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A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) 

data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation 

of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon 

dioxide (CO2). The molecular model of CO2 is taken from previous work of our group. PC-SAFT is used as EOS. The 

consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data 

obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the 

molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble 

nucleation rates. From these simulations the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the 

nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to 

the whole metastable range including technically relevant densities. The results are tested against available experimental data 

and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory 

concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically 

neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is 

determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be 

invalid. 

 

 

I. INTRODUCTION 

Bubble nucleation is important in many applications. It occurs for example during ultrasonic cleaning or upon cavitation 

in technical equipment. In the present work, homogeneous bubble nucleation in metastable liquids is studied. That process is 

not spontaneous, but inhibited by a free energy barrier. In metastable liquids small bubbles stochastically form and break 

down. If a bubble exceeds the critical size, where the free energy of formation is maximal, it is likely to grow and become a 

macroscopic bubble. In this paper, a hybrid approach for describing homogeneous bubble nucleation is developed. 
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As homogeneous bubble nucleation requires activation energy, the rate of forming bubbles J  can formally be written in 

the form of an Arrhenius type expression 

*

0
expJ J

kT




 
 
 

  (1) 

where 
0

J  is the so-called kinetic prefactor, 
*

  is the nucleation barrier height, i.e. the activation energy, k is 

Boltzmann’s constant and T is the temperature. There are several theories of homogeneous bubble nucleation, which differ in 

the way 
0

J  and 
*

  are calculated. 

The most common approach to bubble nucleation is classical nucleation theory (CNT). In CNT several strong 

simplifications are used
1
. First it is assumed that the capillary approximation holds, which implies that the width of the 

interface is zero and that the curvature of bubbles does not play a role, neither for 
0

J  nor for 
*

 . This means that 

nanobubbles are assumed to have the same density and pressure as the saturated bulk vapor at the same temperature and that 

their surface tension is the same as that of the planar interface
2–4

. Furthermore, the free energy is considered to be the 

equilibrium free energy of the bulk. This, for example, results in a wrong limiting behavior of the nucleation barrier height 

close to the spinodal. Transport is usually not considered in CNT. In many cases CNT fails drastically
5–8

, while in other 

cases, it gives fair predictions
4
. This behavior is not fully understood, but it is argued sometimes that in nucleation different 

phenomena combine and sometimes errors cancel out
9,10

. Many empirical and semi-empirical modifications of CNT have 

been proposed
11–14

. Of these the most commonly used is to describe the dependence of the surface tension on the nucleus size 

with the Tolman equation
15

. However, recent work has shown that a Tolman correction with a constant value of the Tolman 

length is unphysical and, therefore, introduces new artifacts
16–19

. 

Another method used for studies of nucleation is density functional theory (DFT) 
20–22

 or simplifications thereof like the 

density gradient theory (DGT)
23

. DFT and DGT have the advantage of yielding the correct limiting behavior upon 

approaching the binodal as well as the spinodal. Both theories also inherently consider the curvature dependence of surface 

tension and the finite width of the interface. Laaksonen et al.
20

 as well as Oxtoby
21

 give reviews of the application of DFT in 

nucleation theory. Using DFT, the free energy of the heterogeneous system must be known as a functional of density, which 

is often not the case. We therefore use DGT here, which can be used with bulk equations of state. As equation of state we 

choose PC-SAFT
24

. Both DFT and DGT can only be used to calculate the thermodynamic factor 
*

exp( / (kT)) , but not 

the kinetic prefactor 
0

J  in Eq. (1). In the literature on the application of DGT or DFT for nucleation studies, therefore the 
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prefactor 
0

J  is often simply adopted from some version of CNT 
e.g. 20–22

. This is dangerous, as CNT makes assumptions on 

the exponential term, which may be inconsistent with the DGT/DFT results. 

A different approach is proposed here: DGT is used for determining the thermodynamic factor 
*

exp( / (kT)) , while 

the kinetic prefactor 
0

J  is determined from molecular dynamics simulations instead of the usual CNT expressions, thereby 

hybridizing both theories. Presently studies of nucleation by molecular simulation can only be carried out for states close to 

the spinodal, where nucleation events occur frequently. Hence, the hybrid nucleation theory (HyNT) developed here can be 

seen as an extrapolation of nucleation rates determined by molecular dynamics close to the spinodal to state points in the 

entire metastable range by DGT. 

As an example, the bubble nucleation in metastable liquid CO2 is studied. The molecular model of CO2 is taken from 

Merker et al.
25

. It is known to give good results for vapor pressure, liquid and vapor coexistence densities, second virial 

coefficients as well as transport properties
25

. The parameters of the PC-SAFT EOS are fitted to vapor-liquid equilibrium 

(VLE) data of Merker et al.
25

 in order to ensure consistency between both models. Molecular simulations are carried out for 

homogenous metastable states and compared to results from PC-SAFT to verify that the PC-SAFT model is valid in the range 

of interest for nucleation. The influence parameter of DGT is obtained from a fit to surface tension data obtained with the 

molecular model of Merker et al.
25

 taken from
26

. It should be noted that the experimental surface tension of CO2 is 

overpredicted by roughly 20%
26

 by the model of Merker et al.
25

. That deviation is accepted here, as no molecular model of 

CO2 is presently available that would yield better results for the entire set of thermodynamic properties which are relevant for 

the present application. Finally, direct molecular dynamics simulations of bubble nucleation are carried out for two 

temperatures and several bulk phase densities close to the spinodal. The bubble formation statistics are evaluated with the 

approach introduced by Yasuoka and Matsumoto
27

 for droplet nucleation and later on applied by Diemand et al.
28

 for bubble 

nucleation. Using molecular simulation, no assumptions are made regarding the separation of kinetic prefactor and 

thermodynamic factor. However, in the range, where direct molecular simulation of nucleation is possible, the kinetic 

prefactor is dominant. This dominance is stronger the closer simulations are performed to the spinodal. Therefore, the 

prefactor of HyNT is calculated from the simulated nucleation rate closest to the spinodal. The other simulated nucleation 

rates are used to test the accuracy of the extrapolation using HyNT. The results of HyNT for homogeneous bubble nucleation 

are further compared to experimental data for the bubble nucleation of CO2
29,30

. 

II. THEORY 

A. Hybrid Nucleation Theory 
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In hybrid nucleation theory (HyNT), with the nucleation rate formally written as in Eq. (1), the free energy 
*

  of 

forming a critical bubble nucleus in a surrounding mother phase of density 
h

  and temperature T is calculated from DGT. 

