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Abstract

Minibus taxi public transport is a seemingly chaotic phenomenon in the developing cities of the Global South
with unique mobility and operational characteristics. Eventually this ubiquitous fleet of minibus taxis will
have to transition to electric vehicles. This paper examines the impact of this inevitable evolution. We
present a generic simulation environment to assess the grid impact and charging opportunities, given the
unique paratransit mobility patterns. We used floating car data to assess the energy requirements of electric
minibus taxis, which will have a knock-on effect on Africa’s already fragile electrical grids. We used spatio-
temporal and solar photovoltaic analyses to assess the informal and formal stops that would be needed for
the taxis to recharge from solar PV in the region’s abundant sunshine. The results showed energy demand
from a median of 215 kWh/d to a maximum of 490 kWh/d, with a median charging potential (stationary
time) across taxis of 7.7 h/d to 10.6 h/d. The potential for charging from solar PV was 0.38 kWh/m2 to
0.90 kWh/m2. Our simulator and results will allow traffic planners and grid operators to assess and plan for
looming electric vehicle roll-outs, and could lead to a new funding model for transport in Africa.
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1. Introduction

Paratransit plays a vital role as the primary form of transport in sub-Saharan Africa’s public transit2

system. It transports more than 70% of the daily commuters and is a source of livelihood for many fami-
lies (Behrens et al., 2015a). Paratransit in the region takes various forms, such as minibus taxis, motorcycle4

taxis and bicycle taxis (Ehebrecht et al., 2018), with minibus taxis carrying the largest daily share of pas-
sengers (Behrens et al., 2017). Powered by internal combustion engines, the taxis contribute to the emission6

of greenhouse gases and a general decline of air quality in African cities (Collett and Hirmer, 2021).
Paratransit in Africa’s developing countries differs substantially from that of developed countries, from8

its inception to its vehicle types to its operations. In developed countries, paratransit usually means a point-
to-point flexible demand-responsive transport service customised with special requirements for the elderly10

and the disabled (Behrens et al., 2017; Askari et al., 2021). The Americans with Disabilities Act of 1990, for
example, requires paratransit drivers to be trained and paratransit vehicles to be equipped with specialised12

lifts, doors, seating, a global positioning system (GPS) and dispatch systems (ADA, 1990). For Africa’s
developing countries, paratransit means an organically evolved, informal, market-oriented, self-organising ur-14

ban transport service that operates somewhere between private passenger transport and conventional public
transport in terms of cost, scheduling, routes and quality of service (Ndibatya and Booysen, 2021; Neumann16

and Joubert, 2016). Here the paratransit system consists of shared-ride, demand-responsive privately owned
vehicles, such as the minibus taxis in Lagos, Johannesburg, Nairobi and Kampala, or the single-passenger mo-18

torcycle taxis (“boda bodas”) in Kampala, or the tricycle taxis (“tuk-tuks”) in Nairobi (Mutiso and Behrens,
2011; Booysen et al., 2013; Diaz Olvera et al., 2019). Travel by paratransit accounts for approximately 70%,20

90%, 91%, and 98% of the road-based public trips in Johannesburg, Lagos, Kampala and Dar es Salaam,
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respectively (Behrens et al., 2015b; Evans et al., 2018). Of these paratransit passenger trips, 83% are by22

minibus taxi (Dorothy et al., 2016; KCCA, 2016; Evans et al., 2018).

1.1. The revolution in sub-Saharan Africa’s paratransit24

In sub-Saharan Africa, the public transport industry experienced two fundamental organic changes in the
last quarter of the nineteenth century. The first was the shift of transport services proprietorship, from public26

to private, most often sole proprietorship, as a result of the World Bank’s structural adjustment policies of the
1990s that restricted financing to state-owned entities, leading to their eventual collapse (Kumar, 2011; Ajay28

Mahaputra Kumar et al., 2008; Cervero and Golub, 2007). The second was the gradual introduction of low-
capacity (five- to twenty-seater) passenger-carrying vehicles to fill the public transport vacuum (Diaz Olvera30

et al., 2019; Mutiso and Behrens, 2011; Behrens et al., 2015a; Jennings and Behrens, 2017). From the five
seater Anglia (Ford cars of the 1970s), to the 10-seater Peugeot 204 (1980s), to the current 16-seater Toyota32

HiAce, paratransit service vehicles have been of many types in many countries. Since the 1990s, the fourth
and fifth generations (H100 1989-model and H200 2004-model) of the Japanese Toyota HiAce have dominated34

the paratransit market in Africa. The Toyota HiAce trades under several names depending on the country of
assembly, such as Toyota Quantum in South Africa and Toyota Ventury in Thailand. Originating simply as36

a complementary transport service, the minibus taxis have become a way of life for the urban poor in several
African cities.38

Two competing views have broadly shaped discourse on the minibus taxis as part of the paratransit
system in Africa. The predominant view is that minibus taxis and paratransit in general are the most extreme40

example of public transport failure in the developing world (Lucas et al., 2019). To support this view, terms
such as “chaotic”, “unsustainable”, “unsafe” and “pollutants” are common in the literature in reference to42

the minibus taxis (Venter et al., 2019; Pojani and Stead, 2017, 2018; Agbiboa, 2016). In fact, the contribution
of minibus taxis to urban air pollution is significant, partly because they are old (often older than 20 years)44

and they stand idling their engines for long hours, thus hugely contributing to greenhouse gas emissions and
the deteriorating air quality in African cities. The World Health Organisation classifies exposure to ambient46

air pollution (AAP) as a major threat to human health in sub-Saharan Africa, linking it to the increase in
cardiovascular and cardiopulmonary diseases and lung cancer and respiratory infections (Dalal et al., 2011;48

