
1 
 

Potential Crash Rate Benchmarks for Automated Vehicles 
 

Noah Goodall 

 

Virginia Transportation Research Council, USA, noah.goodall@vdot.virginia.gov 

 

Pre-print version. Final version in Transportation Research Record (2021), 

https://doi.org/10.1177/03611981211009878 

 

 

Abstract 

Most automobile manufacturers and several technology companies are testing automated 

vehicles on public roads. While automation of the driving task is expected to reduce crashes, 

there is no consensus regarding how safe an automated vehicle must be before it can be 

deployed. An automated vehicle should be at least as safe as the average driver, but national 

crash rates include drunk and distracted driving, meaning that an automated vehicle that crashes 

at the average rate is somewhere between drunk and sober. In this paper, automated vehicle 

safety benchmarks are explored from three perspectives. First, crash rates from naturalistic 

driving studies are used to determine the crash risk of the model (i.e., sober, rested, attentive, 

cautious) driver. Second, stated preference surveys in the literature are reviewed to estimate the 

public’s acceptable automated vehicle risk. Third, crash, injury, and fatality rates from other 

transportation modes are compared as baseline safety levels. A range of potential safety targets is 

presented as a guide for policymakers, regulators, and automated vehicle developers to assist in 

evaluating the safety of automated driving technologies for public use.  
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INTRODUCTION 

The task of driving has become increasingly automated in recent decades, particularly since the 

start of large-scale public road testing in 2010 (1). Vehicles with computer-control of combined 

lateral and longitudinal movement over a range of environments are referred to as autonomous or 

automated vehicles. Most vehicle manufacturers and several technology companies are 

developing automated vehicles, and these developers have conducted 6.5 million miles of 

supervised autonomous testing on public roads in California as of November 2019.  

 The safety of these vehicles remains an open question. As advanced automated vehicles 

are not yet sold to the public, safety assessments have relied mostly on mandated reporting of 

autonomous testing mileage and crashes to the California Department of Motor Vehicles (2). 

These studies have found that when equivalent crash definitions are compared, automated 

vehicles crash at lower rates than the general public (3, 4). Automated vehicle testing in 

California, however, requires the use of a trained safety driver to monitor the vehicle and take 

control as needed. These drivers are trained to anticipate collisions and unexpected vehicle 

behavior, and to take control back from the automated driving system. As these safety drivers 

made 159,840 unplanned takeovers over 3,669,472 miles since between September 2014 and 

November 2018 (5), it is probable that crash rates from testing with trained safety drivers would 

not translate to general public drivers who may be distracted, tired, and unfamiliar with the 

technology.  

 There are as yet no defined safety requirements that automated vehicles must meet prior 

to being tested or sold to the public. Applications to test new automation technologies are 

generally handled on a case-by-case basis at the state level. Some automation features would 

likely be regulated at the national level, similar to how conventional vehicles in the United States 

are regulated by the National Highway Traffic Safety Administration (NHTSA), which is 

obligated to order a manufacturers to remedy defects that present an “unreasonable risk” (6) of 

crashes, death, or injury. In these cases, manufacturers would also be responsible for remedying 

defects, and dealers would be prohibited from selling vehicles with known defects (7). Vehicles 

can be defective even if they comply with NHTSA’s performance standards if they present 

“unreasonable risk of accidents” (8). In California, the state’s Department of Motor Vehicles 

(DMV) regulates automated vehicle testing within state boundaries, and requires that vehicles be 

insured, bonded, and in most cases monitored by a licensed driver directly employed by the AV 

developer (2). Although no regulations in the U.S. at the state or federal level prohibit AVs that 

exceed predetermined crash, injury, or fatality rates, a known safety benchmark could be used to 

begin to define “unreasonable” risks that specific AVs should not present. Private sector AV 

developers may also find crash rate targets useful when evaluating and communicating the safety 

of their automated driving systems.  