DGT
23,31,32

 can be used in conjunction with a suitable EOS to investigate systems with a heterogeneous density 

distribution. In this work the PC-SAFT EOS
24

 is used, which has been shown before to yield good results for both bulk fluid 

phase behavior and interfacial properties when combined with DGT 
e.g. 33

. For a heterogeneous one-component system, the 

grand potential is written as a functional of the spatially varying density  x  and a function of the temperature T according 

to
31

 

          
2

0

1
, d

2
V

T x T x x V        
 
 
 
  (2) 

where 
0 0

( , ( )) ( , ) ( ) ( , )
h h

f T x T x p T          is the grand potential per volume. Here, 
0

f  is the homogeneous free 

energy density calculated from the PC-SAFT EOS at the local density ( )x ,   is the chemical potential calculated for the 

density of the mother phase 
h

 , p  is the pressure, and   is the so-called influence parameter. Since we are interested here in 

the grand potential of critical bubbles, which corresponds to the free energy of forming them in the mother phase of the molar 

density 
h

 , radial symmetry is assumed. In spherical coordinates, the grand potential is given by 

    
2

2

0

1 d
(r) 4 , ( ) d

2 d
r

T T r r r
r


       

  
  
  

  (3) 

where r is the radial coordinate. Functional minimization leads to the Euler-Lagrange equation 

2

1 0

2

d 2 d

d d
T

r r r

 







 


 
 
 

  (4) 

which cannot be integrated directly as is possible in the case of planar interfaces in one component systems. The boundary 

conditions arise from symmetry (
0

d / dr| 0
r



 ) and from the mother phase density, which must be reached at infinite 

distance ( ( )
h

r   ). The differential Eq. (4) is numerically solved using a finite difference scheme and the shooting 

method, for details see Appendix A. The solution of Eq. (4) corresponds to the density profile of the critical bubble in a 

mother phase of temperature T and density 
h

 . With this density profile the grand potential or bubble nucleation barrier 

height is calculated from
34
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  * 2

0

0

8 , dT r r r  



     (5) 

where the integration is carried out numerically. Other properties of the critical bubble can be calculated once the radial 

density profile is known, for an overview see Hrubý et al.
34

. Here, we use the interfacial tension of the bubble γ, the Laplace 

pressure p , the equimolar radius 
e

r , and the radius of tension 
s

r
34

: 

1

3
* 23

16
p


  
 
 
 

 (6) 

   , ( ) , ( 0)p p T r p T r       (7) 
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3
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
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1
* 33

2
sr

p

 
  

 
 (9) 

The influence parameter   is obtained from a fit to data for the planar surface tension
35

 using the expression
31 

 
'

0

''

2 , dT





    

   (10) 

where '  and ''  are the molar liquid and gas density in equilibrium respectively. 

The kinetic prefactor in Eq. (1) is defined here as 

*

0 0
ˆJ k   (11) 

where k0 is the kinetic part determined from molecular simulations close to the spinodal as elaborated in paragraph IV and 

*
̂  is the unit cavity density defined here as 

 *ˆ '( )
h

av
N T     (12) 

where 
av

N  is Avogadro’s number. 

 
B. Classical nucleation theory 
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Classical nucleation theory (CNT) was introduced by Volmer and Weber
36

 and further developed by Farkas
37

, Becker 

and Döring
38

, and Zeldovich
39

. CNT has been modified empirically and semi-empirically in many ways, cf. Tanaka et al.
14

 

for a recent discussion. Since CNT is used here only for reference purposes, we simply use the most widespread variant for 

bubble nucleation, which is the one of Blander and Katz
4
. They give the bubble nucleation rate for a pure fluid as 

    

1
3

2

2

2 16 ( )
exp

3 , '' ,

h

av
h

J N
m kT p T p T

  


  

 






  
       

 (13) 

where m is the mass of the CO2 molecule. Since the surface tension of the planar interface 


 is used, this is also called 

the capillarity approximation. We use PC-SAFT to connect the pressure, temperature and density.  

III. MODELING AND SIMULATION 

A. Molecular simulation 

The simulations were carried out using the ls1 mardyn
40

 program, which was modified by the authors to evaluate bubble 

nucleation statistics. The CO2 model is the rigid three Lennard-Jones sites + point quadrupole model of Merker et al.
25

. It is 

given in Appendix B for completeness.  In all simulations a cutoff at rc = 13.2 Å was used. The long range correction for the 

Lennard-Jones force field was treated with the method proposed by Lustig
41

, while the quadrupole does not need such 

correction since it vanishes by angular integration. In the method of Lustig
41

, a center of mass cutoff is employed adding 

constant mean field correction terms to the potential energy and the virial, where contributions from individual interaction 

sites are determined by angular integration. This is a simplification for bubbles, however, as long as the bubbles are small it 

should be a good approximation. The leapfrog integrator
42

 was used with a time step of 2.5 fs. Simulations were conducted in 

the NVT ensemble. The occurrence of gaseous regions was sampled on a regular grid. The number of grid points M was of 

the order of N/4 in all cases, see Appendix C for details. A point was considered to be gaseous, if Ng,max = 5 or less molecular 

centers of mass were in a sphere of the radius rb = 6.88 Å around the point. This local density criterion corresponds to a 

threshold density of roughly 6.1 mol l
-1

. By variation of both the number of molecular centers Ng,max and the radius rb, it was 

established that the results are not particularly sensitive to the particular choices, as long as the corresponding density is 

gaseous, i.e. below the critical density. This is the case for the present choice of parameters. A cluster c is an aggregation of 

unit cavities. The cluster size is determined by connecting gaseous grid points that are immediate neighbors and counting the 

number Mc of connected grid points per cluster. The volume of these clusters corresponding to bubble volume is calculated 

via 
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c

bub

M
V V

M
  (14) 

where V is the simulation box volume. The number of such bubbles exceeding a certain threshold volume Vmin was 

counted and used to determine the nucleation rate as explained below. 

A crystal like structure, with superimposed random displacements of the individual molecules, was used as the initial 

configuration. No pre-equilibration was conducted. In this way two series of simulations close to the liquid spinodal were 

carried out in which for T = 220 K and T = 280 K several densities were studied (cf. Table 4 and Table 5 in Appendix C). 