Amegah and Agyei-Mensah, 2017). Consequently, proponents of this view advocate for a total overhaul of the
minibus taxi industry and its replacement with the western idea of orderly transport, the bus rapid transit50

(BRT) system.
Proponents of the second view advocate for a hybrid future, with paratransit complementary to the sched-52

uled BRT. However, the adoption of this view is very slow and facing much resistance from the paratransit
operators. Although several benefits would accrue to them (such as job security for the drivers, proper regu-54

lation, and government subsidies) they would lose their autonomy and the elements of self-organisation that
formed the core of the original paratransit in Africa.56

An alternative third view is emerging, which imagines Africa’s paratransit system as a complex adaptive
system, composed of many interdependent components that interact non-linearly, often operating between58

“chaotic” and semi-orderly states (Behrens et al., 2015b; Goodfellow, 2017). This view acknowledges the
coping mechanisms and innovative forms of self-organisation exhibited by paratransit and how the system60

adapts to serve the population’s mobility needs with little or no centralised control. Actually paratransit
“chaos” reveals to some degree the hidden order described by Hecht as the “invisible governance . . . that62

maintains competing agendas and aspirations in some kind of functional and parallel existence” (Hecht, 2007).
The minibus taxi paratransit came into being to suit the mobile lifestyle of the urban poor in sub-64

Saharan Africa. It is unlikely that the minibus taxis will be phased out of Africa’s cities any time soon.
They are ubiquitous and will continue for many reasons: their schedule flexibility, the urban sprawl, the66

irregular commuter movement patterns in urban spaces due to informal employment and the socio-cultural
lifestyles of the urban poor in developing cities. However, the environmental cost of running these old internal68

combustion engine vehicles is worrying. It has triggered discussions about the possibility of transitioning to
electric minibus taxis as part of the global electrification and sustainability agenda (Collett and Hirmer,70

2021).

1.2. The transition to electric vehicles and the electric minibus taxi72

The development of low-carbon transport in cities is crucial to the global agenda to combat climate
change’s various effects sustainably. The Intergovernmental Panel on Climate Change (IPCC) estimates that74
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the transport sector generates 23% of the global energy-related greenhouse emissions. In sub-Saharan Africa
the deteriorating air quality resulting from ambient air pollution and a high concentration of particulate76

matter (PM2.5) is partly attributed to vehicle emissions (Lozano Gracia et al., 2021; Singh et al., 2020;
Rajé et al., 2018). The WHO estimated that 712,000 deaths in Africa in 2012 were due to air pollution,78

though the figure may be higher than reported because air pollution epidemiological data is limited (Cohen
Aaron J et al., 2017). Akumu estimates the cost of air pollution in African cities to be as high as 2.7% of80

GDP (Akumu, 2014). Three of the seventeen United Nations Sustainable Development Goals, one, eleven
and thirteen, are clean energy, sustainable cities and climate action (Zinkernagel et al., 2018).82

Consequently, electrification is promoted as a low-carbon transport strategy to reduce combustion emis-
sions and slow down the possibly damaging effects of climate change. In the same spirit, the transition to84

electric vehicles is gradually picking up in developing countries to the extent that some vehicle manufacturers
are planning to phase out internal combustion engines. Sub-Saharan Africa is seeing a few isolated pilot elec-86

tric vehicle projects, mainly focusing on micro-mobility (as motorcycles and tricycles), as well as buses and
private cars (Black et al., 2018). At present, there is no known electric vehicle transition initiative targeting88

the paratransit industry, let alone the minibus taxis that are responsible for more than 80% of the public
transport trips in the region.90

This paper builds a foundation for evaluating the eventual impact of the transition to electric minibus
taxis on cities’ electrical grids, localised pollution, carbon footprint and taxi owners’ profitability. Specific92

attention is given to the energy requirements of these vehicles, the potential distribution of charging stations
and the potential electricity generation capacity from renewable sources.94

1.3. Overview of earlier studies and approaches

Initiatives to achieve sustainable urban mobility often follow a three-pronged transport decarbonisation96

approach, the “Avoid-Shift-Improve” paradigm (Galuszka et al., 2021; Lah, 2017). This approach aims
to reduce trips, shift towards public transport and non-motorised modes and improve vehicle efficiency98

coupled with electrification (Le and Trinh, 2016; Osei et al., 2021). In sub-Saharan Africa, the avoid and
shift approaches have not been intensively studied (Krüger et al., 2021). The focus has been primarily on100

improvements: urban traffic management strategies such as widening roads, optimising road signalling and
encouraging multi-modal transport (developing mass transit systems such as BRT and promoting walking102

and cycling) (Sietchiping et al., 2012; Shams and Zlatkovic, 2020; Krüger et al., 2021; Venter et al., 2018).
Ironically, evidence from other world cities suggests that building freeways and roads around cities only104

increases car dependence and thus intensifies congestion and pollution (Sietchiping et al., 2012). Improving
vehicle efficiency, particularly by introducing electric vehicles in public transport and paratransit, is an106

approach that has been neglected. The literature on paratransit in sub-Saharan Africa focuses on aspects
of sector governance (Goodfellow, 2017) and regulation and reforms (Jennings and Behrens, 2017; Lucas108

et al., 2019), but seldom on operations (Ndibatya and Booysen, 2020), mobility characteristics (Ndibatya
and Booysen, 2021) and the prospects of electric mobility integration (Galuszka et al., 2021).110

