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Abstract

A nonrgodic ground-motion model explicitly takes systematic local source, path and
site effects on the predicted ground-motion into account. With an increasing number of
ground-motion records, it s possible to estimate these effects. Landwehr et al. (2016)
proposed a varying coefficient model as a tool to estimate nonergodic ground-motion
models, based on Gaussian processes. Gaussian processes are computationally expen-
sive, so for large data sets, some approximations have to be made. Here, we compare
different Bayesian implementations of varying coefficient models, using the probabilistic
programming language Stan (Carpenter et al., 2017), and the integrated nested Laplace
approximation (INLA) (Rue et al., 2009). The models are used to fit nonergodic models
on the California subset of the NGA-West2 data set (Ancheta et al., 2014). We find that
both implementations lead to very similar results, both in the estimated parameters and
the predicted ground motions.

1 Introduction

The goal of probabilistic seismic hazard analysis (PSHA) is to estimate the expected annual rate
of exceedance of a ground-motion parameter of interest for a particular site. For that purpose,
in PSHA one combines a seismic source model (SSC), which describes the temporal and spatial
occurrence of events, with a ground-motion model (GMM), which models the distribution of the
ground-motion parameter, given a particular earthquake scenario. The value of the standard
deviation of aleatory variability associated with the ground-motion distribution controls the
slope of the hazard curve, in particular at low exceedance rates (Bommer and Abrahamson,
2006).

GMMs are typically estimated empirically using a regression approach. Since empirical data
sets are sparse, one often relies on the ergodic assumption (Anderson and Brune, 1999) in some
way, which states that the ground-motion distribution over time at one station is the same as
the ground-motion distribution averaged over many stations in a particular region. Due to the
increasing number of ground-motion recordings over the last decades, it is possible to relax the
ergodic assumption, for example by estimating systematic station terms (e.g. Atkinson, 2006;
Rodriguez-Marek et al., 2014). In addition, recent GMMs often include regional adjustment
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terms (e.g. Stafford, 2014; Kotha et al., 2020; Sedaghati and Pezeshk, 2017; Parker et al.,
2020; Kuehn et al., 2020) to account for regional variations in site and distance scaling. These
adjustments, however, are still applicable on a large regional scale, and thus employ the ergodic
assumption over the regions underlying the models.

Different methods have been proposed to further relax the ergodic assumption with respect
to path effects (Sung and Lee, 2016; Anderson and Uchiyama, 2011; Kuehn and Abrahamson,
2020). Dawood and Rodriguez-Marek (2013) proposed to model source-to-site specific path
effects as the sum of atteuation over small cells, which was extended by Kuehn et al. (2019) using
Bayesian inference to account for the uncertainties associated with the cell-specific attenuation
coefficients. Landwehr et al. (2016) proposed a fully nonergodic GMM for California, based on
a varying coefficient model (VCM) (Gelfand et al., 2003; Bussas et al., 2015, 2017), where the
coefficients of the GMM are functions of source and site location. In the VCM of Landwehr
et al. (2016), however, the anelastic attenuation parameter was modeled as dependent only on
the event location, and thus did not fully capture path effects, which should depend on both
event and station locations. Abrahamson et al. (2019) combined the models of Landwehr et al.
(2016) and Kuehn et al. (2019) to calculate nonergodic PSHA for three sites in California. They
found that for sites with empirical data in the vicinity, differences between the (mean) ergodic
and nonergodic hazard curves can be quite large, while the mean nonergodic hazard curve for
a site with no empirical data close-by is similar to the mean ergodic hazard curve, but with
much wider fractiles, due to the epistemic uncertainty associated with the nonergodic terms.

Any relaxation of the ergodic assumption means that some pars of the GMM are estimated
with few data points; for example, when one calculates a regional adjustment to a coefficient,
the region under study has less data than the overall data set, and the coefficient is thus less
well constrained. It is thus very important to accurately estimate the epistemic uncertainties
associated with any nonergodic term, since otherwise the hazard would be underestimated
(Abrahamson et al., 2019).

In the VCM of Landwehr et al. (2016), the spatial dependence of the varying coefficients was
modeled using Gaussian processes (GPs) (Rasmussen and Williams, 2006). GPs are a attractive
choice for spatially varying parameters since they provide a flexible framework o model the
spatial dependence, while also providing good quantification of the associated uncertainty. In
Bayesian nonparametrics (Hjort et al., 2010), a GP can be thought of as a prior over functions.
Hence, we do not need to know the exact functional form of the spatial dependence; it is
estimated from data, with some constraints set by the form of the GP. The GP formulation
also lends itself to a good quantification of uncertainty in ranges where data is sparse (Landwehr
et al., 2016) – this uncertainty can be calculated as the posterior distribution of the function
describing the spatial dependence.

While GPs provide an elegant mathematical framework for estimating nonergodic GMMs
and assess the associated uncertainty, they do, however, have the drawback that they do not
scale well to large data sets. In particular, estimating the parameters of a GP (as well as
predicting new data points using a GP) requires the calculation of the inverse of large covari-
ance matrices, which is computationally expensive. For large data sets, this requires some
approximations to the covariance matrix. In the future, the size of strong-motion data sets will
continue to increase, as more data becomes available. This offers many modeling opportunities,
since more data allows one to better constrain nonergodic effects. On the other hand, this also
poses computational challenges, as models with spatial components are harder to estimate. It
is therefore necessary to explore how nonergodic models can be fit efficiently for large data sets.

Landwehr et al. (2016) estimated the parameters of their nonergodic GMM by maximizing
the marginal likelihood of the data (cf. Chapter 5.4.1 in Rasmussen and Williams (2006)),
which gives point estimates of the parameters. However, parameters are often associated with
considerable uncertainty, which should not be ignored. Hence, instead of point estimates it is
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Figure 1: Caption

better to work with the posterior distribution of all parameters, and estimate the models via
full Bayesian inference. Here, we compare different implementations of Bayesian nonergodic
models (a combination of a VCM with the cell-specific attenuation model of (Kuehn et al.,
2019)). We estimate nonergodic models using three different methods: (1) a full Bayesian
approach without approximation to the GP, estimated via Hamiltonian Monte Carlo (HMC)
sampling (Neal, 2011; Betancourt, 2017; Betancourt and Girolami, 2015); (2) a full Bayesian
approach using the nearest neighbour GP, (Datta et al., 2016a), which is an approximation too
a full GP, estimated via HMC; and (3) a full Bayesian approach using the integrated nested
Laplace approximation (INLA) (Rue et al., 2009). We compare the resulting nonergodic models,
in terms of their estimated parameters, and their predictions.

2 Data

The parameters of the nonergodic adjustment models are estimated using the Western US data
from the model of Abrahamson et al. (2014). The dataset comprises 12018 records from 274
earthquakes and 1479 stations. For simplicity, we use the same data set for each of the three
ergodic base GMMs (ASK14, BSSA14, CB14). The event and station locations are is shown
in Figure 1. We estimate the nonergodic adjustment models for a pseudo-spectral acceleration
(PSA) with a period of T = 0.02s. The median predictions for the ergodic base GMMs are
calculated using the python package pygmm (Kottke, 2016).