In each simulation the bubble nucleation rates are determined using the Yasuoka-Matsumoto
27

 (YM) method. In FIG. 1 a 

snapshot of such a simulation in the final stage of bubble nucleation is shown in an iso-density surface representation. The 

surfaces are shown for bubbles exceeding 1 nm in size in one direction. The bubbles are not spherical, but rather fluctuate 

around a spherical shape. In the YM method
27

 the number of occurrences of bubbles that exceed a threshold volume Vmin is 

counted over time. A typical result is shown in FIG. 2. For a given threshold volume, a rate of bubble formation is obtained 

from the slope of this curve in the region of its inflection point, where the population of bubbles of the studied class increases 

at an approximately stationary rate. Numerical values for the rate of bubble formation obtained with this method for different 

threshold values obtained in the present simulations are given in Tables 4 and Table 5 in Appendix C. Additional information 

on the simulations is supplied in Table 6 of Appendix C.  

[FIG. 1 about here]  

[FIG. 2 about here] 

From the rates of bubble formation obtained by the YM method, the macroscopic nucleation rate can be estimated if two 

different finite-size effects (FSE) are taken into account: First, if the threshold size Vmin is of the order of the critical size of 

the nucleus V
*
 or smaller, the rate of formation overestimates the macroscopic nucleation rate, since the rate of formation 

contains a contribution due to relatively small bubbles that do not grow to macroscopic size. This finite-size effect (FSE 1) is 

caused by the finite threshold volume. It becomes significant for small values of Vmin and can be neglected if Vmin is much 

larger than V
*
. Second, if the total volume of the considered bubbles approaches the volume occupied by the vapor phase in 

equilibrium, the rate of formation from the YM method obviously underestimates the macroscopic nucleation rate. This is 

basically caused by coalescence of the growing bubbles. This finite-size effect (FSE2) is caused by the finite simulation 
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volume. It can be neglected for large simulation volumes with comparably small values of Vmin and small nucleation rates, 

but becomes significant as Vmin and J increase, or if systems with a small volume are simulated. 

The dependence of the rate of formation J on the threshold volume Vmin is shown in FIG. 3 (T = 220 K) and FIG. 4 

(T = 280 K). Results for two homogeneous densities ρ
h
 are plotted in each diagram. Depending on the temperature, the 

density, and the system size, FSE 1 or FSE 2 are found to be present or not. The four different combinations lead to four 

different shapes. At T = 220 K (FIG. 3), for conditions close to the spinodal line, the critical volume is of the order of 1 nm
3
 

or smaller, so that the influence of the finite threshold volume, which was at least 1 nm
3
 in all cases, can be neglected and 

FSE 1 is absent. For T = 220 K and ρ
h
 = 23.2 mol l

-1
, the nucleation rate is comparably large, so that at large values of Vmin, a 

decay of the rate of formation is found due to the influence of the finite simulation volume. Hence, FSE 2 is present. In this 

case, the macroscopic nucleation rate corresponds to the rate of formation for small bubbles. It is labeled as case A (FSE 1: 

no; FSE 2: yes). For T = 220 K and ρ
h
 = 23.9 mol l

-1
 also FSE 2 is absent, since J is small, and no finite-size effects are 

observed. A flat diagram is obtained, and any of the values can be used directly to estimate the macroscopic nucleation rate. 

This is labeled as case B here (FSE 1: no; FSE 2: no). At T = 280 K (FIG. 4), for conditions close to the spinodal line, the 

critical volume is of the order of 100 nm
3
. Hence, with decreasing Vmin, the rate of bubble formation increases due to the 

increasing influence of the finite threshold volume. For T = 280 K and ρ
h
 = 17.35 mol l

-1
, the nucleation rate is comparably 

small, so that FSE 1 is the only relevant finite-size effect and the macroscopic nucleation rate can be estimated from the rate 

of formation for large bubbles. This case is labeled case C (FSE 1: yes; FSE 2: no). For T = 280 K and ρ
h
 = 16.9 mol l

-1
, both 

finite-size effects are relevant, and an estimate for the macroscopic nucleation rate is obtained from the rate of formation in 

the region of the inflection point of the plot, where both effects cancel out. This is labeled case D (FSE 1: yes; FSE 2: yes). In 

the above statement yes or no regarding the FSE must not be taken mathematically. Both effects are in principle always 

present, but may not be important. From this, we infer that the plot J(Vmin) (at constant T and ρ
h
) always has an inflection 

point. It may, however, be outside the studied range. From the curvature of J(Vmin) it is always possible to infer if the 

inflection point is in, below, or above the investigated range. If it is in the investigated range the simulation corresponds to 

case D. If it is above the investigated range it corresponds to case A. If it is below the investigated range, case B or case C 

can be present. In case C, almost constant nucleation rates are obtained. All present MD simulations correspond to one of 

these four cases and were evaluated accordingly. 

[FIG. 3 about here]  

[FIG. 4 about here]  
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For obtaining a nucleation rate from a given simulation not only a single threshold value Vmin is used. Rather, results 

obtained using several values of Vmin from the region in which the influence of both FSE 1 & FSE 2 is small are used. The 

highest and lowest of these values for one simulation are considered the confidence interval and their geometric mean is the J 

reported in Table 1. All values for J are given in Table 4 where those inside the confidence interval are underlined. 

Table 1. Average nucleation rates as a function of temperature and density from molecular simulation and thermodynamic barrier from 

DGT for the states where J0 is fitted. 

1

/ mol l


 
-3 -1

/ m sJ   *

exp / ( )kT  

220 KT   

22.6 6.92 ∙ 1034 2.85 ∙ 10-02 

23.2 1.59 ∙ 1034 - 

23.6 1.74 ∙ 1033 - 

23.9 1.93 ∙ 1032 - 

280 KT 
 

16.3 9.63 ∙ 1032 - 

16.6 4.99 ∙ 1032 9,71 ∙ 10-01 

16.9 2.55 ∙ 1032 - 

17.2 5.71 ∙ 1031 - 

17.35 2.18 ∙ 1031 - 

 

In addition to bubble nucleation simulations, canonical ensemble equilibrium MD simulations were performed with 

comparably small systems. Particle numbers were between 800 and 1500. These simulations were conducted to capture the 

relation between density and pressure for the employed CO2 model at T = 220 K and T = 280 K. Both stable and metastable 

states were studied. The same local density criterion as for the large scale simulations of bubble nucleation was applied to a 

regular grid with size M = 10, where only simulations were taken into account with more 999.95 grid points on average 

belonging to a single metastable or stable phase. The simulation results are listed in Table 7. 