Research from outside the region shows that electric vehicles are three times more efficient than internal
combustion engine vehicles and twice as efficient as hybrid vehicles (Du et al., 2017; Weiss et al., 2020). This112

efficiency is achieved partly by the efficient braking systems and elimination of idling losses and the consequent
saving of energy for the vehicle’s actual movement (Weiss et al., 2020). Although debate continues on the114

economic and environmental trade-offs associated with electric vehicles (Li et al., 2016), there is evidence of
sustainable electric vehicle deployment. Some researchers argue that deploying electric vehicles shifts gasoline116

usage to coal-fired power generation, which exacerbates CO2 emissions by the power systems (Li et al., 2016).
However, electric vehicle proponents counter-argue that, on a macro-scale, these vehicles’ impact in terms of118

CO2 emissions depends mainly on the charging strategy and that the emissions can be reduced by optimising
the use of renewable energy sources such as solar power (Schücking et al., 2017; Buresh et al., 2020). In one of120

the scarce and isolated publications on electric vehicles in sub-Saharan Africa, Buresh et al. (2020) note that
South Africa (like many countries in the region) has high levels of insolation (the measure of solar energy at a122

place over a specified time), from between 4.5 and 6.5 kWh/m2 per day, with annual sunshine averaging more
than 2500 hours. This implies that the region has an excellent chance of harnessing this renewable energy124

source to power electric vehicles. Indeed, projects researching alternative renewable energy have taken shape
in the region (Jadhav et al., 2017), though not targeting electric vehicles for public transport services.126
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Two main research gaps remain in the literature on sub-Saharan Africa’s transition to electric minibus
taxis. One is the mobility characteristics of minibus taxis. As Quirós-Tortós et al. (2018) observe, to estimate128

the charging requirements and vehicle performance of an electric vehicle we need to know its mobility patterns,
such as distance, travelling time and idle time (or stopping time and duration). In other words, the vehicle’s130

mobility has spatio-temporal dimensions. Apart from the findings of isolated studies on minibus taxi mobility,
such as those by Ndibatya and Booysen (2021), the general mobility dynamics of paratransit in sub-Saharan132

Africa are unknown. The other is the region’s potential for renewable energy from different sources such
as solar PV, wind and bio-fuel as part of this transition (Sawadogo et al., 2020; Jadhav et al., 2017; Soares134

et al., 2019).
From the sparseness of the work, it is clear that we lack information on the mobility of minibus taxis136

in sub-Saharan Africa and specifically the requirements of these minibus taxi fleets if they are converted to
electric vehicles (Collett and Hirmer, 2021). Our reproducible method for determining their mobility and138

analysing the generated data will fill the gap and help city planners as well as fleet owners to improve their
future operations.140

1.4. Contribution

This paper explores the energy requirements of electric minibus taxis in an urban paratransit system, on142

journeys within and between towns and cities. Over a year’s worth of floating car data was analysed to assess
the energy demand of minibus taxis. The paper explores the potential charging opportunities at the formal144

and informal organically formed taxi stops during the daytime when charging with solar PV is feasible. Our
method is applied to a case study in an urban scenario near Cape Town in South Africa, and we contribute146

our integration and stop extraction software, which can be used to perform similar evaluations. Finally, we
assess the impact on the struggling South African grid of converting all the minibus taxis in South Africa to148

electric vehicles, with and without solar augmentation.

2. Method150

This section describes the dataset and the three models used for the research: the minibus taxi (MBT)
mobility model, the photovoltaic (PV) model and the electric minibus taxi (eMBT) electric vehicle (EV)152

model. It describes the pre-experimental collection and analysis of the floating car data from a fleet of nine
internal combustion engine minibus taxis. Inter-town MBT mobility modelling involved spatial clustering of154

floating car data to identify stopping events and generate routes between stops in preparation for PV and
eMBT modelling. We present two model simulation setups for the EV and PV models and discuss their156

application to our urban paratransit context. The PV model was based on the System Advisor Model (SAM)
developed by the National Renewable Energy Laboratory (Blair et al., 2014). We ran the PV and the EV158

models independently in a micro-transport simulator (SUMO) (Lopez et al., 2018; Kurczveil et al., 2014),
then recorded and analysed the eMBT energy and PV requirements for each simulated context.160

2.1. Mobility

The dataset consisted of floating car data obtained by tracking urban minibus taxis operating on bi-162

directional routes connecting Stellenbosch, Brackenfell and Somerset West in the Western Cape Province of
South Africa. The area under study is defined by coordinates are (34.229224, 18.656884) and (-33.786222,164

18.969438) as shown in Figure 1a. The data obtained from Mix Telematics (a local fleet management service
provider), consisted of timestamped geo-locations (latitude and longitude), speed and direction, logged at166

a frequency of one minute from onboard tracking devices for over two years. After cleaning, filtering and
performing pre-data loading preparations, we had an average of 201 days’ worth of floating car data per168

minibus taxi for use in EV and PV modelling.

