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Abstract

As a well-known and reliable control device, tuned liquid column dampers (TLCDs) have been
investigated numerically and experimentally and implemented in a number of structures over the
last three decades. However, TLCDs basically suffer from the lack of multidirectionality, which
is the critical need for real structures, in particular under random vibrations such as wind and
earthquake excitations. This aspect has garnered the attention of the structural control community
to modify this promising damper to achieve more efficiency and to extend its application range
to multidirectional vibrations. This paper proposes a mathematical modeling and optimization
approach for omnidirectional tuned liquid column dampers (O-TLCDs). As an improved and
reformed TLCD, O-TLCDs are formed by circularly distributed of n (integer n ≥ 3) L-arms
about a common joint point at the center, through which all L-arms are connected to each other.
Thanks to this layout, O-TLCDs can control structures with full counteracting force capacity in
all transversal directions regardless of the excitation angle of incidence. This paper, in the first
step, proposes the governing equation of motion of O-TLCDs, for which Lagrange’s principle is
employed, and the equation of motion of the coupled O-TLCD-structure system. In doing so, a
formal solution to determine the degree of freedom (DoF) of the O-TLCD is introduced, which
proves independence of the O-TLCD response from the number of L-arms as well as from the angle
of excitations. Second, for designing O-TLCDs, a set of design criteria and a general optimization
scheme, which accommodate the online simulation of coupled O-TLCD-structure system under
arbitrary excitations, are proposed. Consequently, without adding extra complication coming
from extra DoFs to the motion equation of the damper, the O-TLCD functions as an enhanced
liquid damper for multidirectional vibration attenuation. Next, using the O-TLCDs designed
with different mass ratios, numerical simulations of O-TLCD-structure systems are conducted
under seismic loads, free vibration, harmonic excitation and white noise and the controlled and
uncontrolled responses of the systems are assessed in the time and the frequency domain. Here, the
role of important parameters such as the mass ratio, the head loss coefficient, the liquid deflection
and the excitation amplitude are evaluated and the influence of varying conditions on the efficiency
of the O-TLCD are discussed. Results demonstrate that the proposed O-TLCD can be well tuned
to the structure and markedly control the peak and the RMS of responses of the structure. In the
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end, an experimental study on a prototype O-TLCD is performed using a shaking table, which
verifies the proposed mathematical modeling approach.
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1. Introduction

Vibratory systems such as structures built by conventional methodologies, which may everyday
end up with more massive and stiffer structural elements, suffer from inherent low damping to face
with stochastic and dynamic excitations. Structural control field, on the other hand, has shed light
on dealing with dynamic vibrations compatibly, which was founded by the pioneering work of Yao
[1] and profoundly reviewed (e.g. see [2, 3]). Structural control applications can be classified as
passive, semi-active, active, and hybrid control systems [4–7].

Due to their simple concept and reliability, the widespread applications of tuned dampers, such
as tuned mass dampers (TMDs) and tuned liquid dampers (TLDs), which can be accommodated
in one or more of the mentioned classes have been noticeable. As a more matured tuned damper,
which eliminates the need for problematic installations of TMDs and rectified the substantial
inactive liquid of TLDs, the tuned liquid column damper (TLCD) [8, 9] is invented. A number of
notable studies on TLCD may include the mathematical description of TLCDs and their optimum
parameters using sinusoidal and/or random vibrations, such as [10–19], passive TLCDs, such as
[20–31], and semi-active and active TLCDs, such as [32–41].

In parallel, the attention of the structural control community has been garnered to study
the mathematical description of TLCDs operating in other degrees of freedom (DoFs) than the
unidirectional translational movement. Hochrainer et al. [42] presented a torsional TLCD with
ring-shaped geometry for controlling torsional vibrations of structures; in addition, the paper
employed two other TLCDs for the horizontal translational DoFs and presented also experimental
results. Similar ring-shaped geometric layout was numerically investigated for plan-asymmetric
high-rise buildings exposed to an earthquake with prescribed angle of excitation [43], for simulation
of a 27-story building with eccentricity under wind load [44] and for attenuation of the edgewise
vibrations of wind turbine blades [45]. These studies showed that annular TLCDs can be effective
when exposed to torsional response.