B. PC-SAFT + DGT 

CO2 is modeled here with the original PC-SAFT
24

 without any polar terms
43–45

. Hence, the PC-SAFT CO2 model has 

three parameters: the number of segments m, the segment diameter σ, and the interaction energy ε. They were fitted to the 

molecular simulation data of Merker
25

 for the vapor pressure, saturated liquid density, and saturated vapor volume, who used 

the grand equilibrium method by Vrabec and Hasse
46

 as simulation technique. A weighted least squares method based on the 

relative deviations for all data points reported by Merker et al.
25

 was used for the fit. The influence parameter κ of DGT was 

fitted to a single data point for the planar surface tension of the CO2 model of Merker
25

 as reported by Werth et al
35

 for 

T = 260 K.  The resulting parameters are presented in Table 2, a comparison between the molecular simulation data for 

CO2
25,35

 and the results from SAFT + DGT is shown in FIG. 5. Also results for ΔhV are presented, which were not included in 

the fit. Good agreement is observed for all properties. FIG. 5, panel b includes also predictions of the spinodal obtained with 

both methods. To retrieve data for the spinodal from the molecular simulation results, the method of Imre et al.
26

 was used, 

which is based on heterogeneous simulation data for the density profile and the diagonal elements of the stress tensor. For a 
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detailed explanation of the method, the reader is referred to ref. 26. While the agreement between both methods for the 

spinodal on the liquid side is excellent, deviations occur on the vapor side, which are, however, not important here, as bubble 

nucleation is studied. 

[FIG. 5 about here] 

Table 2. Pure component parameters of the CO2 model in PC-SAFT and DGT. 

m / Å  ( / ) / Kk  
20 5 -2

( 10 ) / Jm mol

 2.6779 2.5253 149.4366 3.4331 

 

FIG. 6 shows results for the thermal behavior of CO2 obtained from the molecular simulations and from PC-SAFT. 

Besides data for the vapor-liquid equilibrium, which agree very well, data for isotherms at 220 and 280 K is shown. That data 

covers both the stable, metastable and unstable region. Molecular simulation data is available for stable and metastable states. 

It agrees very well with the PC SAFT predictions.  

 [FIG. 6 about here] 

In addition to thermodynamic properties, structural ones can be compared. FIG. 7 shows density profiles for planar 

interfaces between vapor and liquid in equilibrium obtained from MD simulations
35

 and PC-SAFT + DGT for several 

temperatures from 220 to 290 K. The results agree very well with each other. 

[FIG. 7 about here] 

IV. RESULTS & DISCUSSION 

A. Evaluation of kinetic prefactor and comparison of nucleation rates from theory and simulation 

The prefactor k0 of Eq. (11) as used in Eq. (1) is fitted such that to the nucleation rate of Table 1 for the lowest density 

above the spinodal density (obtained from PC-SAFT) for the respective temperature and that from the HyNT nucleation rate 

agree. The kinetic prefactor is temperature dependent. We choose a simple Arrhenius type dependence 

 
0

1
ln

s /

k b
a

T K


 
 
 
 

 (15) 

with coefficients a = -18.36 and b = 8.611 to describe that dependence. This is somewhat arbitrary, but it has been 

argued in literature
14,47

 that the kinetic prefactor depends on several quantities (e.g. viscosity, vapor pressure) that themselves 

have an exponential temperature dependence, hence our choice. Another sensible option would have been a power law 

dependence, however, with only two measured data points for k0 both choices seemed likewise plausible. In FIG. 8 bubble 

nucleation rates for T = 220 K and T = 280 K from molecular simulation, CNT according to Eq. (13) and HyNT are shown. 

The molecular simulation results show that the nucleation rate close to the spinodal is larger for lower temperatures. Since 
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HyNT is fitted to that nucleation rate it shows the same temperature dependence. CNT predicts the inverse trend. With 

increasing density, nucleation rates drop super-exponentially. For T = 280 K, HyNT shows a very good agreement with 

simulation. CNT overestimates the simulation data by roughly two orders of magnitude at that temperature, even though the 

same EOS and surface tension data is used. For T = 220 K the agreement between HyNT and simulation is still reasonable, 

however, not as good as for the higher temperature. This may be due to the simplifications in DGT, namely the assumptions 

that the influence parameter κ is a constant and the truncation of the series expansion (cf. Eq. (2) & (3)), which are both 

strictly valid only for vanishing gradients, i.e. at the critical point. Hence, increasing deviations for lower temperatures are 

not unexpected. CNT predicts nucleation rates about 5 orders of magnitude too low. The better agreement of HyNT is of 

course expected, since the kinetic prefactor is fitted to simulation data. 

[FIG. 8 about here] 

B. Comparison to experimental data 

For CO2 only limited experimental data on metastable states and nucleation is available. Straub
29

 has measured the limit 

of supercooling for isochoric cooling of liquid CO2 below the coexistence temperature. This was also done by Huang et al.
30

. 

In both cases measurements were made close to the critical temperature of CO2. In order to compare results from such 

experimental data to any nucleation theory both the sample volume and the relaxation time, i.e. the average time until the first 

macroscopic bubble is observed, need to be known. Neither Straub
29

 nor Huang et al.
30

 report both these values. However, 

McGraw
48

 assessed that a nucleation barrier height of roughly 50 – 60 kT is an appropriate threshold for the observation of 

macroscopic bubble nucleation near a critical point. This threshold corresponds to a nucleation rate of about J = 1 cm
-3

s
-1

 for 

the temperatures studied by Huang et al.
30

. For simplicity, this constant nucleation rate is adopted here for the evaluation of 

the supercooling from HyNT. The results of the comparison of the experimental data by Straub
29

 and Huang et al.
30

 to the 

predictions of HyNT and CNT are shown in FIG. 9. For the comparison the cavitation temperature Tcav is set and the required 

homogenous density ρ
h
 to achieve the prescribed J is calculated. Then the vapor-liquid equilibrium temperature T

LV
 

corresponding to that temperature is calculated. These temperatures are also known from the experiment. The comparison is 

carried out in a plot in reduced units, see FIG. 9. The agreement between the experimental data and that from HyNT is good. 

However, FIG. 9 also shows that the CNT according to Eq. (13) yields a similar agreement. The available supercooling 

experiments near the critical point are unfortunately not well suited for discriminating the theories. 