 Were AV safety benchmarks to be expressed as crash, injury, and fatality rates, what 

might those benchmarks be? Several benchmarks have been proposed in the literature and by 

commentators. One answer is that AV must at least be as safe as the average driver (9). While 

this seems reasonable, it fails to take into account the average driver’s crashes that involve 
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unacceptable and illegal driving behavior such as drunk driving and speeding. An automated 

vehicle that is safe as the average driver is, statistically speaking, somewhere between drunk and 

sober driving in terms of safety. Society does seem to have accepted these risks to some extent—

speed governors could eliminate speeding (10) and compulsory alcohol detection systems would 

restrict drunk driving (11), yet neither is mandatory for new vehicles. But there is a clear 

difference between prohibition and aggressive enforcement, and laws against speeding and drunk 

driving are still enforced. Introducing an automated vehicle with a crash rate equivalent to an 

occasional law-breaking human driver seems unlikely and irresponsible.  

 Others have proposed higher standards for automated vehicle safety. Sparrow and 

Howard argue that AVs that are safer than average with respect to other road users should be 

made mandatory (12). Kalra and Paddock, in calculating the number of miles traveled to 

establish statistical significance of safety improvements, used a 20% reduction in average fatal 

crash rate as an example (13). Commentators have recommended safety improvements by factors 

varying from 2 to 100, while others use the baseline of a mature, skilled driver (14). A widely 

referenced number is NHTSA’s estimate that driver error is a contributing factor in 94% of 

crashes (15), implying that automated vehicles free from human error might reduce the crash rate 

by a similar amount. To achieve a 94% crash reduction, however, human driving would have to 

be eliminated, as automated vehicles would still be struck by at-fault human drivers. Beyond the 

impracticality of banning human driving in the near future, others have pointed out how human 

error rate and automated vehicle crash reductions are not directly comparable (16). 

Responsibility for establishing the safety of automated vehicles is shared among 

manufacturers and regulators. These entities may choose to define what constitutes a safe 

autonomous driving system and, more importantly, what does not. Specific safety targets allow 

AV developers to communicate their safety record in context and with transparency. Clear 

definitions of acceptable crash rates tied to achievable benchmarks with wide public acceptance 

allows transparent regulation and validation of automated vehicles.  

The purpose of this paper is to present a range of safety benchmarks for automated 

vehicles. This is accomplished through a calculation of crash rates based on various driver risk 

factors from naturalistic driving, analysis of stated preference surveys in the literature, and a 

comparison of crash, injury, and fatality crash rates of other modes of transportation. 

 

CRASH RATES CONSIDERING DRIVER RISK FACTORS 

Crash rates are simply the rate at which vehicles crash, often expressed in terms of number of 

crashes per distance traveled. Rates can be broken down by collision angle, crash severity, speed, 

and a range of other factors recorded in a police report. A significant portion of crashes are due 

to driver error or impairment. These factors, such as excessive speeding, fatigue, and distraction 

should not be present in an AV, nor should they be exhibited by for-hire vehicles such as taxis 

and buses. Without these impairments, the baseline crash rate for an AV might be closer to an 

error and impairment-free model driver than the average driver. 
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To isolate the effect of these causal factors on crash rates, the number of crashes and 

distance traveled must be recorded for driving when both exposed to the factor and not exposed 

to the factor. While some of the factors are captured in NHTSA crash records, e.g. blood alcohol 

content, others are either captured with low confidence (fatigue (17) and distraction (18)) or not 

captured at all (emotional driving). No factors are collected for non-crash driving, making any 

claims about the relative safety of driving with risk factors impossible—one cannot claim that 

distracted driving is less safe without knowing the total number of distracted miles driven both 

with and without crashing. 

There are other shortcomings with conventional crash databases. While crash reporting is 

detailed and complete for fatal crashes in many countries, injury and property damage crashes 

may have limited data and might never be recorded in databases. In the United States, the 

National Highway Traffic Safety Administration estimated that 15% of injury crashes and 24% 

of property damage-only crashes are never reported to police (19), while an additional 9% of 

injury crashes and 24% of property damage-only crashes are reported but not entered into 

databases (20). These estimates of missing crash records are based on telephone surveys and rely 

on respondents recalling crashes they were involved in over the prior year (19). Respondents 

might not recall minor crashes, further weakening the completeness of crash records. To 

accurately capture crash rates, both crashes and mileages would need to be recorded. 