2.1.1. Spatial clustering and analysis170

An overlay heatmap showing the intensity variation of minibus taxi activity (based on the count of GPS
data points) was plotted as shown in Figure 1a. Three high-intensity areas were visible in the heatmap:172

Stellenbosch, Brackenfell (west of Stellenbosch) and Somerset West (south of Stellenbosch). We interpreted
these three areas as the epicentres of minibus taxi activity, a view that closely matches that of Ebot Eno Akpa174

et al. (2016).
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Figure 1: (a) Heat map showing the variation (by density) of floating car data; (b) Distribution of spatial-clusters in Stellenbosch
as determined by the clustering process; (c) Illustration of way points, stop events and route generation process.

We used the density-based spatial clustering of applications with noise (DBSCAN) algorithm to group176

high-density closely related data points (or geo-locations), forming spatial clusters of data points that rep-
resented significant events (such as stopping and movement ) during normal minibus taxi operations. We178

chose the DBSCAN algorithm because of its robustness to outlier detection, its ability to discover clusters
with uneven densities and arbitrary shapes, and the fact that it does not need prior knowledge of the number180

of clusters (Liu et al., 2012; Renjith et al., 2020). For cluster analysis we used a Python implementation
of the DBSCAN algorithm from the Scikit-Learn package (Pedregosa et al., 2011). The minimum cluster182

size (min samples) was 70, and the maximum distance between neighbouring points in a cluster (max eps)
was 0.0002 °(Ndibatya et al., 2014). Figure 1b shows the spatial distribution of cluster centroids overlaid on184

OpenStreetMap.

2.1.2. Identifying minibus taxi stops186

To generate the mobility patterns and establish the potential for charging at stops, it was necessary to
identify the spatial clusters with stopping events. Additional temporal analysis was required to determine188

the stop times and stop durations. We therefore further analysed each spatial cluster to identify sets of data
points representing either a stop event or a movement event within the cluster’s spatial extent. A stop event190

in our work is closely related to a “stay point” as defined by Zheng et al. (2009) and Damiani et al. (2014) and
refers to a series of consecutive GPS locations within a cluster’s spatial extent, with a taxi velocity below a192

threshold of 1 km/h. The arrival time of the stop event is the time of the first GPS location in the series, and
the duration of the stop-event is the difference between the timestamps of the first and last GPS locations194

in the series as illustrated in Figure 1c. The movement events (or waypoints) represented by all the cluster
data points that do not belong to the ‘stop event’ category were preserved for use during minibus taxi route196

generation in the EV model.
For each spatio-temporal cluster we generated a statistical summary describing the total number of stop198

events, average stop arrival time, average stop duration, and the standard deviations from these. The
statistical summary helped to identify the spatia clusters with the most stop events and their typical time200

and duration. We were thus able to identify spatial clusters with many stop events as formal taxi stops
(terminuses). Spatial clusters with lower counts could be identified as intersections where the taxis pause for202

traffic, or informal stops made en route to pick up passengers. Clustering the stop events temporally also
helped to identify the times when these stops typically occurred.204
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2.1.3. Generating routes

To simulate the mobility of MBTs between the three towns and subsequently study their energy require-206

ments, we generated the routes linking the identified stops. A route in this context is a series of edges
connecting two or more stop events, often starting and ending in different clusters (or cluster centroids). A208

simulated MBT follows pre-selected routes as part of its daily route plan within the simulation boundary.
We used the stop events’ cluster centroids, the waypoints (GPS data representing moving events), the210

roads network, and SUMO’s shortest path Djikstra algorithm to generate the routes. The underlying road
network was based on OpenStreetMaps (OSM) (OpenStreetMap contributors, 2017), which included the212

roads, intersections, speed limits, and traffic lights information. All the GPS data points (including cluster
centroids and waypoints) were snapped to the OpenStreetMap’s road network, and the shortest path between214

the origin and destination points of interest was computed using SUMO’s implementation of the Djikstra
algorithm (Lopez et al., 2018). This algorithm searches for the route with the least cost (Lewis, 2020), where216

the cost can be the distance, time, or electricity consumption of the simulated EV. In this study, we defined
the cost as the distance (we omitted speed due to simulation performance considerations). For each simulated218

day we generated a route, and from these routes we computed extra information that affects an EV’s (or
eMBT’s) energy usage, such as the total distance, the road inclination and the road curvature.220

2.2. The eMBT EV model

We set up a simulation model using a custom SUMO electric vehicle simulation model, SUMO EV, to222

measure the temporal variation of power and energy usage and the relationships between power consumption
and eMBT speed. The model’s parameters were specified to match the prevailing MBT used in South224

Africa, the Toyota Quantum. The weight and front surface area used for a synthetic eMBT were measured
from one of the Toyota Quantum minibus taxis operating in Stellenbosch. We approximated the rest of the226

parameters according to the recommendations by Fridlund and Wilen (2020). These parameters include:
height 2.3 m, width 1.9 m, front-facing surface area 4 m2, weight 2900 kg, constant power intake 100 W,228

propulsion efficiency 0.8, recuperation efficiency 0.5, roll drag coefficient 0.01 and radial drag coefficient 0.5.
The simulation program initialised the eMBT model for each date that was simulated. The eMBT model230

was applied to the generated routes. For every second of simulation time, the simulator logged the energy
consumption and speed of the eMBT as it progressed along its route.232

With an average of 201 routes per taxi, the volume of output data from the model was huge. Our goal
was to obtain useful metrics that would summarise this data. The first metric we considered was the average234

power usage profile of the whole eMBT fleet. Such a profile would indicate how much power the eMBTs used
at various points in time. This profile would be indispensable, for example, for testing the hypothesis that236

there would be a good charging opportunity at midday. It would also show what order of magnitude the
motor size should be. We calculated the profile by obtaining the power-vs-time profile for each day, averaging238

this across all days for each eMBT, and then averaging that across all eMBTs in the fleet. The profile was
plotted with respect to time.240