 [FIG. 9 about here] 

C. Discussion 
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The HyNT method presented above relies both on molecular simulation and an EOS + DGT. The employed molecular 

model and the EOS should be consistent and they should describe the available experimental data on VLE and surface 

tension of the studied fluid well. In CNT an EOS describing the VLE and surface tension data is needed so that both HyNT 

and CNT require the same input. As shown above, CNT predicts the wrong temperature dependence of the nucleation rate J, 

whereas in HyNT that problem does not occur. Nucleation rate is calculated from two different factors, the kinetic prefactor 

J0 and the thermodynamic factor exp(-ΔΩ
*
 / (kT)). The first one is shown in FIG. 10 and the nucleation barrier heights 

ΔΩ
*
 / (kT) are shown in FIG. 11. The prefactors (cf. FIG. 10) from both theories differ by several orders of magnitude and 

their density dependence is different. The temperature dependence is qualitatively the same. The nucleation barrier height (cf. 

FIG. 11) is similar in the binodal limit for both temperatures. This is not surprising, since the capillarity approximation of 

CNT is expected to hold there. However, even at moderate supersaturations the behavior of HyNT and CNT differs 

drastically. CNT does not converge to the correct zero barrier height limit at the spinodal. This results in wrong 

thermodynamic factors, which are the reason for the wrong temperature dependence of CNT in the spinodal limit (cf. FIG. 8). 

[FIG. 10 about here] 

[FIG. 11 about here] 

Since the capillarity approximation of the CNT of Blander and Katz
4
 (Eq. (13)) breaks down, the Tolman correction

15
 to 

the surface tension can be used as a modification. This correction is linear in the inverse of the equimolar radius of the critical 

bubble. Using DGT, the Tolman correction can be checked by calculating the surface tension of critical nuclei. For T = 220 

K and T = 280 K, this radius dependent surface tension divided by the planar surface tension at the respective temperature is 

shown as a function of the inverse of equimolar radius in FIG. 12. The equimolar density is a function of the homogeneous 

density 
h

  which is limited between the liquid spinodal density and the saturated liquid density. At both limits, the radius 

diverges to infinity. Hence, its inverse is zero. At the liquid spinodal density there is no stable nucleus. The surface tension 

approaches zero. At saturated liquid density, the planar limit is reached. It may seem odd that for a given critical radius two 

solutions for the surface tension exist. However, this is a direct consequence of the above limits. The two solutions 

correspond to two different bulk densities. For large radii, the linear Tolman correction captures the behavior of surface 

tension well, but for nanometer sized bubbles, the second order correction cannot be neglected for both temperatures. In case 

of the isotherm T = 280 K, the surface tension even goes through a minimum rendering a truncated Taylor series expansion 

inappropriate. In summary, for high temperatures the linear Tolman correction breaks down much earlier than for low 

temperatures. 

 [FIG. 12 about here] 
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The Tolman length δ = re - rs is depicted in FIG. 13 as a function of the inverse equimolar radius. Here the lower branch 

corresponds to solutions close to the binodal, while the upper branch, where the Tolman length seems to diverge, corresponds 

to solutions close to the spinodal. At the binodal the Tolman length is of the order of Ångström and positive. 

[FIG. 13 about here] 

One of the assumptions of CNT is that the density inside the bubble is the same as the saturated vapor density. This 

assumption has been shown to be wrong for the Lennard-Jones truncated and shifted (LJTS) fluid by Horsch and Hasse
49

 

before. These authors have shown that decreasing the bubble radius, first the density at the center of the critical bubble 

decreases. Upon further decrease of the bubble radius, the density increases again. The trend is confirmed here for CO2. The 

results for the density at the center of the critical bubble from DGT are shown in FIG. 14 over the inverse of the equimolar 

radius for both studied temperatures. For comparison to the earlier results of Horsch and Hasse
49

 the density at the center of 

the bubble ( 0)r   is reduced by the saturated vapor density in the planar case '' . The radius is reduced by the Lennard-

Jones diameter in case of the LJTS fluid and by the hard sphere diameter of one segment in case of the DGT results. At the 

binodal the radius of the critical bubble becomes infinite (1/re = 0), because only the planar interface is stable. In this case the 

saturated vapor density is reached. Starting from the planar case (1/re = 0), a decrease of density inside the bubble is predicted 

by molecular simulation as well as DGT + EOS for decreasing re. But for very small bubbles, the density increases sharply 

due to the finite size of the interface. 

[FIG. 14 about here] 

 
V. CONCLUSIONS 

A hybrid theory of bubble nucleation (HyNT) is developed. This theory is based on DGT + EOS and a molecular model, 

which should be consistent with each other and experimental data for VLE and interfacial properties. This can be 

achieved by parameter fitting. In this article the parameters of EOS and DGT are fitted to results from molecular 

simulation obtained with a model that is known to describe CO2 well
25,35

. Bubble nucleation rates close to the spinodal 

are predicted using massively parallel molecular dynamics simulations with up to 100 million sites. These simulations 

are evaluated using the method of Yasuoka and Matsumoto
27

. The nucleation rate is split into two parts, the 

thermodynamic barrier 
*

exp( / (kT))  and the kinetic prefactor 
0

J . The former is calculated using DGT + PC-SAFT 

and the latter is fitted to simulated nucleation rates for two temperatures, as close to the spinodal as possible, because 

there the thermodynamic barrier vanishes. HyNT shows a good agreement with nucleation rates determined from 

simulation, also for simulations that were not included in the fit. CNT in the version of Blander and Katz
4
, using the 
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same EOS, shows the wrong temperature dependence of the nucleation rate. This is explained in terms of the non-zero 

limiting nucleation barrier height of CNT at the spinodal. Hence, CNT should not be used to interpret data from 

molecular simulation close to the spinodal. 

Further improvements of HyNT might be possible using a density functional instead of the DGT used here, however, at 

the expense of increased complexity. Results for the isochoric limit of supercooling for liquid CO2 obtained from HyNT 

are compared to experimental data
29,30

 and show good agreement. However, also CNT agrees well with that data, which 

is only available in a small temperature range close to the critical point and therefore not suitable for discriminating the 

results of both theories. The new theory should be tested for temperatures closer to the triple point of CO2 preferably 

using direct bubble nucleation rate measurements, if such data becomes available. Additionally, the linear Tolman 

correction to the surface tension is found to be qualitatively wrong for very small bubbles, i.e. in the regime, where 

molecular simulation takes place. The qualitative dependency of the density in the center of critical bubbles on the 

bubble size that was observed earlier for the Lennard-Jones truncated and shifted fluid is confirmed here for CO2. 