For the cell-specific attenuation, we use the same cells as Kuehn et al. (2019), who used
cells of about 25× 25km. The cell-specific distances are calculated as a straight line from the
closest point on the rupture to the station. Hence, the The coordinates of the events are the
latitude and longitude of the hypocenter coordinates in degrees.
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3 Nonergodic GMMs and PSHA

The general approach to performing nonergodic PSHA is outlined in e.g. Abrahamson et al.
(2019); Villani and Abrahamson (2015); Kuehn and Abrahamson (2020). The key difference
between an nonergodic and an ergodic ground-motion model is that the nonergodic GMM
explicitly takes into account repeatable, systematic source, path and site effects. These sys-
tematic effects are location specific; hence, the median prediction of a GMM becomes location
dependent

µnonergodic(~x,~te,~ts) = µergodic(~x) + feq(~te) + fpath(~te,~ts) + fstat(~ts) (1)

where feq(~te), fpath(~te,~ts), fstat(~ts) are the location-specific source, path and site effects, respec-
tively; and ~te and ~ts are the event and site coordinates. µergodic(~x) is the prediction of an ergodic
GMM, and ~x is a vector of predictor variables such as magnitude, distance, time averaged shear
wave velocity in the upper 30m VS30, and so on.

For the current study, location-specific nonergodic adjustment terms are calculated for the
empirical GMMs of Abrahamson et al. (2014); Boore et al. (2014); Campbell and Bozorgnia
(2014), hereafter called ASK14, BSSA14, and CB14. The nonergodic adjustment terms are
based on a varying coefficient model Landwehr et al. (2016); Bussas et al. (2017), and the cell-
specific attenuation model Dawood and Rodriguez-Marek (2013); Kuehn et al. (2019). We do
not calculate adjustment terms for the model of Chiou and Youngs (2014), because it models
the anelastic attenuation term as magnitude dependent, which is difficult to incorporate into
the cell-specific attenuation model.

The nonergodic adjustment models are estimated via regression from California data. We
use two main methods (different programs) to estimate the nonergodic models: (1) Bayesian
inference via Markov Chain Monte Carlo (MCMC) sampling using the program Stan (Car-
penter et al., 2017); (2) Bayesian inference vie the R-INLA package (Rue et al., 2009, 2017;
Bivand et al., 2015). For Stan, we describe an exact GP model model, as well as the nearest
neighbour Gaussian process approximation (Datta et al., 2016a). There are some differences
in the methods, described below. From a practical point of view, the main differences are in
the runtime of different approaches. The exact version of Stan takes about 120 hours for the
California dataset, the nearest neighbour approximation runs for about 20 hours, and INLA
runs about 2 hours.

3.1 Nonergodic Adjustment Models

This section describes the formulation of the nonergodic adjustment models.
We assume that we have an ergodic GMM, whose median prediction can be calculated by

µGMM = fGMM(~c; ~x) (2)

where ~x is a vector of predictor variables such as magnitude, distance and so on; and ~c is a vector
of coefficients of the model. We want to make this GMM nonergodic, which means that we
need to adjust the median prediction with systematic, location-specific nonergodic adjustment
terms.

The adjustment terms are an earthquake-specific constant; a site-specific constant; and a
cell-specific anelastic attenuation term. Following Landwehr et al. (2016), the constants are
modeled as spatially correlated (i.e., they are distributed according to a Gaussian process).
The geometrical spreading is modeled as ergodic (i.e. not spatially varying); this is in line with
most partially nonergodic models, which only regionalize the constant, linear site scaling, and
anelastic attenuation. The cell-specific anelastic attenuation coefficient is modeled as in Kuehn
et al. (2019), following Dawood and Rodriguez-Marek (2013). We also include an intercept, to
account for any model misspecification.
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Hence, the full model can be written as

lnY = c0 + fGMM(~c; ~x) + δceq(~te) + δcstat(~ts)

− fattn,GMM(RRUP )−
NC∑
j=1

cca,j∆Rj

+ δB0 + δW0 + δS2S0 (3)

The δceq/stat-terms are the location-specific adjustment terms for evens and stations, and ~te/s are
the event and station locations. The term fattn,GMM(RRUP ) is the anelastic attenuation function

in the GMM; it is taken out and replaced by the cell-specific attenuation,
∑NC

i=1 cca,i∆Ri, where
cca,i is the coefficient for cell i, and Ri is the length of the path within the ith cell. We constrain
the cell-specific attenuation coefficients to be positive, so the full attenuation term has a negative
sign. δB0, δS2S0, δW0 are the remaining, spatially uncorrelated between-event, site-to-site, and
within-event/within-site residual. These residuals are assumed to follow normal distributions
with between-event variability τ0, site-to-site variability φS2S,0, and within-event/within-site
variability φ0.

δB0 ∼ N(0, τ0) (4)

δS2S0 ∼ N(0, φS2S,0) (5)

δW0 ∼ N(0, φ0) (6)

The location-specific constants (δceq(~te) and δcsite(~ts)) are distributed according to a Gaussian
process prior, as in Landwehr et al. (2016)

δc ∼ GP (0, k(~t,~t′) (7)

where k(~t,~t′) is the covariance function that determines how the adjustment terms can vary.
Since the δc are adjustments to an ergodic base model, a zero mean function is appropriate. De-
pending on the method to estimate the ergodic adjustment terms, we either use an exponential
covariance function (for estimation with Stan) or a Matérn covariance function (for estimation
with INLA).

In CB14, the anelastic attenuation coefficient is applied to records wih RRUP > 80km. We
apply the same constraint to the cell-specific attenuation model, if the base model is CB14.
Hence, in this case the cell-specific distance ∆Rj is zero if the total distance up that point is
less than 80km.

A quick word on notation and terminology: In the following, the adjustment terms for
events δceq, and stations δcstat, are treated mathematically the same. Hence, we often refer
to them in the text as δc, which implies that the corresponding explanation applies to both
event and station adjustments. Similarly we use ~t for the locations when speaking generally
about the model. Parameters that govern the distribution of other parameters (such as τ
governs the distribution of event terms) are called hyperparameters. We refer to parameters
whose distribution is controlled by hyperparameters as latent parameters or effects. Latent
parameters are for example the event and station terms, as well as the adjustment terms δc.

Below, we describe the derivations of the nonergodic models, using both Stan and INLA.
We provide code to run the models using the computer environment R (R Core Team, 2020) at
https://github.com/nikuehn/NonergodicGMMS_STAN_INLA.

3.2 Derivation of Nonergodic Parameters using Stan

First, we describe how the parameters of the nonergodic adjustment model described in the
previous section are estimated using full Bayesian inference, via MCMC sampling with the
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program Stan (Carpenter et al., 2017). The covariance function we use is the exponential
covariance function, as in Landwehr et al. (2016)

k(~t,~t′) = ψ2 exp

(
−|
~t− ~t′|
`

)
(8)

where ψ determines the range how much the adjustment terms can vary, and ` is a spatial
correlation length-scale. Depending on whether the GP is modeling the source or site-specific
adjustment terms, we use either the event or site locations in Equation (8).