 

Naturalistic Driving Data 

Naturalistic driving studies, where drivers are passively recorded over a period of time, allow the 

collection of a range of risk factors over both crash and non-crash driving. Naturalistic driving 

studies have the added benefit that crashes can be automatically recorded via the vehicles 

kinematic sensors without relying on police-reporting. Further, vehicle mileages can be recorded 

with much greater precision and accuracy than FHWA miles-driven estimates. 

The Second Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 

NDS) completed data collection in 2015 and remains the largest NDS of its kind, collecting 

video, kinematic, and audio data from over 3,500 drivers over three years and 30 million 

miles (21). Crashes, near-crashes, other safety critical events, and baseline non-crash events were 

analyzed by data reductionists and classified based on observed driver error and impairment. 

Because this dataset captured risk factors for both crashes and baseline non-crash driving, it can 

be used to calculate the effect of individual risk factors on crash rate.  

 

Calculation of Driver Risk Odds Ratios 

Dingus et al. (22) presents the odds ratios and baseline prevalence for various risk factors based 

on model driving. The odds ratio is defined as crash rate when exposed to a risk factor divided 

by the crash risk when not exposed. 

 

 O.R. =  
crash rate under risk factor

crash rate under model driving
 (1) 
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To determine the crash rate for each risk factor, the NDS needed to collect not only 

crashes but also the prevalence of each risk factor under non-crash driving. Due to limits in in-

vehicle data storage, drivers were not recorded continuously. Prevalence of driver behaviors 

under non-crash driving was instead estimated from data recorded for short time intervals while 

the vehicle was moving. Over the course of the study, 19,732 non-crash intervals were selected 

based on a two-staged stratified random sampling method and subjected to the same data 

reduction by trained analysts as crash scenarios. From these samples, a baseline of exposure data 

can be developed. To determine the odds ratio from baseline data, the crashes per baseline 

intervals when the risk factor was present is the numerator, while the crashes per baseline 

intervals when under model driving is the denominator.  

 

 O.R. =  

𝑐𝑟𝑖𝑠𝑘

𝑏𝑟𝑖𝑠𝑘
𝑐𝑚𝑜𝑑𝑒𝑙

𝑏𝑚𝑜𝑑𝑒𝑙

=
𝑐𝑟𝑖𝑠𝑘𝑏𝑚𝑜𝑑𝑒𝑙

𝑏𝑟𝑖𝑠𝑘𝑐𝑚𝑜𝑑𝑒𝑙
 (2) 

 

In this equation, c is the number of crashes and b is the baseline mileage under the risk 

and model driving behaviors, respectively. Dingus et al. (22) provides values for odds ratios and 

percentage of baseline events exhibiting each risk factor. To conduct any comparative analysis, 

the crashes and baseline events for model driving are needed. Crashes are provided (12.3% of 

905 crashes occurred under model driving), and baseline prevalence can be calculated by using a 

risk factor with a known odds ratio, crash percentage, and baseline percentage. As an example, 

driver distraction is used below, which represented 68.3% of injury and property damage crashes 

and 51.93% of baseline samples.  

 

 
O.R. =  

𝑐𝑟𝑖𝑠𝑘

𝑏𝑟𝑖𝑠𝑘
𝑐𝑚𝑜𝑑𝑒𝑙

𝑏𝑚𝑜𝑑𝑒𝑙

 

 

(3) 

 

 
2 =  

0.683 0.5193⁄

0.123
𝑏𝑚𝑜𝑑𝑒𝑙

 
(4) 

 

 𝑏𝑚𝑜𝑑𝑒𝑙 = 0.187 (5) 

 

The odds ratio for all driving compared to model driving can then be calculated as: 
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 O.R. =

𝑐𝑟𝑖𝑠𝑘

𝑏𝑟𝑖𝑠𝑘
𝑐𝑚𝑜𝑑𝑒𝑙

𝑏𝑚𝑜𝑑𝑒𝑙

=  

1
1

0.123
0.187

≈ 1.5 (6) 

 

The all-driving injury and property damage crash rate for the naturalistic data is provided 

by Blanco et al. (4) as 20.2 crashes per million vehicle-miles traveled. (Although the SHRP 2 

NDS purposely over-sampled drivers under age 25 and over age 65 (22), the all-driving crash 

rate of 20.2 crashes per million vehicle-miles used when calculating risk factor crash rates is age-

weighted to represent the U.S. national driving population (4)). The crash rate for model driving 

can be obtained using the general driving odds ratio and reformulating equation (1). 