ACKNOWLEDGMENTS 

The authors gratefully acknowledge financial support from BMBF within the SkaSim project (grant no. 01H13005A) 

and from DFG within IRTG 2057 (subproject UKL3.5). The large-scale MD simulations were carried out on hermit at HLRS 

(Stuttgart) with specially allocated resources, on hazel hen at HLRS within the supercomputing project MMHBF2, on 

SuperMUC at LRZ (Garching) within the supercomputing project SPARLAMPE (pr48te), and on Elwetritsch at RHRK 

within the supercomputing project TUKL-TLMV. The authors would like to thank C.W. Glass for facilitating access to HPC 

infrastructure.  

REFERENCES 

1
 J.F. Lutsko, in New Perspectives on Mineral Nucleation and Growth, edited by A.E.S.V. Driessche, M. Kellermeier, L.G. 

Benning, and D. Gebauer (Springer International Publishing, 2017), pp. 25–41. 
2
 M. Blander and J.L. Katz, J. Stat. Phys. 4, 55 (1972). 

3
 H. Vehkamäki, Classical Nucleation Theory in Multicomponent Systems (Springer, Heidelberg, 2006). 

4
 M. Blander and J.L. Katz, AIChE J. 21, 833 (1975). 

5
 V.G. Baidakov and K.S. Bobrov, J. Chem. Phys. 140, 184506 (2014). 

6
 M.A. Gonzalez, J.L.F. Abascal, C. Valeriani, and F. Bresme, J. Chem. Phys. 142, 154903 (2015). 

7
 F. Römer and T. Kraska, J. Chem. Phys. 127, 234509 (2007). 

8
 S. Sinha, A. Bhabhe, H. Laksmono, J. Wölk, R. Strey, and B. Wyslouzil, J. Chem. Phys. 132, 064304 (2010). 

9
 F. Römer, B. Fischer, and T. Kraska, Soft Mater. 10, 130 (2012). 

10
 J. Wedekind, A.-P. Hyvärinen, D. Brus, and D. Reguera, Phys. Rev. Lett. 101, 125703 (2008). 

11
 M. Horsch, J. Vrabec, and H. Hasse, Phys. Rev. E 78, 011603 (2008). 

12
 V.I. Kalikmanov, J. Chem. Phys. 124, 124505 (2006). 

13
 A. Laaksonen, I.J. Ford, and M. Kulmala, Phys. Rev. E 49, 5517 (1994). 

14
 K.K. Tanaka, H. Tanaka, R. Angélil, and J. Diemand, Phys. Rev. E 92, 022401 (2015). 

15
 R.C. Tolman, J. Chem. Phys. 17, 333 (1949). 

16
 B.J. Block, S.K. Das, M. Oettel, P. Virnau, and K. Binder, J. Chem. Phys. 133, 154702 (2010). 

17
 A. Malijevský and G. Jackson, J. Phys.: Condens. Matter 24, 464121 (2012). 



15 

 

18
 S. Werth, S.V. Lishchuk, M. Horsch, and H. Hasse, Physica A 392, 2359 (2013). 

19
 Ø. Wilhelmsen, D. Bedeaux, and D. Reguera, J. Chem. Phys. 142, 064706 (2015). 

20
 A. Laaksonen, V. Talanquer, and D.W. Oxtoby, Annu. Rev. Phys. Chem. 46, 489 (1995). 

21
 D.W. Oxtoby, Ann. Rev. Mater. Res. 32, 39 (2002). 

22
 V.G. Baidakov, J. Chem. Phys. 144, 074502 (2016). 

23
 J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 31, 688 (1959). 

24
 J. Gross and G. Sadowski, Ind. Eng. Chem. Res. 40, 1244 (2001). 

25
 T. Merker, C. Engin, J. Vrabec, and H. Hasse, J. Chem. Phys. 132, 234512 (2010). 

26
 A.R. Imre, G. Mayer, G. Házi, R. Rozas, and T. Kraska, J. Chem. Phys. 128, 114708 (2008). 

27
 K. Yasuoka and M. Matsumoto, J. Chem. Phys. 109, 8451 (1998). 

28
 J. Diemand, R. Angélil, K.K. Tanaka, and H. Tanaka, Phys. Rev. E 90, 052407 (2014). 

29
 J. Straub, in Proceedings of the 3rd International Conference on Chemical Thermodynamics and Physico-Chemical 

Techniques at High Temperatures, Baden, Austria (Butterworth, London, 1973). 
30

 J.S. Huang, W.I. Goldburg, and M.R. Moldover, Phys. Rev. Lett. 34, 639 (1975). 
31

 J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 28, 258 (1958). 
32

 J.W. Cahn, J. Chem. Phys. 30, 1121 (1959). 
33

 S. Enders, H. Kahl, and J. Winkelmann, Fluid Phase Equilibr. 228–229, 511 (2005). 
34

 J. Hrubý, D.G. Labetski, and M.E.H. van Dongen, J. Chem. Phys. 127, 164720 (2007). 
35

 S. Werth, M. Kohns, K. Langenbach, M. Heilig, M. Horsch, and H. Hasse, Fluid Phase Equilibria 427, 219 (2016). 
36

 M. Volmer and A. Weber, Z. Phys. Chem. 119, 277 (1926). 
37

 L. Farkas, Z. Phys. Chem. 125, 236 (1927). 
38

 R. Becker and W. Döring, Ann. Phys. 416, 719 (1935). 
39

 J.B. Zeldovich, Zh. Eksp. Teor. Fiz. 12, 525 (1942). 
40

 C. Niethammer, S. Becker, M. Bernreuther, M. Buchholz, W. Eckhardt, A. Heinecke, S. Werth, H.-J. Bungartz, C.W. 

Glass, H. Hasse, J. Vrabec, and M. Horsch, J. Chem. Theory Comput. 10, 4455 (2014). 
41

 R. Lustig, Mol. Phys. 65, 175 (1988). 
42

 M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, New York, NY, USA, 1989). 
43

 J. Gross, AIChE J. 51, 2556 (2005). 
44

 J. Gross and J. Vrabec, AIChE J. 52, 1194 (2006). 
45

 M. Kleiner and J. Gross, AIChE J. 52, 1951 (2006). 
46

 J. Vrabec and H. Hasse, Mol. Phys. 100, 3375 (2002). 
47

 B.V. Deryagin, A.V. Prokhorov, and N.N. Tunitskii, Soviet Journal of Experimental and Theoretical Physics 46, 962 

(1977). 
48

 R. McGraw, J. Chem. Phys. 91, 5655 (1989). 
49

 M. Horsch and H. Hasse, Chem. Eng. Sci. 107, 235 (2014). 
50

 M.V. Bulatov, P.M. Lima, and D.T. Thanh, Vestnik YuUrGU. Ser. Mat. Model. Progr. 8, 5 (2015). 
51

 M. Krone, J. Stone, T. Ertl, and K. Schulten, in EuroVis - Short Papers (2012). 
52

 W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996). 