In general, one can integrate out all latent adjustment terms (non-ergodic adjustment terms
as well as event and site terms) in Equation (3), which leads to a model where the target variable
is distributed according to a multivariate normal distribution

~Y ∼ N(µ,Σ) (9)

where

µi = c0 + fGMM(~c; ~xi)− fattn,GMM(RRUP,i)−
NC∑
j=1

cca,j∆Ri,j (10)

The covariance matrix is

Sigmaij = δijφ
2
0 + δeq(i),eq(j)τ

2
0 + δstat(i),stat(j)φ

2
S2S,0 + keq(~te,~t

′
e) + kstat(~ts,~t

′
s) (11)

where δij equals 1 if i == j and zero otherwise, and eq(i) and stat(i) are indices connecting
an event or station with record i. However, Σ is of size N × N , and is not sparse, so it is
impractical to work with Equation (9), since one has to calculate the inverse of Σ multiple
times during the estimation of the model parameters.

If we do not integrate out the latent parameters, but treat them as parameters to be esti-
mated, then the likelihood of the data factorizes, conditional on the latent effects. Since the
posterior distribution of the parameters (~θ, which encompasses all parameters and latent param-
eters of the model) is proportional to the product of the likelihood and the prior distribution,
we can write the full log-posterior distribution (up to a constant) as

ln p(~θ|D) = ln p(c0, τ0, φS2S,0, φSS,0, ψeq, `eq, ψstat, `stat, µca, ψca)

+

NE∑
i=1

ln p(δB0,i|0, τ) +

NS∑
j=1

p(δS2S0,j|0, φS2S)

+ ln p(~δceq|~0,Keq) + ln p(~δcstat|~0,Kstat)

+

NC∑
j=1

p(cca,j|µca, σca)−
NC∑
j=1

ln(1− cdf(0|µca, ψca))

+
N∑
k=1

ln p(yk|µk + δBeq(k) + δS2Sstat(k) + δceq(k) + δcstat(k), φSS) (12)

where D denotes the data, and p(·|m, s) is the probability density function of a normal dis-
tribution with mean m and standard deviation s (or a multivariate normal distribution if the
argument is a vector). In Equation (12), the first line describes the prior distribution for the
intercept c0 and the hyper-parameters of the model (i.e., parameters that govern the distribu-
tion of the latent effects). The second line describes the prior distributions for the systematic,
non-spatially varying event and station terms. These are independent of each other, and are
normally distributed with mean zero and standard deviation τ0 and φS2S,0.
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The third line in Equation (12) is the prior distribution of the systematic event and station
terms, which is a multivariate normal distribution with mean zero and covariance matrix Keq/sat

defined by the covariance function (cf. Equation (8)). The covariance matrix Keq has size
NE ×NE.

The fourth line in Equation (12) is the prior distribution for the cell-specific attenuation
models. We follow the formulation of Kuehn et al. (2019), and assume that the cell-specific
attenuation coefficients are distributed according to a truncated normal distribution. Here, we
constrain the parameters to be positive, so the prior distribution is lower truncated at zero,
and the second term is the required adjustment to the untruncated density. A Stan program
consists of statements that increments the log-density for each component of the model, so
Equation (12) is straightforward ti implement.

For GPs, informative prior distributions are important, to constrain the range of the pa-
rameters, and help to avoid possible trade-offs. For the intercept c0, we do not believe that it
is very large, since the models should be approximately centered. Hence, we give it a normal
prior with a small standard deviation

c0 ∼ N(0, 0.1) (13)

For the standard deviation parameters φ0, τ0, φS2S,0, we use a lognormal distribution that
discourages values below 0.2 and above 1.2.

φ0 ∼ lognormal(ln(0.5), 0.5) (14)

τ0 ∼ lognormal(ln(0.5), 0.5) (15)

φS2S,0 ∼ lognormal(ln(0.5), 0.5) (16)

The rationale for the prior distributions for the scale parameters of the GPs, ψ, is to
penalize too large values of ψ, since these would be a strong deviation from the ergodic base
model (Simpson et al., 2017). We do believe that the nonergodic values exist, but we need to
see strong evidence in the data to model them. Hence, we use an exponential distribution as
the prior for these parameters

ψeq ∼ exponential(20) (17)

ψstat ∼ exponential(20) (18)

Kuehn et al. (2020) compared prior distributions for regional partially nonergodic parameters
based on an exponential distribution and a half-cauchy distribution, which is sometimes used
as a prior for standard deviations in Bayesian hierarchical models (Gelman, 2006). They found
that the exponential distribution gave better results.

For the length-scale `, we use an inverse Gamma distribution as a prior distribution 1, since
this discourages both very small and very large length-scales. We scale the parameters of the
inverse Gamma distribution such that length scales below 0.06 and above 1.2 are discouraged.
This leads to the following prior distributions

`eq ∼ inv gamma(3, 0.5) (19)

`stat ∼ inv gamma(3, 0.5) (20)

For the cell-specific attenuation coefficients, we constrain them to be positive, and then use
a minus sign in Equation (3). The cell-specific coefficients cca are distributed according to a
normal distribution with mean µψ ca and standard deviation ψc ca. The prior distribution for
the mean attenuation is a lognormal distribution (which is why we constrain the parameters to

1based on https://betanalpha.github.io/assets/case_studies/gp_part3/part3.html
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be positive) with median ln 0.011, while the prior distribution for the standard deviation is a
truncated Student-t distribution with degrees of freedom ν = 3.

cca ∼ N(µc ca, ψc ca) T (0, ) (21)

µc ca ∼ LN(−4.5, 0.5) (22)

ψc ca ∼ student-t(3, 0, 0.01) T (0, ) (23)

3.2.1 Nearest Neighbour Gaussian Process

In the Stan code of the model, the computational bottleneck is the calculation of the covariance
matrices Kstat and Keq and their Cholesky decompositions. The size of these matrices (in
particular Kstat) leads to long runtimes of the Stan program. One way to overcome this issue
is to use an approximation to the covariance matrices. Here, we use a nearest neighbour
Gaussian process (NNGP) (Datta et al., 2016a,b) to approximate the original GP. The basic

idea behind the NNGP is to represent the multivariate variables ~δc as a directed acyclic graph
(DAG)

p(~δc) ∼ p(δc1)
N∏
i=2

p(δci|Pa[i]) (24)

where δci = δc(~ti), and Pa[i] is the set of parents for δci. In the NNGP, the size of Pa[i] is shrunk
to a small number (corresponding to the nearest neighbors of ~ti), leading to a sparse covariance
matrix, which can be exploited computationally. For details on the NNGP approximation, see
(Datta et al., 2016a,b; Finley et al., 2018; Zhang et al., 2018; Zhang, 2018). The calculation of
the likelihood of the NNGP is taken from Zhang (2018).

For our models, we use a number of 10 nearest neighbours for events and stations. We use
the same prior distributions as in the Stan program without the NNGP approximation.

3.2.2 Running the Stan Programs

We run the Stan programs using the command line interface cmdstan. We run four chains for
each case, with 1000 warm-up samples and 1000 samples post warm-up.

3.3 Derivation of Nonergodic Parameters using INLA

In the previous section, we described how the nonergodic parameters are calculated using Stan.
Via Stan, the parameters are estimated using MCMC sampling, which means that the outcome
of the program are samples of the full posterior distribution of all parameters. From these
samples, one can assess summary statistics such as mean, median, standard deviation for each
parameter, or correlations between different parameters.