2.3. PV model simulation setup

We set up the SAM-based PV model to calculate the energy available from photovoltaic sources and to242

study the daily charging potential for each eMBT in a synthetic fleet of nine eMBTs. The model generates
the plane-of-array solar irradiance profile based on radiometric data, solar azimuth angle, and photovoltaic244

panel tilt angle. We used radiometric data for a year sampled every 15 minutes from the National Solar
Radiation Database (Sengupta et al., 2018). The azimuth and tilt angles were set at 0 °(North) and 20 °,246

respectively, a common configuration which maximises energy yield in South Africa (Le Roux, 2016).
To get the output power profile of the PV array, a 16 % system efficiency was applied to the irradiance248

profile, i.e., 20 % and 80 % were used for the solar panel and balance of the system (including the inverter),
respectively. We used the stop event analysis from Section 2.1.2 to further analyse the battery charging250

potential from solar PV by evaluating the times at which the stop events occurred and their durations. We
first applied thresholds to filter out stop events with durations above 8 hours or below 20 minutes. This was252

to ensure that stop events irrelevant to our study did not skew the statistics. These stop events were grouped
according to the spatial cluster in which they occurred, and temporal clustering was done within each spatial254

cluster to obtain spatio-temporal clusters.
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Based on the stop events detected during the spatio-temporal clustering, we computed the potential256

energy sourced from PV per day. For each eMBT stop event, the PV output-power-profile was integrated
from the beginning to the end of the stop event in order to calculate the total energy that could be charged258

from PV during that stop event. The PV energy of each stop event was summed to get the total energy that
could be charged from PV for that day as a function of the area of the PV array. These “daily PV charging260

potentials” were aggregated for each taxi and plotted as box plots. This metric allowed us to approximate
the size of the PV array required to provide a certain percentage of an eMBT’s energy demands.262

3. Results and discussion

This section describes the results obtained from applying our three models to the floating car data from264

Stellenbosch and its surrounds. The results obtained refer specifically to the MBT mobility, the eMBT’s
power requirements and the potential charging opportunities. The charging opportunities are separated into266

stop times for the purpose of source-ambivalent charging, and potential charging from PV.
The inter-town MBT mobility modelling provides spatial clustering of the identified stop events that268

serve as input to the PV modelling while generating routes used to determine the power requirements of the
individual eMBT and the fleet of eMBTs.270

Table 1: Summary of the MBT stop events identified during the cluster analysis. The clusters are
grouped by vehicle ID and sorted by duration in descending order. The vehicles with boldfaced IDs
were plotted in Figure 2. (Note: µ = Mean, σ = Standard deviation)

Minibus Spatio-temporal Stop events Arrival (h) Duration (h) Terminus
Taxi ID Cluster ID count µ σ µ σ Name

T1000

C101 302 12.0 4.8 1.5 1.2 North
C102 309 14.1 3.1 1.4 1.2 Central
C104 15 17.4 1.3 0.7 0.3 South
C103 18 7.1 0.4 0.5 0.2 South

T1001

C111 1074 12.9 5.3 1.5 1.1 North
C112 782 14.6 3.2 1.2 1.1 Central
C114 41 16.6 1.4 0.7 0.4 South
C113 17 7.1 0.4 0.5 0.2 South

T3001

C311 686 12.5 4.7 1.5 1.2 North
C312 689 14.2 3.4 1.2 1.0 Central
C314 87 16.1 1.3 0.7 0.3 South
C313 37 7.2 0.4 0.5 0.1 South

T4000

C402 495 14.2 3.4 1.5 1.4 Central
C401 406 11.8 4.5 1.3 1.0 North
C404 42 16.4 1.0 0.6 0.2 South
C403 29 7.0 0.4 0.5 0.1 South

T5000

C501 787 10.5 4.3 1.3 1.1 North
C502 709 14.7 3.4 1.2 1.0 Central
C503 139 16.3 1.0 0.6 0.2 South
C504 30 7.4 0.4 0.5 0.2 South

T6000
C601 34 8.5 0.4 5.9 1.0 North
C602 82 16.6 1.1 1.1 0.8 North
C603 52 7.1 1.0 1.0 0.6 North

T6001

C611 403 12.4 4.7 1.4 1.1 North
C612 359 14.1 3.3 1.3 1.2 Central
C613 11 7.2 0.5 0.5 0.2 South
C614 8 17.6 1.0 0.5 0.2 South

T7000

C702 904 14.3 3.2 1.3 1.1 Central
C701 765 10.7 4.1 1.3 1.1 North
C704 30 16.5 1.5 0.6 0.3 South
C703 33 7.0 0.4 0.5 0.2 South

T7001
C712 430 15.0 3.7 1.4 1.1 Central
C711 272 12.0 4.9 1.1 0.9 North
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Arr: μ=10.5 σ=4.3
Dur: μ=1.31 σ=1.1

Arr: μ=14.7 σ=3.4
Dur: μ=1.17 σ=1.0

Arr: μ=16.3 σ=1.0
Dur: μ=0.58 σ=0.2

Arr: μ=7.41 σ=0.4
Dur: μ=0.51 σ=0.2

(i) T5000: North Terminus (C501) (iii) T5000: Central Terminus (C502)(ii) T5000, South Terminus (C503 & C504)