 

  



16 

 

APPENDIX 

APPENDIX A: Numerical Procedure for Determining Radial Density Profiles 

Density profiles are calculated according to the differential Eq. (4). This equation is discretized using finite differences with a 

step width of h = 0.2 Å using a central difference scheme. Rewriting Eq. (4) for point i in the finite difference scheme results 

in 

 2
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for i > 0 and in  
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(C.2) 

for the bubble center, ensuring the condition of vanishing derivative of ρ at r = 0. Since the second condition is at infinite 

radius, also there the derivative of ρ must vanish in addition to the condition 
( )

h
r  

. Since boundary conditions on 

a semi-infinite domain are difficult to handle, we use the fact that if both conditions are fulfilled Eq. (4) is exactly zero. This 

means that at vanishing derivative at some large r, the homogenous density 
h

  must be recovered for the non-trivial solution 

of this boundary value problem. Using the iteration formulas above, we guess a starting density 0


 and calculate the profile 

until the absolute change of density from i to i+1 divided by the total density difference between center of the bubble and 

homogeneous phase is smaller than 10
-6

. If the density at that point n is larger than the homogeneous phase, 0


 is reduced 

and if larger it is increased and the density profile recalculated. After that initial step, the bisection method is used to find the 

correct 0


. Convergence is assumed if 

0

0

0.001

h h

n

h

   

 

 


 

(C.3) 

Using this method, the calculation of profiles is limited by the machine precision. If the lower and upper bound in the 

bisection method differ by less than double the machine precision, no better solution is possible. This occurs approaching the 

binodal, where the radius of the bubble grows to infinity. There have been suggestions in literature
50

 to work around this, 

however, we do not apply such methods here, since we are mainly interested in the range closer to the spinodal. 

 

APPENDIX B: Molecular Model for CO2 

The molecular model for CO2 by Merker et al.
25

 consists of three linearly arranged Lennard-Jones sites, one for each oxygen 

and the carbon and a point quadrupole on the carbon aligned with the molecular axis. The parameters of the model are the 

Lennard-Jones diameters of the oxygen σO and carbon σC as well as their interaction energies εO and εC The distance between 

carbon and oxygen rCO and the quadrupole moment Q, all of which are listed in Table 3. 

 
Table 3. Molecular model of CO2 from Merker et al.25 

σC / Å εC / K σO / Å εO / K Q / DÅ rCO / Å 

2.8137 12.3724 2.9755 100.493 4.0739 1.2869 

 

APPENDIX C: Simulation Data on Bubble Nucleation, Metastable and Stable States of CO2 

In Table 4 and Table 5 the nucleation rate from molecular simulation, evaluated as described in paragraph III.A, is given for 

the two investigated temperatures as indicated in the heading for different densities close to the spinodal. The numbers of 

particles used for the different simulations as well as the numbers of grid points for bubble evaluation in one dimension are 

given in Table 6. Simulation results for metastable and stable p-ρ-T behavior of the CO2 model are given in Table 7. 
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Table 4. Nucleation rates from the present MD simulations at T = 220 K, evaluated according to the YM method with varying values of the 

threshold bubble volume Vmin. The rates that were used for the data of J (cf. Table 1 and text) are underlined. “n/a” indicates that the 

nucleation rate could not be obtained reliably by the YM method. 

 

Vmin / nm3 1 2 5 10 20 50 100 200 500 

ρh / mol l-1     J / m-3s-1

     

22.600 8.4 ∙ 1034 7.0 ∙ 1034 5.7 ∙ 1034 4.7 ∙ 1034 3.6 ∙ 1034 2.3 ∙ 1034 1.4 ∙ 1034 5.9 ∙ 1034 n/a 

23.200 1.8 ∙ 1034 1.8 ∙ 1034 1.6 ∙ 1034 1.4 ∙ 1034 1.1 ∙ 1034 9.4 ∙ 1033 7.8 ∙ 1033 5.3 ∙ 1033 1.1 ∙ 1033 

23.600 1.9 ∙ 1033 1.9 ∙ 1033 1.6 ∙ 1033 1.7 ∙ 1033 1.7 ∙ 1033 1.6 ∙ 1033 1.3 ∙ 1033 1.1 ∙ 1033 1.1 ∙ 1033 

23.900 2.0 ∙ 1032 1.7 ∙ 1032 1.9 ∙ 1032 2.2 ∙ 1032 2.0 ∙ 1032 2.0 ∙ 1032 2.0 ∙ 1032 1.8 ∙ 1032 2.0 ∙ 1032 

 

Table 5. Same as Table 4 but for T = 280 K. 

Vmin / nm3 2 5 10 20 50 100 200 500 

ρh / mol l-1    J / m-3s-1

    

16.300 8.1 ∙ 1034 1.7 ∙ 1034 5.8 ∙ 1033 2.7 ∙ 1033 1.1 ∙ 1033 5.6 ∙ 1032 3.5 ∙ 1032 1.6 ∙ 1032 

16.600 6.0 ∙ 1034 1.1 ∙ 1034 2.8 ∙ 1033 1.3 ∙ 1033 5.6 ∙ 1032 3.2 ∙ 1032 1.8 ∙ 1032 8.9 ∙ 1031 

16.900 3.8 ∙ 1034 4.0 ∙ 1033 1.3 ∙ 1033 4.9 ∙ 1032 2.9 ∙ 1032 1.9 ∙ 1032 1.2 ∙ 1032 5.0 ∙ 1031 

17.200 2.3 ∙ 1034 2.0 ∙ 1033 3.5 ∙ 1032 1.4 ∙ 1032 7.1 ∙ 1031 5.8 ∙ 1031 4.6 ∙ 1031 n/a 

17.350 1.4 ∙ 1034 1.2 ∙ 1033 1.8 ∙ 1032 7.0 ∙ 1031 3.3 ∙ 1031 2.8 ∙ 1031 1.9 ∙ 1031 1.7 ∙ 1031 