By contrast, INLA (Rue et al., 2009) provides a deterministic method to perform Bayesian
inference by approximating posterior marginal distributions. The INLA method is implemented
in the R-package R-INLA (www.r-inla.org) (Rue et al., 2017). For an introduction to INLA
and example models, see e.g. Krainski et al. (2018); Gomez-Rubio (2020). In particular, INLA
can be used for efficiently estimating spatial models combining latent Gaussian models with
stochastic partial differential equations (SPDEs) (Lindgren et al., 2011; Lindgren and Rue,
2015; Bakka et al., 2018).

Using INLA for the estimation of spatial models requires a slight change of the covariance
function. In Equation (8), we have used an exponential covariance function. The covariance
function used in INLA is a Matérn covariance function

K(~t,~t′) = ψ22(1−ν)

Γ(ν)
(κ|~t− ~t′|)νKν(κ|~t− ~t′|) (25)
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Figure 2: Mesh used for the INLA models. Red dots are the stations, blue dots are the events.

where Γ is the gamma function, Kν is the modified Bessel function of the second kind, κ is a
scale parameter and ν is a smoothness parameter. For ν = 0.5, the Matérn covariance function
becomes the exponential covariance function (Rasmussen and Williams, 2006). The default
value in INLA for GPs with two-dimensional coordinates is ν = 1 (Lindgren and Rue, 2015;
Bakka et al., 2018). Other values are possible, but require an additional approximation.

Spatial modeling with INLA approximates a spatial process (in our case, the systematic
event and station terms) with a basis function approximation (Lindgren et al., 2011; Krainski
et al., 2018). The basis functions are evaluated on nodes of a triangular mesh. We generate
a mesh that covers the state of California and the observed events and stations, We use a
mesh that encompasses the observed data points, with an outer bound of 0.5 degrees. The
maximum triangle edge length is 0.05 degrees, and 0.25 degrees in the outer bound. The final
mesh consists of 17794 nodes and is shown in Figure 2.

Based on this mesh, we fit the model and estimate the parameters. The parameters are the
same as before, but the systematic terms now are distributed according to a GP with Matérn
covariance with ν = 1. The prior specification is different compared to the Stan implementation.
In INLA, the normal distribution is parameterized in terms of mean and precision, which is
defined as prec = 1

σ2 (i.e. precision is one over variance). For the variance components of the
non-spatially varying terms (τ0, φ0, φS2S,0), we place Gamma distribution on the corresponding
precision parameters. The prior distributions have shape parameter 2 and rate parameter 0.5

ln precτ ∼ G(2, 0.5) (26)

ln precφ0 ∼ G(2, 0.5) (27)

ln precφS2S,0
∼ G(2, 0.5) (28)

Thus, the prior distributions for the precisions have a mean of 4, which corresponds to a value
of the standard deviation of 0.5, which is similar to the prior specification that was used in the
Stan implementation.

We again assume that the base models should be approximately centered, and assign a
normal distribution with mean zero and precision 100 to the intercept c0.

The prior values for the parameters controlling the spatially varying parameters are so-called
penalized complexity (PC) priors (Simpson et al., 2017; Fuglstad et al., 2019; Franco-Villoria
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Table 1: Model selection criteria for ergodic and nonergodic NLA models.

GMM WAIC (ergodic) WAIC (VCM) CPO (ergodic) CPO (VCM)

ASK14 20044.2 18982.8 10074.4 9541.43
BSSA14 19923.3 18857.9 10016. 9480.

CB14 19922.4 19361.2 10014.2 9729.19

et al., 2018). These priors shrink the model towards a base model without a spatial component
(i.e. they penalize the extra complexity of the spatial components). The simpler base model

has zero variance and infinite range, where the range is defined as ` =
√
8ν
κ

. The PC prior can
be specified through the tail probabilities P (ψ > ψ0) = α1 and P (` < `) = α2. We assume the
same values for both the spatial model associated with the event and station terms. We use
the following prior specification for the PC-prior of the spatially varying coefficients

P (ψeq/stat > 0.23) = 0.01 (29)

P (`eq/stat < 0.0.45) = 0.9 (30)

(31)

These values are derived from the prior distributions on the spatial hyperparameters used in
the Stan program. For details on penalized complexity priors in the context of VCMs, see
Franco-Villoria et al. (2019).

The anelastic attenuation term is implemented in the INLA model as a fixed effect (corre-
sponding to µca in Equation (22)) and cell-specific adjustment coeffients. The prior distribution
for the fixed effect is a normal distribution with mean −0.01 and precision 10000. The cell-
specific adjustment coefficients are implemented as generic random effects, since they can be
written as

NC∑
i=1

cca,i∆Ri = Z~cca (32)

where Z is a matrix of size N ×NC , whose i, jth entry corresponds to the fraction of path in
cell j for record i. The R-INLA package contains a module to specify random effects of the form
Z~c, where Z is the design matrix of the random effects, and ~c is a vector of random effects.

4 Results

In this section, we briefly summarize results of the different models. We compare the poste-
rior distributions of the estimated parameters, for the different base models and the different
estimation procedures. For the Stan based models, we assess the posterior distribution via the
post warm-up samples from the MCMC chains, while the outcome of INLA are approximations
of the marginal posterior distributions for the different parameters. For comparison, we also
estimated a model without spatially varying coefficients with INLA, i.e. a model that only ac-
counts for an intercept, event terms δB and station terms δS. In traditional GMM terminology,
such a model would be called partially ergodic, since it accounts for systematic station terms,
but for brevity we call this model ergodic.

In Table 1, we compare the model fit of the ergodic INLA models and the INLA VCMs, based
on the widely applicable information criterion (WAIC, Watanabe, 2013), and the Conditional
Predictive Ordinate (CPO, Pettit, 1990). For both criteria, lower values indicate a better fit.
In Table (1), the VCMs perform better than the ergodic models, which is in line with previous
results by e.g. Landwehr et al. (2016); Kuehn et al. (2019), and also aligns with our expectation
that moving from an ergodic to nonergodic models should lead to model improvement.
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Figure 3: Posterior density of the intercept of nonergodic models for different base GMMs and
estimation procedures. For comparison, the intercepts of ergodic models are also shown.

Overall, the results are quite similar between the full Stan model, the NNGP Stan model,
and the INLA model. Depending on the parameter, there can be some differences between
the adjustment models based on the different base models. This is not really surprising, since
the NGA West 2 models can be quite different for small magnitudes, and thus the event and
station terms for individual events/stations can be strongly affected by different scaling of the
base models.

Figure 3 shows the posterior distributions of the intercept c0. In general, all models show
similar behavior. We can also see that the intercept is different between the ergodic and
nonergodic models. This can be due to the fact that an ergodic models can be biased towards
regions where data is more abundant. One can also see that the posterior distribution for the
VCMs is a bit wider than for the ergodic model. This is not surprising, since the model is
distributed over more terms, which leads to larger uncertainty.