 

 
crash rate under model driving =  

crash rate under risk factor

O.R.
=

20.2

1.5
= 13.5 crashes/MVMT 

 

(7) 

 

In this equation, MVMT refers to million vehicle-miles traveled. For the purposes of this 

paper, the crash rate under a risk factor is less useful than the crash rate when not under a risk 

factor, i.e., when the driver is not distracted, fatigued, etc. Crashes and baseline driving often 

have multiple risk factors occurring simultaneously. To calculate the odds ratio, the crashes and 

baseline samples where the risk factor does not occur must be isolated.  

 

 O.R.𝑖𝑛𝑣𝑒𝑟𝑠𝑒 =

1 − 𝑐𝑟𝑖𝑠𝑘

1 − 𝑏𝑟𝑖𝑠𝑘
𝑐𝑚𝑜𝑑𝑒𝑙

𝑏𝑚𝑜𝑑𝑒𝑙

 (8) 

 

For some risk factors in Dingus et al. (22), crisk is not available. It can be obtained and 

substituted into equation 8 using: 

 

 𝑐𝑟𝑖𝑠𝑘 =
𝑐𝑚𝑜𝑑𝑒𝑙𝑏𝑟𝑖𝑠𝑘O.R.

𝑏𝑚𝑜𝑑𝑒𝑙
 (9) 

 

The risk factors and associated odds ratios and crash rates are shown in Table 1. These 

crash rates are significantly higher than 208 per MVMT reported by NHTSA for 2018 (23). This 

difference is because SHRP 2 NDS includes low-speed no-damage crashes, while NHTSA 

records includes only report police-reportable damage, injury, and fatal crashes.  

While the crash rate for all drivers is 2020 per hundred million miles, the crash rate is 

reduced slightly for sober and rested driving and significantly for cautious and attentive driving. 

A driver exhibiting all of these qualities would be considered a model driver with a crash rate of 

1347 per 100 million miles, a reduction of 33% compared to all driving.   
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Table 1 Crash Rates and Odds Ratios from SHRP 2 Naturalistic Driving Study 

Driver Status 
Crashes per 100 Million 

Vehicle-Miles 

Odds Ratio to 

Model Driving 

All Driving                 2020                     1.5  

Sober                 2010                     1.5  

Rested                 2007                     1.5  

Non-impaired                 1954                     1.5  

Cautious                 1479                     1.1  

Attentive                 1350                     1.0  

Model Driving                 1347                     1.0  

Child in rear seat                   673                      0.5  

  

STATED PREFERENCE SURVEYS 

Another way to determine potential safety benchmarks is to ask users what crash or fatality rates 

they would find acceptable. This is referred to as stated preference, a widely used method to 

establish acceptable risk levels (24). Liu et al. (25) surveyed 499 residents of Tianjin, China 

about acceptable fatality rates in terms of miles and population for either AVs or HDVs. Even 

though no respondent was asked about both AVs and HDVs, answers showed a clear preference 

for lower fatality rates for AVs. Based on the developed logarithmic model, half of respondents 

felt that a fatality rate of 0.20 per 100 million miles (3.2e-9 km) was acceptable for HDVs, but 

for AVs, the rate should be 0.028 per 100 million miles (4.5e-10 km), a reduction of 86%. The 

authors compared these rates to actual fatality rates per population globally but, to maintain 

consistency, the U.S. 2018 figure of 1.13 fatalities per 100 million miles is used here for 

comparison (23). The AV fatal crash rate that 50 percent of respondents found acceptable 

represents a 98% reduction in crashes from current rates. At the same time, respondents preferred 

that human drivers crash 85% less than today’s drivers. This suggests that survey participants 

might accept an AV that is only 87% safer than today’s drivers. Liu et al. defines three risk levels 

based on survey findings: unacceptable risk where crash rates are higher than those of the 

average human driver, tolerable risk when AVs are 75–80% safer than human drivers, and 

broadly acceptable when AVs reduce crash rates by 99% compared to human drivers. No 

definition is provided for AVs that are between 0% and 75% safer than human drivers, but for 

now this is defined as barely tolerable risk. 