(c)

Figure 2: Spatio-temporal clustering of arrival time and duration of stops at significant spatial-clusters for three MBTs:
(a) T1001; (b) T3001; (c) T5000.North, South and Central termini refer to the spatial-clusters situated near termini found
in Kayamandi in Stellenbosch, Somerset West, and Stellenbosch Central, respectively.
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3.1. Mobility analysis

Figure 2 shows the results of the spatio-temporal clustering of data from three minibus taxis to determine272

the stops. Despite the seemingly chaotic patterns, the clustering analysis identified spatio-temporal clusters
of stops. The figure shows how each minibus taxi has a vertically distributed (i.e. varying duration) morning274

cluster at around 8:00 am, and a horizontally distributed (i.e. varying arrival time) cluster in the evening.
For example, the spatio-temporal clusters in the South Terminus indicate that those spatial clusters were276

visited in the morning and in the evening.
The spatio-temporal clusters were primarily used in SUMO to generate the traffic simulator’s mobility278

patterns and then analyse the charging potential during stationary periods. A statistical summary of all the
identified stop clusters, showing the stationary periods during daylight hours grouped by taxi, is provided280

in Table 1. Although the standard deviation is substantial, the mean stop durations of the clusters were
more than one hour for at least two stops per taxi. The arrival times of the longer stops were all between282

10:30 am and 3:00 pm except for one outlier taxi T6000, which exhibited wildly different clustering results.
Accordingly, the clusters indicate that there should be substantial potential for charging from solar power.284

3.2. Energy analysis

The output of the EV simulation is shown in Figure 3. The mean instantaneous power demand versus286

time of a working weekday is shown in Figures 3a. A clear typical temporal profile is apparent for the minibus
taxis, closely matching the peak traffic hours. There is a sharp peak demand period from 6:00 am to 9:00288

am, with a peak value of 32 kW. A diminished demand with a mean of 6 kW is observed from 9:00 am to
1:00 pm, constituting a period of substantially reduced activity, further demonstrating the potential for solar290

charging. This is followed by a gradual increase to a less pronounced peak value of 30 kW between 5:00 pm
and 6:00 pm. This flatter evening demand profile slowly declines to return to the trough of 7 kW by 9:00 pm.292

Complete inactivity is observed from 11:30 pm to 4:30 am. Not only is this profile clearly defined, but the
variation between taxis, shown by the minimum and maximum profiles in the shaded area, is minimal. The294

only substantial deviation is the increase in the maximum profile just after 9:00 pm, which results from the
long-distance journeys over weekends (departing at 9:00 pm on Friday evenings) and holidays, as reported296

by Ebot Eno Akpa et al. (2016).

(a) (b)

Figure 3: Summary of electrical for all the simulated eMBTs (a) Daily power (instantaneous and rolling average) sampled per
second; (b) Speed vs time

This profile indicates the energy demand profile requirements of the eMBTs, and already hints at sub-298

stantial charging potential during the evening – probably from grid power – and during the middle of the
day – preferably from solar power.300

Figure 3b shows the MBT’s speed versus time of the day, the similarity of which highlights the substantial
impact of speed on power draw. The energy required was close to linearly proportional to the distance302

travelled, which demonstrates that a simpler distance-based model would have provided good estimations
and required substantially less processing power. The mean energy required per day is 212 kWh.304

The distribution of energy usage per taxi per day, is shown in Figure 4a for the nine taxis. The taxis’
energy usage is similar, with the median energy per taxi per day across all taxis ranging from 189 kWh to306

252 kWh, with the mean of the medians equal to 215 kWh. For any given taxi, on 75 % of the days less than
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(c) PV generation per m2 per month.
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(d) PV charging potential per eMBT per m2 per month.

Figure 4: Summary of mobility, energy requirements, and charging potentials.

303 kWh is used. Eight of the nine taxis, on all days, use less than 420 kWh, while the other taxi uses up to308

490 kWh.
The results show that a maximum usable battery capacity of approximately 500 kWh should be sufficient310

for urban travel, if charging is limited to the stationary period before the day’s first trip and for 75% of the
time a 303 kWh battery would be sufficient.312

3.3. Charging potential

A sizable eMBT fleet could place a substantial burden on the local electrical network and power generation314

capacity of countries in sub-Saharan Africa. The strain on the local utility could cause infrastructure and
electrical supply problems, so we investigated the opportunities for charging these vehicles from solar PV316

systems. To discover the eMBTs’ opportunities and requirements if they are to charge during stationary
periods, we did a 24-hour analysis of the start times and the durations of stop events. The analysis shows318

what the average charger capacity should be if a vehicle is charged using only power from the local electrical
utility. We applied a minimum stop duration of 20 minutes and a maximum stop duration of 8 hours to320

ensure that only valid operational stops would be identified and that drop or pick up and go events were
not included as charging opportunities. We chose the maximum of 8 hours because a taxi in normal service322

would not stop for longer than that on a week day.

3.3.1. Charging from the grid324

Figure 4b shows the distribution of stop events across days, with the minimum and maximum stop
duration thresholds applied. The figure shows that the MBTs’ stop duration times vary considerably, with326
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the median duration per day ranging from a minimum of 7.7 hours for taxi T3001 to a maximum of 10.7 hours
for taxi T6000.328

To calculate the charger capacity we used a relatively high energy demand and a relatively short charging
time for an averagely demanding situation. We used the averages of the 75th percentile of the energy usage330

(Figure 4a) and the 25th percentile of the 24-hour stop duration times (Figure 4b) as 247 kWh and 7.65 hours
respectively to calculate a charger capacity of 32.3 kW. This assumes a constant charging profile and charging332

only from the local electrical grid.