Figure 4 shows the posterior distributions of the standard deviations of the non-spatially
varying terms (δB0, δS0, δW0), i.e. of τ0, φS2S,0, φSS,0. Again, we also show the results of an
ergodic INLA run for comparison. As expected, we get a reduction for the nonergodic models
compared to the ergodic runs. The largest decrease occurs for φS2S, which is line with results
of Chao et al. (2020). The results between the different approaches and base models are quite
similar, in particular for within-event/within-station standard deviation φ0, and site-to-site
standard deviation φS2S,0. For CB14, there is less of a reduction in φ0, which is probably due to
the fact that the anelastic attenuation term only applies for distances RRUP > 80km in CB14.
For the between-event standard deviation τ0, the differences are a bit larger. On reason could be
that the between-model variability of the three base models is larger a small magnitudes, where
the bulk of the data is. Overall, though, the differences between the Stan results and INLA
results is quite small. In particular, the full Bayesian model and the NNGP model produce
almost identical results.

The posterior distributions of the hyperparameters describing the spatially varying event
and station terms are shown in Figure 5 and 6. The standard deviations of the systematic event
terms (ψeq) are quite consistent, but there are some differences in the posterior distributions of
the length scales. In particular, the INLA models lead to larger length scales. This is probably
due to the different prior specification, as the PC prior used in INLA tries to shrink the
estimates towards a simpler base model with infinite spatial range. A similar picture emerges
for the hyperparameters associated with the systematic station terms, with INLA models having
larger length scales. In this case, the models based on CB14 also have lager systematic standard
deviations ψstat. This might be due to the fact that the anelastic attenuation in CB14 only
applies to records with distances R > 80km. For the other base models (ASK14 and BSSA14),
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Figure 4: Posterior density of the standard deviations of the non-spatially varying terms, for
different base GMMs and estimation procedures: (a) aleatory within-event/within-site variabil-
ity φ0; (b) aleatory between-event variability τ0; (c) epistemic aleatory between-site variability
φS2S,0. For comparison, the distributions for ergodic models are shown as well.
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Figure 5: Posterior densities of (a) the standard deviation; and (b) the length scale associated
with spatially varying event terms.
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Figure 6: Posterior densities of (a) the standard deviation; and (b) the length scale associated
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Figure 7: Posterior densities of (a) the standard deviation of the cell-specific atenuation coef-
ficients; (b) the mean anelastic attenuation. Vertical bars in (b) are the anelastic attenuation
coefficients of the ergodic base models.

some of those records are affected by the cell-specific attenuation, while in CB14 some of the
systematic effects might be mapped into station terms.

The parameters controlling the anelastic attenuation are shown in Figure 7. We can see
a similar picture as before, with almost identical results between the full Stan model and the
NNGP approximation, and only small differences on the INLA models. As already observed by
Kuehn et al. (2019), the differences for cell-specific parameters based on ASK14 and BSSA14
are almost negligible. Similar to other parameters the CB14 model shows a slightly different
behavior, due to its different anelastic attenuation model. Figure 7(b) shows the mean atten-
uation µca, and for comparison the values of the (absolute) ergodic attenuation coefficients.
These are different, due to the fact that the majority of the data is from Southern California,
so the ergodic attenuation coefficients are biased towards Southern California. Kuehn et al.
(2019) found that the ergodic attenuation coefficient is a weighted average of the cell-specific
attenuation coefficients, with weights corresponding to the number of paths in each cell.

Figure 8 shows the difference in the cell-specific attenuation coefficients, based on the full
Stan model, the NNGP model, and the INLA model. As previously seen, the full Stan model
and the NNGP Stan model give very similar results. The INLA coefficients generally follow
a similar trend; however, we can see that there are a few cell-specific coefficients that are
negative, which leads to a positive anelastic attenuation, which is unphysical. For the Stan

13



●●●

●
●●●
●
●●●●
●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●●
●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●●
●

●●
●●
●

●
●

●

●●

●

●
●●●

●●

●

●●
●

●●
●

●

●

●

●●
●

●

●●

●

●

●
●●

●
●

●●

●
●●

●●

●
●

●●

●●
●●

●

●●
●
●

●

●

●●
●●

●●●●

●

●
●●●●
●
●

●

●

●

●

●

●
●

●
●●

●
●●

●

●
●
●

●
●

●

●

●
●

●
●

●

●
●

●●

●

●

●
●●

●

●

●

●●

●●●●●
●●●

●●●●

●

●

●

●

●

●●

●

●

●●

●
●

●
●
●

●●
●

●●

●
●

●

●

●
●

●
●
●

●
●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●●●

●

●
●

●

●●●●

●●

●●
●●

●

●
●
●●
●

●

●●

●
●

●

●

●

●
●

●

●●
●

●
●

●●●●●
●

●●

●

●
●

●

●
●

●

●●●
●●●●●●

●

●●

●

●

●

●

●
●

●

●

●
●
●●●●●●●
●●

●

●

●

●
●

●

●

●

●●

●

●●●●
●

●
●

●

●

●

●

●

●

●
●●●

●
●●

●
●

●

●
●

●

●

●

●●●
●●●●●
●

●●●●●
●●●

●

●●●
○○
○

○

○
○
○
○
○○

○○

○
○

○

○○

○
○

○

○

○
○

○

○

○

○

○

○

○

○

○
○

○

○

○

○

○

○
○○
○

○○

○

○

○
○

○

○

○
○
○

○○

○
○

○

○

○

○

○

○
○

○○
○

○○
○
○
○

○

○

○

○
○

○

○
○○○

○○

○

○
○

○

○
○

○

○

○

○

○
○

○
○

○

○

○

○

○

○
○

○

○

○○

○

○
○

○
○

○
○

○
○

○
○

○
○

○

○
○

○

○

○

○

○
○

○○

○
○
○
○

○

○
○○○○
○
○

○

○

○

○

○

○○

○
○○

○

○
○

○

○
○

○

○

○

○

○

○
○

○
○

○

○

○

○

○

○

○
○

○○

○

○

○

○
○

○○○○○

○○○

○○
○○

○

○

○

○

○

○

○

○

○

○○

○
○

○
○
○

○
○
○

○○

○

○
○

○

○

○ ○
○
○

○
○
○

○

○

○

○

○
○

○
○

○
○

○

○

○

○

○

○

○

○

○
○○○○

○

○
○

○

○○
○○

○○

○
○○
○

○

○

○

○
○

○
○

○○

○

○

○

○

○

○
○

○

○○

○
○

○

○○
○○
○

○

○○

○

○○

○

○
○

○

○
○○

○
○○○○
○

○

○○

○

○

○

○

○

○

○

○

○
○

○
○○
○○○
○
○
○

○

○

○

○○

○

○

○

○
○

○

○○
○
○
○

○○

○

○

○

○

○

○

○
○

○
○

○
○○○

○

○

○
○

○

○

○

○
○○○
○○

○○

○

○
○○
○○
○
○○

○

○○○

���� ���� ���� ����

����

����

����

����

��� (���� ���� �����)