In the survey instructions (25), respondents were informed that US rates are 321 traffic 

crashes, 124 injuries, and 1.7 deaths per billion vehicle-kilometers, but the authors do not 

provide a source for these figures. In fact, these rates are approximately 25% of NHTSA’s 2018 

U.S. rates when converted to the same base units (23). Using Liu et al.’s rates as actual rates, 50 

percent of respondents required AVs to reduce current crash rates by 90%. The same percentage 

of respondents preferred a human-driven crash rate that is 27% lower than current rates. This 

may have introduced some bias in Liu et al.’s results, as respondents were prompted with 

human-driven fatality rates significantly lower than actual rates. Additionally, different cultural 
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attitudes towards acceptable risk (26) may limit the applicability of these findings to the United 

States. 

Nees (27) performed a similar survey on AV risk acceptance. Nees noted that 

respondents may have had difficulty answering questions about acceptable crash given that these 

values are quite small and people have limitations when interpreting small numbers. Nees 

attempted to solve this problem by asking drivers to provide safety criteria as a function not of 

fatalities per vehicle-miles traveled but as a percentile of all drivers’ fatality rates. In a survey of 

504 participants via Amazon Mechanical Turk, respondents first ranked their own driving. 

Eighty-one percent of participants rated their driving as safer than the median driver. This was in 

agreement with previous studies such as Svenson (28) where 88% of U.S. drivers rated 

themselves as safer than the average driver. The median driver considered themselves at the 74th 

(73–76, 95% CI) percentile of safe drivers. When asked at what percentile an AV should be 

before being allowed on public streets, the median participant preferred an AV that was 8.7 (6.9–

11.1, 95% CI) percentile points higher than themselves, with 66% preferring an AV safer than 

themselves.  

The results are difficult to interpret for two reasons. First, most participants desired an 

AV in the 95th to 99th percentile. This may suggest not that they want an AV that was 12–16 

percentile points safer than themselves necessarily, but rather an AV that is as safe as the best 

human driver regardless of the participant’s own perceived safety. Second, there are few 

examples in the literature of percentile crash rates of drivers, and no public data sets from which 

to develop a risk profile. Most population crash studies use department of motor vehicle crash 

records (29). These studies do not control for exposure through mileage, so the “safest” drivers 

with the fewest crashes may not be driving at all. Other studies have estimate exposure from 

driver surveys, but these may suffer from respondents’ failure to accurately recall past mileages 

(29–32). The SHRP 2 NDS provides individual records of crashes and mileages, but the dataset 

contains only 1,148 crashes for 3,546 participants, again leaving a large percentile range with 

perfect safety records (17). Near crashes, where vehicles made sudden movements or hard 

decelerations, could be used as safety surrogates (26), but this might weaken the accuracy of the 

findings. Many insurance companies now use GPS sensors on vehicles to track mileage. These 

data could be merged with crash records to create individual crash rate records, but these datasets 

are generally proprietary and nonpublic. If a percentile crash rate of a general population of 

drivers could be created, either from insurance data, NDS data, or some other source, then a 

desired safety percentile could be translated into a specific crash rate. This is beyond the scope of 

this article but may be an area for further research.  

Even if individual risk profiles could be created, crashes are still rare, and many drivers 

will never crash in their lifetimes. Any crash risk distribution from individuals’ data would have 

a significant percentile range with zero crashes. An AV attempting to achieve a 99th percentile 

safety rating might never be permitted to crash, an impossible task. 

Finally, participants generally overestimated their safety in relation to the other drivers. 

Previous studies have shown that more than half of drivers believe themselves safer than both the 
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average driver (28) and drivers within their peer group (33). It is not clear whether this 

overestimation has been factored into their stated risk acceptance. Consider drivers at the 40th 

percentile, who think they drive at the 70th percentile, and who want AVs to be at the 90th 

percentile. Do these drivers want vehicles that are at the 90th percentile for safety, or merely 

vehicles that are 20 percentile points above themselves, i.e., at the 60th percentile? This is a 

difficult question to answer from surveys and may instead require a revealed preference 

approach. 

