spherical particles as shown in Fig. 10. The composite specimen is loaded up to 0.03 of 

strain with different strain rates and then relaxed. Uniaxial cyclic tests are performed for the 

viscoelastic-viscoplastic matrix reinforced with elastic spherical particles as shown in Fig. 11. 

Even though the adaptive incrementally affine method without yield reduction shows fine 

results as shown in Fig. 11 (a), the adaptive incrementally affine method with yield reduction 

shows better predictions as shown in Fig. 11 (b). Predictions under two-cycle and three-cycle 

conditions are presented in Fig. S.4. Bi-axial tests are performed with different strain rates for 

the viscoelastic-viscoplastic matrix reinforced with elastic spherical particles as shown in Fig. 

12, Fig. 13, and Fig. 14. Strain rates in x-direction and y-direction are equal in Fig. 12. Strain 

rates in x-direction and y-direction have the same magnitude but opposite signs in Fig. 13. 

Strain rates in the y-direction are half of the strain rates of x-direction in Fig. 14. The adaptive 

incrementally affine method with yield reduction shows very good prediction under various  

loading conditions.  

Uniaxial loading tests are conducted for the viscoelastic-viscoplastic matrix reinforced with 
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elastic ellipsoidal particles as shown in Fig. 15. The aspect ratio of ellipsoidal particles is set 

to three and the unit cell in Fig. 3 (b) is used for FEM. Fig. 15 (a) shows the results when the 

x-directional loading is subjected to unit cell and Fig. 15 (b) shows the results when the y-

directional loading is subjected to the unit cell. It is observed that predictions with ellipsoidal 

particles have some errors compared to the predictions with spherical particles. Stresses of each 

phase are presented in Fig. 16 to investigate the origin of the errors. When the x-directional 

loading is subjected to the composite, prediction for the particle is a little soft. On the other 

hand, when the y-directional loading is subjected to the composite, predictions for the particle 

is a little stiff, and prediction for the matrix is a little soft. Notable errors are observed beyond 

the yield point. Violation of uniform field within the ellipsoidal particles is suspected as a cause 

of the errors which infringe the assumption of the Mori-Tanaka method. However, the adaptive 

incrementally affine method still demonstrates much improved prediction compared to the 

incrementally affine method from the previous paper. 

 

4.2. Elastic-viscoplastic matrix with elastic-viscoplastic particles 

Uniaxial tests are conducted when both the matrix and particles have elastic-viscoplastic 

behavior. Material properties for the matrix and particles are shown in Table. 2. Fig. 17 shows 

the results for predictions with and without yield reduction. Both methods show good 

prediction compared to FEM results (less than 2.3% of errors). Predictions with yield reduction 

are very close to the predictions without yield reduction (less than 0.6% of difference) because 

the ratio of yield stress to young’s modulus of the matrix is very small ( 𝜎 /𝐸

70 MPa / 70 GPa ). Even so, predictions with the yield reduction method show closer 

prediction to FEM results. 



26 

 

5. Conclusion 

In this study, we have developed the adaptive incrementally affine method which is 

applicable for predicting the mechanical response of viscoelastic-viscoplastic composite. We 

proposed an improved formulation of the incrementally affine method by considering the 

consistency of the concentration tensor and the stress state at each step of loading increment, 

which enables the correct prediction of the viscoelastic behavior. However the rigorous 

formulas seems to involve some errors in plastic deformation regime. So, we made an 

assumption dropping out the affine strain and affine stress in adaptive scheme, which leads to 

better prediction. Because the mean-field homogenization method does not fully account for 

the non-uniform distribution of stress field around the reinforcements, the initiation of the 

plastic deformation in realistic composite occurs earlier than the homogenization method. 