� �
�

● ����

○ ����

●●●

●
●
●●
●
●●●●
●

●
●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●●

●

●

●●

●

●

●
●●

●●

●
●

●

●

●
●

●

●
●

●●
●

●●
●●●

●
●

●

●●

●

●
●●●

●●

●
●
●

●

●
●

●

●
●

●

●●●●

●●

●

●

●
●
●

●
●

●●

●
●●

●●

●
●

●
●●●

●●

●

●●
●
●

●

●

●●

●●
●
●
●●

●

●
●●●●●
●

●

●

●

●

●

●
●

●
●●

●
●●

●

●●
●

●
●

●

●

●
●

●●

●

●
●

●●

●

●

●

●●

●

●

●

●●

●●●●
●

●●
●

●●●●

●
●

●

●

●

●●

●
●

●●

●
●

●
●●

●●
●

●●

●

●
●

●

●
●

●
●
●

●
●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●●●
●

●
●

●

●●
●●

●
●

●
●
●●

●

●
●
●●
●

●

●●

●
●

●

●

●

●
●

●

●●●

●
●

●
●●●●

●
●●

●

●
●

●

●
●

●

●
●●
●●●●●●

●
●●

●

●

●

●

●

●

●

●
●●

●
●●
●●●●●●

●

●

●

●●

●

●

●

●●

●

●●●●
●

●●

●

●

●

●

●

●

●
●●●

●
●●●

●

●
●

●
●

●

●

●●●
●●●
●●

●
●●●●
●●●
●

●

●●●○○○

○

○
○
○
○
○
○
○○

○
○

○

○○

○
○

○

○

○
○

○

○

○

○

○

○

○

○

○
○

○

○

○

○

○

○
○○
○

○
○

○

○

○
○

○

○

○
○
○

○○

○
○

○

○

○

○

○

○

○

○○

○

○○

○
○
○

○

○

○

○
○

○

○
○○○

○○

○

○
○

○

○

○

○

○

○

○

○
○
○

○

○

○

○

○

○

○
○

○

○

○
○

○
○○

○
○

○
○

○○

○○

○
○

○

○○
○

○

○

○

○○

○○

○

○
○
○

○

○

○○○○
○
○

○

○

○

○

○

○○

○
○○

○

○○

○

○
○

○
○

○

○

○

○
○

○○

○

○

○

○

○

○

○
○

○○

○

○

○

○
○

○○○○○

○
○○

○○
○○

○
○

○

○

○

○

○

○

○

○○

○

○

○
○○

○○
○

○○

○

○

○

○

○

○
○

○
○

○
○
○

○

○

○

○

○
○

○
○

○
○

○

○

○

○

○

○

○

○

○

○○○○

○

○
○

○

○○
○○

○
○

○

○
○○

○

○

○

○
○

○
○

○○

○

○

○

○

○

○
○

○

○○
○

○

○

○○
○○○

○○○

○

○
○

○

○
○

○

○
○○

○○○○○
○

○

○○

○

○

○

○

○

○

○

○

○
○

○

○
○
○○○○
○
○

○

○

○

○○

○

○

○

○
○

○

○○
○
○
○

○○

○

○

○

○

○

○

○

○
○○

○
○○

○

○

○

○

○
○

○

○

○
○○
○○○
○○

○

○
○○
○○
○○
○

○

○○○

���� ���� ���� ����

����

����

����

����

��� (���� ���� �����)

� �
�

● ����

○ ����

●●●●●●●●●

●
●

●

●
●

●
●●●

●

●●

●

●
●●●●●
●

●
●

●
●●●
●

●
●
●

●●

●●●●●

●
●

●
●

●

●

●
●●●
●
●●

●
●●

●●
●
●
●●●●

●
●●●

●
●●

●

●

●●
●●

●

●●●●●●
●

●

●●●
●
●

●●
●●

●
●

●●●●

●

●

●
●●
●
●

●●●●●●
●
●
●●●●
●

●●

●

●
●

●
●●●

●
●●●●●●

●

●●●

●

●●
●
●

●
●
●●
●

●●
●●●

●●

●●

●●●●●●●●●●
●

●
●
●●

●●

●
●
●

●
●●●●
●
●

●●

●
●
●

●

●

●
●

●

●
●●●

●●
●

●

●
●●

●

●●

●

●
●

●

●
●●

●
●●●●●

●●●●●
●●●●●

●

●

●

●

●
●●●●
●
●

●●●●

●

●

●
●

●●●●●●
●

●
●●●

●
●

●
●

●

●

●

●
●

●●●
●●●●●●
●

●●

●

●

●

●

●
●●●
●●●

●
●
●

●●

●

●

●
●

●●●●
●●●
●

●●
●●

●
●

●●
●

●●●

●

●
●●●●●
●●

●●●●
●●

●
●●●

○
○

○

○
○
○

○○

○

○

○
○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○○

○

○

○

○

○

○

○ ○
○
○

○○

○

○

○

○

○

○

○

○
○
○

○

○
○

○

○
○

○
○

○

○
○
○○
○

○

○
○○

○

○

○

○

○

○

○○

○

○
○
○

○○

○

○

○

○○
○

○
○

○
○

○
○

○

○

○○
○
○

○

○

○

○

○

○

○

○
○○

○

○
○

○

○

○○
○

○

○

○

○

○

○

○

○

○
○

○

○

○○

○
○○

○

○

○○
○

○

○
○

○

○

○

○

○

○

○

○

○
○

○
○

○

○

○
○

○

○○○○

○
○
○
○○

○

○
○
○

○

○

○

○

○

○

○

○○○
○

○

○

○
○

○
○
○

○

○

○

○

○

○

○

○

○

○
○

○

○

○

○○

○

○
○

○

○

○

○

○

○

○

○

○
○○○○

○○

○

○

○
○○

○

○○○

○

○

○

○

○

○
○
○

○

○

○○○
○

○

○

○

○

○
○○

○

○

○

○

○

○○○

○

○
○○

○

○

○

○

○

○
○
○○

○

○○

○

○

○

○
○

○

○

○

○

○

○

○

○

○○
○

○

○○

○

○

○

○

○

○

○
○○

○

○
○

○

○

○

○
○○

○

○

○
○

○

○

○○

○

○

○

○

○
○
○
○
○

○○
○○

○○

○

○○○

���� ���� ���� ����

����

����

����

����

��� (���� ���� �����)

� �
�

● ����

○ ����

Figure 8: Comparison of mean cell-specific coefficients for different estimation precedures. (a)
ASK14 base model; (b) BSSA14 base model; (c) CB14 base model.
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Figure 9: (a) Correlation of spatially varying event terms, depending on separation distance.
Shown are the range of correlations basd on the posterior distribution of `eq, as well as correla-
tions based on point estimates of the posterior (mean/median of posterior distribution of `eq).
(b) Covariance of spatiall varying event terms, taking into account uncertainty of ψeq. The
ergodic base model is ASK, the nonergodic adjustment model is NNGP.

models, we used a truncated normal distribution (cf. Equation (12)) as the prior distribution
for the cell-specific effects, while we use an untruncated normal distribution in INLA. The
number of negative cell-specific attenuation coefficients is small, and in a forward prediction
they should be set to zero.

The posterior distributions of the hyperparameters `eq and ψeq, governing the distribution
of the spatially varying even terms, are shown in Figure 5. The impact of the uncertainty in
the hyperparameters on the correlation/covariance for different separation distances |~te − ~t′e|
is shown in Figure 9, for the ASK14 NNGP model. For each sample of the posterior distri-
bution, we calculate the correlation and covariance for different separation distances according
to Equation (8). The 5%,95% quantiles, as well as mean and median, of the resulting correla-
tions/covariances are shown in Figure 9. We also show the correlations/covariances, calculated
with the mean and median of the posterior distributions.