 

CRASH RATES FROM OTHER TRANSPORTATION MODES 

When defining thresholds for acceptable AV crash rates, the safety of other modes of 

transportation may serve as useful benchmarks. Liu et al., for example, mentions rail and 

commercial aviation as two examples of transportation modes with broadly acceptable safety 

rates (25). In this section, crash, injury, and fatality of various modes of transportation in the 

United States between the years of 2008–2017 are compared. Counts of crashes, injuries, 

fatalities, and mileages were mostly obtained from the U.S. Department of Transportation’s 

Bureau of Transportation Statistics (34). 

Safety rates were compared across several exposure data. The standard crash risk 

measure is events per distance, with distance often expressed in terms of vehicle-miles traveled 

(VMT). This metric can bias against low-capacity modes such as passenger vehicles which have 

more crashes per mile but with fewer passengers are exposed to each crash. An alternative metric 

is explored in this effort, person-miles traveled (PMT), defined as the number of people traveling 

a given distance or vehicle-miles multiplied by average vehicle occupancy. When person-miles 

data was not available, it was calculated from average vehicle occupancy, often obtained from 

the U.S. National Household Transportation Survey (35).  

 While exposure is often expressed as a unit of time, this may bias against slower moving 

vehicles. Buses, for example, has higher fatality rates than commercial air travel per mile, but 

lower rates per hour due to their slower speeds. Alternative metrics, vehicle-hours traveled 

(VHT) and person-hours traveled (PHT) are used here. Vehicle-based metrics are used for crash 

rate, as the number of occupants is not affected. Person-based metrics are used for occupant 

injury and occupant fatality rates, where the number of passengers in a vehicle is inversely 

correlated to individual risk.  

 Table 2 shows crash, injury, and fatality rates for several transportation modes. 

Commercial air travel has the best safety rate across several metrics, with the exception of 

occupant fatalities per person-hour traveled where bus rates are lower. Bus and passenger rail 

have low injury and fatality rates, lower than walking and cycling and within range of elevators 

and escalators. Motorcycles have the worst safety record across all metrics.  

  



10 
 

 

Table 2 Crash, Injury, and Fatality Rates by Transportation Mode 

Mode1 

 Per Unit Distance  Per Unit Time 

 
Crashes / 

100 M VMT 

Occupant 

Injuries / 

100 M PMT 

Occupant 

Fatalities / 

100 M PMT 

 
Crashes / 

100 M VHT 

Occupant 

Injuries / 

100 M PHT 

Occupant 

Fatalities / 

100 M PHT 

Passenger cars2  213.9 29.9 0.28  5,946 831.7 7.9 

Motorcycles2  546.3 375.9 20.27  13,385 9,210.5 496.6 

Large trucks3  130.8 9.4 0.24  5,885 421.2 10.5 

Buses4  408.4 5.1 0.015  4,655 57.8 0.18 

Commercial air2  0.37 0.003 0.001  161 1.5 0.52 

Pedestrians6  - 208.6 14.7  - 688.4 48.5 

Cyclists6  - 599 8.65  - 3,893 56.2 

Passenger rail7  - 6.7 0.034  - 155 0.8 

Elevators8  - 993 0.74  - 1,523 1.1 

Escalator9  - 1944 0.50  - 1957 0.51 

1 All data 2008-2017 from (34) unless otherwise noted. Speed and occupancy were used to convert miles 

to hours and vehicles to persons. 
2 Speeds and occupancy from (35). 
3 Trucks are defined as >10,000 lbs. Speeds average of 36 mi/hr for recreational vehicles (35) and 55 

mi/hr Interstate Highway System speeds (36). Occupancy from (VM-1). 
4 Speeds from (35). Occupancy from (37).  
5 Distance and speeds from (35).  
6 Speeds and occupancy calculated from (38).  
7 1997–2010. Speed calculated as 4.5 floors (45 feet) in 20 seconds from (39). All other data from (40, 

41). 
8 1997–2010. Speed calculated as 0.45 m/s (42) and assumes average elevator distance of 10 vertical feet 

at a 30 degree incline for 20 feet of slope distance. All other data from (40, 41). 