17.575 9.7 ∙ 1033 5.9 ∙ 1032 5.0 ∙ 1031 n/a n/a n/a n/a n/a 

17.650 7.8 ∙ 1033 3.6 ∙ 1032 n/a n/a n/a n/a n/a n/a 

 
Table 6. Density ρh, temperature T, number of molecules N, and grid resolution M1/3 for the present MD simulations. 

h 1
/ mol l


 N 1/3

M  

T = 220 K 

22.600 13 000 000 160 

23.200   

23.600   

23.900   

T = 280 K 

16.300 20 000 000 170 

16.600   

16.900   

17.200 25 000 000 180 

17.350 07 000 000 120 

17.575 20 000 000 170 

17.650 07 000 000 120 
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Table 7. Thermal properties of homogeneous states of CO2 as described by the model of Merker et al.25: Pressure p as a function of 

temperature T and density ρ. The number in parenthesis is the uncertainty of the last digit of the number reported for the pressure. Due to 

data loss, no uncertainty for the simulations at T = 280 K can be reported here.  

ρ / mol l
-1

 p / MPa 

T = 220 K 

0.1 0.17878(9) 

0.2 0.3496(2) 

0.3 0.5121(7 

0.4 0.666(3) 

24 -32(1) 

25.4 -17.8(4) 

26.4 0.8(3) 

26.5 5(1) 

27.4 28.3(2) 

29 89.9(6) 

31.5 255.7(4) 

T = 280 K 

1.75 3.18 

2 3.5 

2.25 3.77 

2.5 4.03 

2.7663 4.27 

3 4.47 

3.25 4.65 

3.75 4.91 

17 -1.24 

18.5 -0.518 

20.12 4.19 

21.5 12.9 

23 28.1 

24.5 56.2 

26 95.9 
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FIG. 1. Iso-density surface representation of a snapshot during the final stages of bubble nucleation at T = 280 K and ρh = 17.2 mol l-1. The 

surfaces are generated by Gaussian density mapping using the quicksurf algorithm51 in vmd52 and mark aggregations of unit cavities as 

defined in paragraph III.A. 
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FIG. 2. Number of bubbles Nbub exceeding the threshold volumes Vmin = 1 (triangles up), 5 (squares), 20 (circles), 100 (diamonds), and 

500 nm³ (triangles down) in a bubble nucleation simulation at T = 220 K and ρh = 23.6 mol l-1 over simulation time. 
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FIG. 3. Rate of bubble formation over threshold volume Vmin at T = 220 K and ρh = 23.2 (open circles) and 23.9 mol l-1 (filled circles) 

obtained from the present MD simulations, evaluated with the YM method, and confidence intervals for the macroscopic nucleation rate at 

ρh = 23.2 (dashed lines) and 23.9 mol l-1 (solid lines). 
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FIG. 4. Rate of bubble formation over threshold volume Vmin at T = 280 K and ρh = 16.9 (open circles) and 17.35 mol l-1 (filled circles) 

obtained from the present MD simulations, evaluated with the YM method, and confidence intervals for the macroscopic nucleation rate at 

ρh = 16.9 (dashed lines) and 17.35 mol l-1 (solid lines). 
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FIG. 5. Vapor pressure (a), coexisting and spinodal densities (b), enthalpy of vaporization (c) and planar surface tension (d) of CO2 over 

temperature from PC-SAFT (lines) and molecular simulation (symbols) of Merker et al.25 (a-c) and Werth et al.
35

 (d). 
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FIG. 6. Thermal properties of CO2 as described by the molecular model of Merker et al.25 and the PC-SAFT model from the present work. 

Both data for the vapor-liquid equilibrium and data for isotherms at 220 K and 280 K in the stable metastable and unstable range are 

shown. Full line: binodal PC-SAFT; dashed line: isotherm PC-SAFT; squares: VLE molecular simulation Merker et al.25; symbols are data 

for the isotherms obtained from molecular simulation (diamonds: 220 K; circles: 280 K). Panel a) shows the gas side while panel b) shows 

the entire studied range. 
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FIG. 7. Density profiles through the vapor-liquid interface for CO2 as described by the molecular model of Merker et al. 25 and the PC-

SAFT + DGT model from the present work for isotherms as indicated in the figure. Symbols are molecular simulation data
35

 and lines PC-

SAFT + DGT calculations. 
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FIG. 8. Nucleation rate of CO2 over liquid density at 220 K (right) and 280 K (left). Symbols are molecular simulation results, the dashed 

lines are CNT calculations, and the solid lines HyNT calculations The symbols show the confidence intervals for the macroscopic 

nucleation rate determined from the rate of formation of nanobubbles in the present MD simulations. Thin vertical lines are the respective 

PC-SAFT spinodals. 
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FIG. 9. Reduced isochoric cavitation temperature for nucleation rates of J = 1 cm-3s-1 over reduced equilibrium temperature from HyNT 

(solid line), CNT (broken line) and experiments of Straub29 (x) and Huang et al.30 (+) together with experimental confidence intervals given 

by the respective authors. Axis are reversed to have lower temperatures left and at the bottom. 
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FIG. 10. Kinetic prefactor of the nucleation of CO2 over liquid density at 220 K (right) and 280 K (left). Dashed lines are CNT calculations 

and solid lines HyNT calculations Thin vertical lines are the respective PC-SAFT spinodals. 
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FIG. 11. Nucleation barrier height of CO2 over liquid density at 220 K (right) and 280 K (left). Dashed lines are CNT calculations and solid 

lines HyNT calculations Thin vertical lines are the respective PC-SAFT spinodals. 
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FIG. 12. Surface tension of critical bubbles divided by planar surface tension over the inverse equimolar radius of these bubbles for 

T = 280 K (full line) and T = 220 K (dashed line) obtained from DGT for CO2. 
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FIG. 13. Tolman length of critical bubbles over the inverse equimolar radius of these bubbles for T = 280 K (full line) and T = 220 K 

(dashed line) obtained from DGT for CO2. 
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FIG. 14. Density at the center of critical bubbles for CO2 predicted with DGT (T / Tc =0.91: solid line; T / Tc =0.71: broken line) from this 

work and for the Lennard-Jones truncated shifted fluid (LJTS) from molecular simulation49 (T / Tc =0.69: symbols) over the inverse 

equimolar radius. Units are reduced as explained in the text to improve comparability. 
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