(a) T1000 (b) T1001 (c) T3001

(d) T4000 (e) T5000 (f) T6000

(g) T6001 (h) T7000 (i) T7001

Figure 5: Disaggregated charging potential (in kWh/m2) per eMBT for each month of the year.

3.3.2. Charging from solar PV334

We evaluated the potential for charging the eMBTs from solar PV, both to reduce the load on the electrical
grid and to reduce the size of the battery installed in the eMBT. The energy generated per surface area is336

shown in Figure 4c for each month of the year, representing an upper bound of charging potential during
stationary periods.338

The aggregate charging potential per square metre of solar panel, for the fleet, is shown in Figure 4d,
indicating that a large amount of the generated energy could be used during stops. The desegregated340

distribution of charging potential for each taxi, per square metre of solar panel, is shown in Figure 5.
The variation of charging potential between taxis is low, indicating that the taxis follow similar patterns342

during the daylight hours, and that they would require similar charging infrastructure. Assuming that the
PV installations were sized to exploit the median stop potential per taxi, the potential would vary from a344

minimum of 0.38 kWh/m2 to a maximum of 0.90 kWh/m2 during the year. The results show that a solar
installation of approximately 140 m2 would be required per taxi to ensure that at least 25 % of the taxi’s346

daily energy requirements are met by solar supply.
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Given the estimated 285,000 taxis in South Africa, our analysis indicates that to charge all the minibus348

taxis from the national grid will require 9.72% (61.27 GWh/d) of the current daily national energy generation.
The average taxi would be able to directly utilise between 57% and 80% of installed PV generation capacity350

during normal stops.

4. Conclusion352

Concern about the possible effects of climate change has driven an energy revolution from internal com-
bustion engines to electric vehicles in the Global North. Pushed by market forces and supplier preferences354

from beyond its own borders, this wave will eventually break over the Global South and its organically evolved
and notoriously chaotic paratransit systems and fragile electrical grids. Sub-Saharan Africa has many spe-356

cific characteristics, challenges, and opportunities that will eventually determine its response. This paper
focuses on paratransit in the region, which transports more than 70% of the region’s commuters. One of the358

unanswered questions is how the dissimilar mobility characteristics of the minibus taxis, the mainstay of the
region’s paratransit system, will translate into electrical requirements. Since these taxis park spontaneously360

at tacitly known stops of the drivers’ choosing, for durations determined by passenger demand, the charging
potential at these stops is unknown. Further, the extent to which these charging stations can be powered by362

the region’s abundant sunshine remains unclear. This paper therefore investigated these three unknowns for
minibus taxis in an urban scenario in South Africa’s Western Cape Province. The results showed that for the364

taxis we studied would mostly have a similar energy demand with a nominal 250 kWh required per median
day if no additional charging capacity was provided. This would increase to 420 kWh when accommodating366

all days, except for one taxi, which required 490 kWh. Evaluating the charging potential showed that the
median stops per day ranged from 7.7 h to 10.6 h.368

As expected, the taxis with the shorter stop periods, and hence less time for charging, are also the ones that
would need more energy because they are more mobile. Nevertheless, a nominal 32 kWh charger will suffice if370

charging only from a fully operational grid. Evaluating the solar irradiation for the stop times and durations,
showed that the mean charging potential per median day ranged from 0.38 kWh/m2 to 0.90 kWh/m2.372
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Rajé, F., Tight, M., Pope, F.D., 2018. Traffic pollution: A search for solutions for a city like Nairobi. Cities526

82, 100–107. doi:https://doi.org/10.1016/j.cities.2018.05.008.

15

https://elib.dlr.de/127994/
https://ideas.repec.org/p/wbk/wbrwps/9512.html
http://www.vref.se/download/18.45182a5f16a84e95fac8b2b5/1561370471910/Transport%20and%20Social%20Exclusion%20in%20five%20African%20Cities%20-%20June%202019.pdf
http://www.vref.se/download/18.45182a5f16a84e95fac8b2b5/1561370471910/Transport%20and%20Social%20Exclusion%20in%20five%20African%20Cities%20-%20June%202019.pdf
http://www.vref.se/download/18.45182a5f16a84e95fac8b2b5/1561370471910/Transport%20and%20Social%20Exclusion%20in%20five%20African%20Cities%20-%20June%202019.pdf
http://hdl.handle.net/2263/17308
http://dx.doi.org/10.1016/j.jtrangeo.2020.102853
http://dx.doi.org/https://doi.org/10.1016/j.jtrangeo.2021.103001
http://dx.doi.org/https://doi.org/10.1016/j.jtrangeo.2021.103001
http://dx.doi.org/https://doi.org/10.1016/j.jtrangeo.2021.103001
http://dx.doi.org/10.5334/baw.17
http://dx.doi.org/10.5334/baw.17
http://dx.doi.org/10.5334/baw.17
http://dx.doi.org/10.3390/atmos12030332
http://dx.doi.org/10.3390/atmos12030332
http://dx.doi.org/10.3390/atmos12030332
http://dx.doi.org/10.1007/978-3-319-43851-1_1
http://dx.doi.org/10.1080/25741292.2018.1454291
http://dx.doi.org/10.23919/PSCC.2018.8442988
http://dx.doi.org/https://doi.org/10.1016/j.cities.2018.05.008