 

 Of the modes in Table 2, buses appear to be the most applicable benchmark for 

automated vehicle safety. Buses used trained drivers with specialized licensing, and buses are 

inspected more regularly than passenger vehicles. Although buses crash at higher rates per mile 

than passenger vehicles, this may be due to their lower average speeds of 11.4 mi/hr to passenger 

vehicles’ 27.8 mi/hr. Buses also travel in dense urban areas which have higher crash rates than 

comparative rural/suburban roads and freeways. Buses experience fewer crashes per hour, and 

fewer occupant injuries and fatalities across all metrics.  

 In evaluating AV safety benchmarks, industry and regulators must be careful to consider 

not only the safety rate with respect to passengers, but also the safety rate with respect to those 

outside the vehicle. Table 3 shows the injury and fatal crash rate for those outside the vehicle, 

either in other vehicle types or bicyclists and pedestrians. Non-occupants are injured in bus 

crashes at nearly double the rate per mile as for passenger cars. Other metrics show buses and 
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passenger cars with similar safety metrics. Although bus occupants are at substantially less risk 

of death and injury than car passengers, this difference is erased for non-occupants.    

 

Table 3 Non-occupant Injury and Crash Rates 

Mode 

Non-occupant 

injuries per 100M 

VMT 

Non-occupant 

injuries per 100M 

VHT 

Non-occupant 

fatalities per 100M 

VMT 

Non-occupant 

fatalities per 100M 

VHT 

Passenger cars 36.4 1013.0 0.8 20.9 

Large trucks 27.2 1225.6 1.2 52.9 

Buses 70.4 803.1 1.6 17.8 

 

CONCLUSIONS AND DISCUSSION 

While there is little consensus on crash rate targets for automated vehicles, some example 

benchmarks can be collected from other sources. Several potential benchmarks were identified in 

this study. Data from the SHRP 2 Naturalistic Driving Study suggests that model drivers—i.e., 

sober, rested, attentive, and cautious—crash 33% less than the average driver. An AV that seeks 

to emulate not a highly skilled human but merely one driving legally should crash at no more 

than this lower model rate. Surveys from Liu et al. suggest that drivers prefer an automated 

vehicle to crash 80% less (tolerable risk) or 99% less (broadly acceptable risk) than the average 

human driver (25). These figures are supported by findings in Nees (27). Others in the literature 

have used 20% lower crash rates as an example of acceptable AV crash risk (13). Crash, injury, 

and fatality rates from other modes provide examples of accepted risks for public transportation 

with stricter regulations of driver training and vehicle maintenance and inspections. Of all 

modes, buses provide the best comparison with AVs given their shared travel environment and 

similar levels of regulatory oversight. Table 4 lists a range of potential safety benchmarks for 

automated vehicles identified in this study. Benchmarks are expressed in terms of crashes, 

police-reportable (i.e., property damage or more severe) crashes, occupant and non-occupant 

injuries, and occupant and non-occupant fatalities. Total counts are divided by the most relevant 

exposure data for the metric, either vehicle-miles traveled, vehicle-hours traveled, person-miles 

traveled, person-hours, or more than one exposure metric.  
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Table 4 Potential Crash, Injury, and Fatality Rate Safety Benchmarks for Automated 

Vehicles 

Exposure 

Metric Safety Metric 

Passenger 

cars 

20% 

safer 

(13) 

Model 

driving, 

33% safer 

Tolerable, 

80% safer 

(25) 

Broadly 

acceptable, 

99% safer 

(25) 