The range of possible correlation/covariance values is quite broad, reflecting the uncertainty
in the values of `eq and ψeq. A full nonergodic PSHA would take the uncertainty in the
correlation/covariance into account. However, we will show in Section Prediction of Spatial
Terms that the impact of his uncertainty on prediction of spatial terms is very small.
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Figure 10: Runtime in hours for the different models. For the Stan models, the average time
of four chains is plotted.

4.1 Runtime of Different Models

Figure 10 shows the absolute runtime of the different models in hours. We can see that using the
NNGP approximation in Stan results in a five-fold speedup compared to the full Stan model.
Since the estimated parameters between these two models are almost indistinguishable, this
means that the use of the NNGP model can be used to estimate a Bayesian nonergodic VCM
for larger data sets and/or more target variables. However, the runtime for the NNGP Stan
model is sill quite long with about 20h. By contrast, the INLA model takes only about 1-2h to
run, with very similar results to the other models.

One should not overinterpret absolute runtimes, as they depend on the load of the computer.
We also ran 1000 warm-up and post warm-up samples for the Stan models; in general, the
adaptation phase of HMC is quite fast, so one could potentially reduce the number of the
warm-up iterations, which would lead to a smaller runtime.

5 Calculating Predictions

Following Landwehr et al. (2016), we have cast the nonergodic adjustment models as VCMs
with GP priors on the adjustment terms. Hence, the predictive distribution of adjustment
term δc∗ for a new location ~t∗ is a normal distribution with predictive mean µ∗ and predictive
standard deviation ψ∗. we can calculate the predictive distribution by conditioning on observed
values (cf. Equations (2.18) and (2.19) in Rasmussen and Williams (2006))

p(δc∗|~δc) = N(µ∗, ψ∗) (33)

µ∗ = ~kTK−1 ~δc (34)

ψ2
∗ = k∗ − ~kTK−1~k (35)

where K is the covariance matrix of the observed systematic effects, and ~k is a vector whose
components are the covariance of the new location ~t∗ with the observed locations ~t. The entries
of K and ~k can be calculated from the covariance function with the appropriate coordinates.
In our case, δc is either the event or site adjustment, associated with the coordinates of the
hypocenter or the site, respectively.

Note that the formulation in Equation (33) is different from the corresponding Equation in
Landwehr et al. (2016). They integrated out all the nonergodic coefficients, and thus condi-
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tioned on the observed PSA values to calculate the predictive distribution. This means that
the matrix K in Equations (34) and (35) needs to include the aleatory variance, since the ob-
servations are not noise-free (cf. Equation (2.20) to (2.21) in (Rasmussen and Williams, 2006)).

By contrast, in our case we explicitly estimate the adjustment terms ~δc as latent variables;
they are not integrated out. Since the latent adjustment variables are theoretically considered
noise-free, the matrix K does not include aleatory variability terms. The values of ~δc, however,
are estimated from data, and thus are associated with epistemic uncertainty. If this uncertainty
is ignored, then the estimated predictive uncertainty will potentially be too small.

In general, one needs to integrate over the posterior distribution of the parameters governing
the nonergodic adjustments to account for their uncertainty in the predictive distribution. Thus,
the posterior predictive distribution of adjustment terms can be calculated by

p (δc∗|D) =

∫
p
(
δc∗|~δc, ψ, `

)
p
(
~δc, ψ, `|D

)
d
(
~δc, ψ, `

)
(36)

Given samples from the posterior distribution, the integral can be approximated bu

p(δc∗|D) ≈ 1

M

M∑
m=1

p
(
δc∗|~δc

(m)
, ψ(m), `(m)

)
(37)

where superscript (m) denotes the mth sample from the posterior distribution.
Calculating the predictive distribution p(δc∗|D) from samples of the posterior distribution

requires calculating and inverting the covariance matrix K for each sample of the posterior
distribution, which can be computationally expensive. If one considers only uncertainty in the
latent variables ~δc, and assumes that this uncertainty is Gaussian, then one can calculate the
predictive distribution as (Lavrentiadis et al., 2021)

µ∗ = ~kTK−1~µδc (38)

ψ2
∗ = k∗ − ~kTK−1~k + ~kTK−1Ψδc(K

−1~k)T (39)

where ~µδc is a vector comprising the means of the posterior distributions of the estimated ~δc
values, and Ψδc is a diagonal matrix whose entries are the variances of the posterior distributions
of the estimated ~δc values.

For the Stan models, one can calculate the predictive distribution at a new location according
to Equations (38) and (39) (using a point estimate of the hyperparameters to calculate the

covariances k∗, ~k, and K), or via Equation (37) if one wants to take the full uncertainty into
account. The R-INLA package provides tools to sample from the posterior distribution of the
model at the mesh nodes, which can then be interpolated to a new location. The samples
from the INLA model at new locations implicitly take the full uncertainty of all locations into
account.

5.1 Prediction of Spatial Terms

Figure 11 shows maps of the mean of systematic event terms δceq over California, for the
ASK14 base model. We calculate the values for the mesh nodes shown in Figure 2. For the
INLA model, the output contains mean and quantiles of the marginal posterior distribution
for the systematic terms at each mesh node. For the Stan models, we calculate the values of
the systematic terms at each mesh node based on Equation (38) and (39); for the values of the
hyperparameters ψeq and `eq, we use the median of the respective posterior distributions.

As before, Figure 11 shows relatively small differences between the Stan models and the
INLA model. This is concordant with Figure 5, where the posterior distributions of ψeq and
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Figure 11: Spatially varying event terms δceq, for different estimation methods, and ASK14 as
the base model.
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Figure 12: Epistemic uncertainty associated with spatially varying event terms δceq, for different
estimation methods, and ASK14 as the base model.

`eq are similar. We show similar maps for the other ergodic base models, as well as maps for
the systematic site terms δcstat, in the electronic supplement.

The corresponding epistemic uncertainties are shown in Figure 12. The maps are quite
similar, with INLA predicting slightly higher uncertainty. The uncertainty associated with the
spatial event adjustment terms δceq ranges from 0.075 in the vicinity of observed events to 0.131
in regions where observed events are sparse.

In Figures 13 and 14 we compare the predictive mean µ∗ and standard deviation ψ∗ of the
Stan ASK14 NNGP model, calculated for each mesh node, and based on different methods to
take into account the epistemic uncertainty of the latent function values ~δceq and hyperparam-
eters ψeq and `eq. We compare four different variations:

• Model A: Taking into account the epistemic uncertainty of the latent function values
~δc, and the hyperparameters ψeq and `eq, based on posterior samples. The predictive
distributions at each mesh node are calculated according to Equation (37).

• Model B: Similar to Model A, but now we only take into account epistemic uncertainty in
the late function values ~δceq. For the hyperparameters, we use the median of the posterior
distribution. Predictions are again calculated according to Equation (37).
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Figure 13: Difference in mean predictions of spatially varying event terms, for the ASK14 NNGP
model, based on different methods to take into account uncertainty. (a) mean prediction µ∗ of
model B minus mean prediction µ∗ of model A. (b) mean prediction µ∗ of model C minus mean
prediction µ∗ of model A. See text for description of models A, B, C.