Renjith, S., Sreekumar, A., Jathavedan, M., 2020. Performance evaluation of clustering algorithms for528

varying cardinality and dimensionality of data sets. Materials Today: Proceedings 27, 627–633. doi:https:
//doi.org/10.1016/j.matpr.2020.01.110.530

Sawadogo, W., Reboita, M.S., Faye, A., da Rocha, R.P., Odoulami, R.C., Olusegun, C.F., Adeniyi, M.O.,
Abiodun, B.J., Sylla, M.B., Diallo, I., Coppola, E., Giorgi, F., 2020. Current and future potential of532

solar and wind energy over Africa using the RegCM4 CORDEX-CORE ensemble. Climate Dynamics
doi:10.1007/s00382-020-05377-1.534

Schücking, M., Jochem, P., Fichtner, W., Wollersheim, O., Stella, K., 2017. Charging strategies for economic
operations of electric vehicles in commercial applications. Transportation Research Part D: Transport and536

Environment 51, 173–189. doi:https://doi.org/10.1016/j.trd.2016.11.032.

Sengupta, M., Xie, Y., Lopez, A., Habte, A., Maclaurin, G., Shelby, J., 2018. The National Solar Radiation538

Data Base (NSRDB). Renewable and Sustainable Energy Reviews 89, 51–60. doi:https://doi.org/10.
1016/j.rser.2018.03.003.540

Shams, A., Zlatkovic, M., 2020. Effects of capacity and transit improvements on traffic and transit operations.
Transportation Planning and Technology 43, 602–619. doi:10.1080/03081060.2020.1780710.542

Sietchiping, R., Permezel, M.J., Ngomsi, C., 2012. Transport and mobility in sub-Saharan African cities: An
overview of practices, lessons and options for improvements. Cities 29, 183–189. doi:https://doi.org/544

10.1016/j.cities.2011.11.005.

Singh, A., Avis, W.R., Pope, F.D., 2020. Visibility as a proxy for air quality in East Africa. Environmental546

Research Letters 15, 84002. doi:10.1088/1748-9326/ab8b12.

Soares, P.M.M., Brito, M.C., Careto, J.A.M., 2019. Persistence of the high solar potential in Africa in a548

changing climate. Environmental Research Letters 14, 124036. doi:10.1088/1748-9326/ab51a1.

Venter, C., Jennings, G., Hidalgo, D., Pineda, A.F.V., 2018. The equity impacts of bus rapid transit: A550

review of the evidence and implications for sustainable transport. International Journal of Sustainable
Transportation 12, 140–152. doi:10.1080/15568318.2017.1340528.552

Venter, C., Mahendra, A., Hidalgo, D., 2019. From Mobility to Access for All: Expanding Urban Trans-
portation Choices in the Global South. Technical Report. World Resources Institute.554

Weiss, M., Cloos, K.C., Helmers, E., 2020. Energy efficiency trade-offs in small to large electric vehicles.
Environmental Sciences Europe 32, 46. doi:10.1186/s12302-020-00307-8.556

Zheng, Y., Zhang, L., Xie, X., Ma, W.Y., 2009. Mining Interesting Locations and Travel Sequences from
GPS Trajectories, in: Proceedings of the 18th International Conference on World Wide Web, Association558

for Computing Machinery, New York, NY, USA. pp. 791–800. doi:10.1145/1526709.1526816.

Zinkernagel, R., Evans, J., Neij, L., 2018. Applying the SDGs to Cities: Business as Usual or a New Dawn?560

Sustainability 10. doi:10.3390/su10093201.

16

http://dx.doi.org/https://doi.org/10.1016/j.matpr.2020.01.110
http://dx.doi.org/https://doi.org/10.1016/j.matpr.2020.01.110
http://dx.doi.org/https://doi.org/10.1016/j.matpr.2020.01.110
http://dx.doi.org/10.1007/s00382-020-05377-1
http://dx.doi.org/https://doi.org/10.1016/j.trd.2016.11.032
http://dx.doi.org/https://doi.org/10.1016/j.rser.2018.03.003
http://dx.doi.org/https://doi.org/10.1016/j.rser.2018.03.003
http://dx.doi.org/https://doi.org/10.1016/j.rser.2018.03.003
http://dx.doi.org/10.1080/03081060.2020.1780710
http://dx.doi.org/https://doi.org/10.1016/j.cities.2011.11.005
http://dx.doi.org/https://doi.org/10.1016/j.cities.2011.11.005
http://dx.doi.org/https://doi.org/10.1016/j.cities.2011.11.005
http://dx.doi.org/10.1088/1748-9326/ab8b12
http://dx.doi.org/10.1088/1748-9326/ab51a1
http://dx.doi.org/10.1080/15568318.2017.1340528
http://dx.doi.org/10.1186/s12302-020-00307-8
http://dx.doi.org/10.1145/1526709.1526816
http://dx.doi.org/10.3390/su10093201

	Introduction
	The revolution in sub-Saharan Africa's paratransit
	The transition to electric vehicles and the electric minibus taxi
	Overview of earlier studies and approaches 
	Contribution

	Method
	Mobility
	Spatial clustering and analysis
	Identifying minibus taxi stops
	Generating routes

	The eMBT EV model
	PV model simulation setup

	Results and discussion
	Mobility analysis
	Energy analysis
	Charging potential
	Charging from the grid
	Charging from solar PV


	Conclusion