Buses for 

comparison 

100 M VMT All Crashes 2020 1616 1347 404 20 - 

 PR Crashes 214 171 137 43 2.1 408 

 Non-occupant injuries 36 29 24 7.3 0.36 70 

 Non-occupant fatalities 0.8 0.6 0.5 0.2 0.008 1.6 

100 M VHT PR Crashes 5946 4757 3964 1189 59 4656 

 Non-occupant injuries 1013 810 675 203 10 803 

 Non-occupant fatalities 21 17 14 4.2 0.21 18 

100 M PMT Occupant Injuries 30 24 20 6.0 0.3 4.9 

 Occupant Fatalities 0.28 0.23 0.19 0.057 0.003 0.015 

100 M PHT Occupant Injuries 832 665 554 166 8.3 56 

 Occupant Fatalities 7.9 6.3 5.3 1.6 0.079 0.18 

 

Metric Selection 

AV developers and regulators should focus on crash metrics initially. As Kalra and Paddock 

have shown, fatal crashes are exceptionally rare, and any AV developer that wishes to establish 

with statistical significance that their vehicles are safer via on-road testing would need to 

accumulate an impractical number of fatality-free miles (13). Demonstrating that an AV has a 

failure rate equivalent to the national average with 95% confidence would require a fleet of 100 

vehicles driving continuously for 12.5 years. The amount of required testing is substantially 

reduced when establishing performance for the all-crash rate. One could establish that an AV 

crashes at the same rate as model driving with 95% confidence with only 222,400 miles of crash-

free driving. Waymo vehicles travel this distance in autonomous mode every two months in 

California alone (5). 

 

Limitations of a Single Metric 

This study investigated crash risk as a safety target for automated vehicles, defined as crashes of 

all severity levels per distance traveled. This metric is a useful starting point for industry and 

regulators who may be beginning to define safety for AVs using transparent benchmarks, but by 

no means should it be the end. Relying on a single benchmark is ill-advised. Automated vehicle 

safety improvements should be equitable, and benefits to one road user class should not come at 

the expense of another. An AV that kills 1,000 fewer car occupants but 100 additional 

pedestrians may not be acceptable, even though 900 net lives are saved. AVs should improve the 

safety of everyone who interacts with them, and these benefits should be distributed fairly. Crash 

rates at different severity levels should also be evaluated: fewer low-risk crashes do not excuse 

more severe crashes, and likewise fewer fatalities may not justify a two-fold increase in severe 
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debilitating injuries. The ethics of risk is a mature field that can address some of these issues (43, 

44). 

 Similarly, AVs should focus on vehicle-miles and vehicle-hours as exposure data to 

avoid the temptation to put riders in the back seat and artificially inflate person-based exposure. 

As far as between vehicle-miles and vehicle-hours, both metrics should be used in combination. 

Using vehicle-hours avoids a bias towards desolate freeway driving which accumulates miles 

with little risk, while vehicle-miles avoids the unlikely but conceivable scenario where vehicles 

idle in parking lots, accumulating hours. A metric such as vehicle-moving-hours or vehicle-miles-

hours, might serve as alternative exposure metrics. 

 Finally, different vehicle types may require their own metrics and benchmarks. In one 

example, several manufacturers operate low-speed automated shuttles the drive at speeds no 

greater that 15 mi/hr on streets with speed limits no greater than 25 mi/hr (45). At these speeds, 

vehicles will experience few fatal crashes per mile, and even fewer per hour when compared to 

passenger vehicles. Because of their low weight, however, shuttles may have fewer non-

occupant fatalities per hour when compared to buses. Automated shuttles may require safety 

targets based on bus crash rates but customized for shuttles’ unique operating environments and 

characteristics. Automated trucks operating at (relatively dangerous) high speeds on (relatively 

safe) controlled access highways may also require customized safety benchmarks.  

 Future research should investigate alternative metrics to measure safety. While this study 

presented metrics in terms of crash, injury, and fatality rates, others might focus on 

predictability, lateral and longitudinal accelerations, near-misses (46), inverse time-to-collision 

(47), or other crash surrogate measures. These alternative metrics might provide a more robust 

picture of driving risk without requiring crashes as samples. Researchers should also apply 

findings from risk ethics to automated vehicle crash risk. A few questions that require answers 

include under what circumstances an increase in crash risk to one road user group can be 

permitted at the expense of another group, how might AVs distribute risk among occupants and 

non-occupants, and how non-crash driving situations such as lateral positioning within a lane can 

affect permissible crash risk to others (48, 49). 
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