• Model C: The predictive distribution is calculated according to Equations (38) and (39).
For the hyperparameters, we use the median of the posterior distributions. The matrix
Ψδc is a diagonal matrix whose entries are the variances of the posterior distributions of
the estimated ~δc values.

• Model D: Similar to Model B, but the Ψδc is the full covariance matrix of the estimated
~δc.

We use model A as the reference model, since it includes uncertainties on all parameters, and
compare the results from the other three models against the predictions from model A. The
predictive means µ∗ for model C and D are the same.

The comparisons are shown in Figure 13 for the predictive mean µ∗ and Figure 14 for the
predictive standard deviation ψ∗, for all mesh nodes. In general, the differences in the predictive
means (Figure 13) are quite small, in particular when compared to the overall range of the
nonergdic adjustments (Figure 11). The standard deviations for model A and model B are very
similar, which implies that the uncertainty in the hyperparameters ψeq and `eq has only a small
influence on the overall epistemic uncertainty of the predictions. There are larger differences
in the standard deviations of model C, which shows lower values of ψ∗ close to the observed
data. Overall, these differences are still small compared to the overall predictive uncertainty.
Taking into account the covariance between the estimated latent function values (model D)
brings the values of ψ∗ closer to the ones of model A, as seen in Figure 14 (c). It is important
to note that the computation of the predictive distribution according to Equation (37) (model
A and B) requires repeated calculations of µ∗,k and ψ∗,k, for different samples k of the posterior
distribution. By contrast, model C and D require only one calculation step, and are thus more
efficient computationally.

6 Discussion

With an increasing number of ground-motion recordings, it is possible to relax the ergodic as-
sumption in GMM modeling, and consider systematic, repeatable source, site, and path effects.
This provides challenges, both from a conceptual point of view (how should the systematic
effects be modeled), as well as computational. Landwehr et al. (2016) introduced a VCM to
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Figure 14: Difference in standard deviations of predictions of spatially varying event terms, for
the ASK14 NNGP model, based on different methods to take into account uncertainty. (a)
standard deviation of prediction ψ∗ of model B minus ψ∗ of model A. (b) standard deviation
of prediction ψ∗ of model C minus ψ∗ of model A. (b) standard deviation of prediction ψ∗ of
model D minus ψ∗ of model A. See text for description of models A, B, C, D.

model nonergodic GMMs, based on GPs. While conceptually attractive due to their simplicity,
as well as the ease to estimate predictive uncertainties, GPs pose difficulties when applied to
large data sets, since they do not scale well to large data sets. Here, we have investigated
different methods to fit Bayesian nonergodic GMMs, based on INLA (Rue et al., 2009) and
MCMC sampling via Stan Carpenter et al. (2017). For Stan, we fit both a full (without any
approximation) as well as an approximated model based o NNGPs (Datta et al., 2016b). Since
the development of full nonergodic GMMs is still in its infancy, it is important to investigate
different methods to estimate them. Though the INLA and Stan models are based on slightly
different assumptions, we find that the results are quite similar between the models.

In terms of runtime of the regression models, INLA provides a clear advantage in our ex-
periments (cf. Figure 10). We also find that the NNGP approximation has a clear speed-up
over over the full Bayesian MCMC model without any approximation. Further avenues of
investigation can include other approximations, such as combination of varational inference
and MCMC (Margossian et al., 2020) or reduced-rank GP regression (Solin and Särkkä, 2020;
Riutort-Mayol et al., 2020). Recently, Dambon et al. (2021) proposed a method based regu-
larized maximum likelihood estimation to estimate VCMs with many varying coefficients on
large data sets, which can be explored as well. As an alternative to nonergodic GMMs based
on GP VCMs, Caramenti et al. (2020) proposed a method based on geographically weighted
regression (GWR).

Here, we are mainly concerned with the comparison of different estimation approaches for
nonergodic GMMs. Both methods are Bayesian models. We believe that Bayesian models
provide advantages, as they allow to incorporate prior information in a probabilistic way, and
can be easily updated when new data becomes available (Stafford, 2019). We have cast the
nonergodic models as adjustments to ergodic base models, but both INLA and Stan allow to
easily combine the fitting of on-spatially varying ad spatially varying coefficients. As shown in
Kuehn et al. (2019) (and also seen in Figure 7), the average anelastic attenuation coefficient
changes when estimating cell-specific path effects, so taking into account nonergodic effects
could have an effect on other parameters as well.

It is easy to extend the nonergodic models, both for INLA and for Stan, to incorporate
other spatially varying terms. For example, Landwehr et al. (2016); Caramenti et al. (2020);
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Sung et al. (2021) account for a spatially varying VS30-scaling in their models. One could also
incorporate different spatial length scales for the same parameter, to account for regional and
local variation. In this case, one should use informative prior distributions to avoid problems
with identifiability of the different length scales.

In our models, the spatially varying adjustment terms are modeled with a stationary and
isotropic correlation function (cf. Equations (8) and (25)). There is evidence that spatial corre-
lations of ground-motion within-event are better modeled with a non-stationary or anisotropic
correlation function (Kuehn and Abrahamson, 2020; Abbasnejadfard et al., 2020), and one
would expect this to be true for spatially varying coefficients as well. INLA models have been
developed to account for spatial non-stationarity (Ingebrigtsen et al., 2014, 2015; Bakka et al.,
2019); it should be investigated whether incorporating non-stationarity into the nonergodic
models leads to improved performance.

One important aspect when relaxing the ergodic assumption is to take into account epistemic
uncertainty. The nonergodic adjustments are by nature estimated from smaller amounts of data,
and are thus less well constrained compared to ergodic GMMs. In a VCM, there is parameter
uncertainty (cf. Figure 9), as well as uncertainty for predictions at new locations. Figures 13
and 14 indicate that uncertainty in the hyperparameters only has a small influence on the
overall predictive uncertainty.
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Gómez-Rubio, V. (2020). Bayesian inference with INLA gitbook, https://becarioprecario.
bitbucket.io/inla-gitbook/index.html.

Hjort, N. L., Holmes, C., Müller, P., Walker, S. G., Ghosal, S., Lijoi, A., Prünster, I., Teh,
Y. W., Jordan, M. I., Griffin, J., Dunson, D. B., and Quintana, F. (2010). Bayesian Non-
parametrics. Cambridge University Press.

Ingebrigtsen, R., Lindgren, F., and Steinsland, I. (2014). “Spatial models with explanatory
variables in the dependence structure.” Spatial Statistics, 8(C), 20–38.

Ingebrigtsen, R., Lindgren, F., Steinsland, I., and Martino, S. (2015). “Estimation of a non-
stationary model for annual precipitation in southern Norway using replicates of the spatial
field.” Spatial Statistics, 14, 338–364.

Kotha, S. R., Weatherill, G., Bindi, D., and Cotton, F. (2020). “A regionally-adaptable ground-
motion model for shallow crustal earthquakes in Europe.” Bulletin of Earthquake Engineering,
18(9), 4091–4125.

22

https://becarioprecario.bitbucket.io/inla-gitbook/index.html
https://becarioprecario.bitbucket.io/inla-gitbook/index.html


Kottke, A. (2016). “pygmm: Ground motion models implemented in Python (Version 0.4.1)”,
Zenodo http://doi.org/10.5281/zenodo.53814
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