Hence, in order to resolve the issue, we propose the yield reduction method in which the yield 

stress of the matrix is assumed to be monotonically decreasing function of the reinforcement 

volume fraction. The prediction from the adaptive incremental affine homogenization scheme 

with yield reduction turns out to match well with the FEM simulation of viscoelastic, elastic-

viscoplastic, and viscoelastic-viscoplastic matrix composites under various loading conditions 

such as uniaxial, cyclic, and bi-axial loadings.   
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Tables 

Table 1. Material properties for viscoelastic-viscoplastic matrix and elastic particles 

Matrix    
Viscoelastic parameters    
Initial modulus  𝐺 1074 MPa 𝐾 3222 MPa  
𝐺  MPa  𝑔  s   𝐾 MPa   𝑘  s   
157 0.0021 472 0.007 
80 0.00378 242 0.126 
37 0.0248 111 0.216 
Viscoplastic parameters    
Yield stress 𝜎 35 MPa   
Hardening function 𝑘 150 MPa 𝑛 0.43  
Viscoplastic function 𝜅 150 s  𝑚 5  

Particle    
𝐺 31148 MPa   𝐾 45238 MPa   

 

 

Table 2. Material properties for elastic-viscoplastic matrix and particles 

 𝑮 𝐆𝐏𝐚  𝑲 𝐆𝐏𝐚  𝝈𝒚 𝐌𝐏𝐚  𝒌 𝐆𝐏𝐚 𝒏 𝜿 𝐬 𝟏  m 

Matrix 26.316 68.627 70 4 0.40 3 10  1.5 

Particle 155.52 311.53 400 8 0.40 2 10  1.5 
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Figures and captions 

 

 

 

Fig. 1. (a) Schematic of strain/stress state at 𝑡  (b) Schematic of linearized material with the 
assumption dropping out the affine strain and affine stress 
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Fig. 2. Schematic of adaptive scheme to obtain adaptive strain (∆𝜺𝟎
𝒂𝒅, ∆𝜺𝟏

𝒂𝒅 ). 𝝈𝟎
𝒂𝒅 and 𝝈𝟏

𝒂𝒅 
are updated accumulated stress by adaptive strain. 
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Fig. 3. Mesh configuration of ideal FCC structured two-phase composite reinforced with (a) 
spherical particles and (b) ellipsoidal particles, respectively. The aspect ratio of ellipsoidal 
particles is 3. Volume fractions for both are 15%. 
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Fig. 4. Uniaxial loading tests for the viscoelastic matrix reinforced with elastic particles. 
Adaptive incrementally affine homogenization (dashed lines) results are compared to FEM 
(symbols) results at different strain rates. The volume fraction of the particles is 15%. 
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Fig. 5. Uniaxial loading tests for the elastic-viscoplastic matrix reinforced with elastic particles. 
Adaptive incrementally affine homogenization (dashed lines) results are compared to FEM 
(symbols) results at different strain rates. Volume fraction of the particles are (a) 5% (b) 15%, 
respectively. 
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Fig. 6. Configuration of x-directional plastic strain components from 2D FEM simulation at 
0.01 of macro strain. Elastic deformation region and plastic deformation region coexist within 
the matrix.  
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Fig. 7. Uniaxial loading tests for the elastic-viscoplastic matrix reinforced with elastic particles. 
Adaptive incrementally affine homogenizations with yield reduction method (dashed lines) are 
compared to FEM (symbols) results at different strain rates. Volume fraction of the particles 
are (a) 5% (b) 15%, respectively. 
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Fig. 8. Uniaxial loading tests for the elastic-viscoplastic matrix reinforced with elastic particles. 
Adaptive incrementally affine homogenizations with yield reduction method (dashed lines) are 
compared to FEM (symbols) results with different viscoplastic exponents (𝑚). Volume fraction 
of the particles is 15% and strain rates are (a) 0.5 [1/s] and (b) 0.005 [1/s], respectively. 
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Fig. 9. Uniaxial loading tests for the viscoelastic-viscoplastic matrix reinforced with elastic 
particles. (a, b) Adaptive incrementally affine homogenizations without yield reduction method 
(dashed lines) and (c, d) Adaptive incrementally affine homogenizations with yield reduction 
method (dashed lines) are compared to FEM (symbols) results at different strain rates. Volume 
fraction of the particles are (a, c) 5% (b, d) 15%, respectively. 
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Fig. 10. Relaxation tests for the viscoelastic-viscoplastic matrix reinforced with elastic particles. 
Adaptive incrementally affine homogenizations with yield reduction method (dashed lines) are 
compared to FEM (symbols) results at different strain rates. Composite is loaded up to 0.03 of 
strain and relaxed. The volume fraction of the particles is 15%. 
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Fig. 11. Uniaxial cyclic tests for the viscoelastic-viscoplastic matrix reinforced with elastic 
particles. (a) Adaptive incrementally affine homogenizations without yield reduction method 
and (b) Adaptive incrementally affine homogenizations with yield reduction method (dashed 
lines) are compared to FEM (symbols) results. Volume fractions of the particles are 15% and 
strain rates are 0.5 [1/s]. 
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Fig. 12. Bi-axial loading tests for the viscoelastic-viscoplastic matrix reinforced with elastic 
particles. Adaptive incrementally affine homogenizations with yield reduction method (dashed 
lines) are compared to FEM (symbols) results at different strain rates. The y-directional strain 
rate is equal to the x-directional strain rate. The volume fraction of the particles is 15%. 
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Fig. 13. Bi-axial loading tests for the viscoelastic-viscoplastic matrix reinforced with elastic 
particles. Adaptive incrementally affine homogenizations with yield reduction method (dashed 
lines) are compared to FEM (symbols) results at different strain rates. Strain rates in x-direction 
and y-direction have the same magnitude but opposite sign. The volume fraction of the particles 
is 15%. 
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Fig. 14. Bi-axial loading tests for the viscoelastic-viscoplastic matrix reinforced with elastic 
particles. Adaptive incrementally affine homogenizations with yield reduction method (dashed 
lines) are compared to FEM (symbols) results at (a) ε 0.5 1/𝑠  and (b) ε
0.005 1/𝑠 . The y-directional strain rate is half of the x-directional strain rate. The volume 
fraction of the particles is 15%. 

  



45 

 

 

Fig. 15. Uniaxial loading tests for the viscoelastic-viscoplastic matrix reinforced with elastic 
ellipsoidal particles. Adaptive incrementally affine homogenizations with yield reduction 
method (dashed lines) are compared to FEM (symbols) results at different strain rates. When 
the major axis of ellipsoidal particles are parallel to the x-axis, (a) x-directional and (b) y-
directional loading is subjected to the composite. The volume fraction of the particles is 15% 
and the aspect ratio of particles is three. 
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Fig. 16. Stresses of each phase are presented when (a) x-directional and (b) y-directional 
loading is subjected to the viscoelastic-viscoplastic matrix reinforced with elastic ellipsoidal 
particles. Adaptive incrementally affine homogenizations with yield reduction method (dashed 
lines) are compared to FEM (symbols) results. The major axis of ellipsoidal particles with 
aspect ratio of 3 are parallel to the loading direction. The volume fraction of the particles is 15% 
and strain rates are 0.5 [1/s]. 
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Fig. 17. Uniaxial loading tests for the elastic-viscoplastic matrix reinforced with elastic-
viscoplastic particles. (a) Adaptive incrementally affine homogenizations without yield 
reduction method (dashed lines) and (b) Adaptive incrementally affine homogenizations with 
yield reduction method (dashed lines) are compared to FEM (symbols) results at different strain 
rates. The volume fraction of the particles is 15%. 
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Supplementary Figures and captions 

 

 

 

Fig. S.1. Uniaxial loading results for the elastic-viscoplastic matrix reinforced with elastic 
particles. Incrementally affine homogenization (dashed lines) results are compared to FEM 
(symbols) results at different strain rates. Isotropization and regularization is applied. Volume 
fraction of the particles are (a) 5% (b) 15%, respectively. 
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Fig. S.2. Uniaxial loading results for the viscoelastic-viscoplastic matrix reinforced with elastic 
particles. Adaptive incrementally affine homogenization with yield reduction method (dashed 
lines) results are compared to FEM (symbols) results at different strain rates. Volume fraction 
of the particles are (a) 20% (b) 30%, respectively. 
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Fig. S.3. Results for adaptive incrementally affine with rigorous derivation explained in Section 
3.1. (a, b) Adaptive incrementally affine homogenizations without yield reduction method 
(dashed lines) and (c, d) Adaptive incrementally affine homogenizations with yield reduction 
method (dashed lines) are compared to FEM (symbols) results at different strain rates. Volume 
fraction of the particles are (a, c) 5% (b, d) 15%, respectively.  
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Fig. S.4. Uniaxial cyclic tests for the viscoelastic-viscoplastic matrix reinforced with elastic 
particles. Adaptive incrementally affine homogenizations with yield reduction method (dashed 
lines) are compared to FEM (symbols) results under (a) two-cycle and (b) three-cycle condition. 
Volume fractions of the particles are 15% and strain rates are 0.5 [1/s]. 

 

 