To control multiple degrees of freedom, Heo et al. [46] proposed a tuned liquid mass damper
(TLMD), which was basically a TLCD mounted on natural rubbers, to reduce the translational
responses in the weak and strong directions of a building. The TLMD worked as a TLCD in one
direction where the liquid movement was employed and as a TMD in the orthogonal direction where
the total weight of the TLCD was merely the tuned mass. Experimental results showed the TLMD
could be tuned to two frequencies for bidirectional response reduction. Min et al. [47] proposed
a two-way liquid damper, which was a TLCD with wider dimension perpendicular to the TLCD’s
plane, so that the damper behaved like a TLCD in one direction and a TLD in the orthogonal
one; the efficiency of the damper was verified for a 64-story building under wind. Similar two-way
TLCD was applied by Lee et al. [48] where the inclination of the excitation angle ranging from 0
to 90◦ was also studied.
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Further multidirectional TLCDs were introduced using plus-shaped by Sakai and Takaeda [49],
crossed tube-like by Zhang et al. [50], and rectangular-based by Hitchcock et al. [51] layouts. A
bidirectional TLCD, which consisted of four vertical columns connected with four horizontal ones,
was proposed by Rozas et al. [52]. The damper required less liquid than two independent TLCDs
and acted as a TLCD in two orthogonal directions. Shaking-table tests with 45-degree orientation
identified two distinct natural frequencies of the damper. Numerical investigations of a 3-story
scaled model under seismic loads showed that the proposed bidirectional TLCD can control the
roof displacements more than the roof accelerations in two first vibrational modes. Adopting this
bidirectional TLCD, Tong et al. [53] studied controlling the pitch and the roll motions of wind
turbines in the fore-aft and side-to-side directions, which brought reduction in damage loads of
the tower and the fluctuations of the rotor speed and generator power. Based on the concept of
conventional TLCDs, Coudurier et al. [54] introduced a tuned liquid multi-column damper in three
different configurations to control simultaneously the pitch and roll motions of floating wind turbine
platforms. The liquid dampers were composed of N vertical columns, which were connected either
simply by horizontal columns over each other or by interconnected horizontal columns. Depending
on the arrangement of the horizontal columns, at least N − 1 DoFs were used to formulate the
equations of motion of the dampers. They concluded that, in comparison with crosswise layout
of multiple TLCDs over each other, the interconnected-column arrangement can result in a better
performance due to its robustness against wave incidence and less parasitic-oscillation creation.

Due to changing excitation direction, translational vibrations, such as the one induced by
winds and earthquakes on high-rise structures, arise a challenge for structural control. Based on
previously proposed TLCD configurations, a star shaped TLCD with N vertical columns seems to
be the best configuration to control translational vibrations. However, to the best of the authors’
knowledge, for the control of translational vibrations, the definition of such an omnidirectional
TLCD is missing.

This study introduces the mathematical description and optimization scheme for omnidirec-
tional tuned liquid column dampers (O-TLCDs) in the class of passive structural control, which
can cover every translational vibration in all directions with full capacity and regardless of the
excitation angle of incidence. In Section 2, the governing equation of motion is derived based on
the Lagrange’s principle, which is independent of the number of liquid columns and employs only
a single degree of freedom. The independence of the O-TLCD from the excitation direction is ana-
lytically proven where the resulted damping of the O-TLCD is formulated by the non-conservative
forces. In Section 3, to design an O-TLCD, an optimization scheme is introduced, which also
accommodates a simulation of coupled O-TLCD-structure system under an arbitrary excitation.
In Section 4, four O-TLCDs with different mass ratios are designed and investigated numerically
under earthquake records, free vibration, harmonic excitation, and white noise. The performance
of the O-TLCD, in general, and the role of critical parameters such as the mass ratio, the head loss
coefficient, the liquid deflection and the excitations, in particular, are numerically investigated. In
Section 5, experimental investigations are performed to study the validity of the proposed math-
ematical modeling approach, particularly focusing on the prediction of the natural frequency and
the liquid deflection response. Finally, this paper is concluded in Section 6.

2. Mathematical model

This section introduces the equations of motion of the O-TLCD and the O-TLCD-structure
system. In the following, the geometric layout and the DoF of the O-TLCD will be identified.
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Accordingly, the equations of motion will be derived based on Lagrange’s principle and equilibrium
of forces.

2.1. Geometry of O-TLCD

A TLCD with a horizontal liquid length H and vertical liquid length V is assumed, which
is located in the direction of a translational excitation w with arbitrary angle α relative to a
coordinate system. It is also considered that the TLCD has the same cross sectional area A in
horizontal and vertical tubes. When this TLCD divides into two halves, which are called here as
L-shape parts (L-arms), and n number of L-arms are arranged symmetrically around an origin, an
omnidirectional TLCD (O-TLCD) is created. Accordingly, the horizontal column of each L-arm is
H/2 and the angle between L-arms is ψ = 2π/n. With this definition where n ∈ Z, it is highlighted
that TLCDs correspond to n = 2 while O-TLCDs to n ≥ 3. Fig. 1 represents the basic layout of
an O-TLCD with three columns.
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Figure 1: An omnidirectional tuned liquid column damper (O-TLCD) with three columns, in the plan (a) and front
view (b), where 1 to 3 are the three liquid columns, 4 is the orifice, 5 is the liquid level at rest and u1 to u3 (6 ) show
the positive direction of liquid deflection in each column (the deflections are drawn considering the shown excitation
w).

2.2. Degree of freedom of O-TLCD

To develop both the motion equation of an O-TLCD and the interaction equation of an O-
TLCD-structure system, the liquid movement of each individual L-arm is required. For this pur-
pose, the excitation angle α is considered with respect to the first tube. We consider a pseudo
(imaginary) TLCD, which is representing the instantaneous damping effect of an O-TLCD with
two L-arms and so a horizontal liquid length of 2×H/2 = H in the excitation direction. Then, we
denote the liquid movement of the assumed TLCD by u (Fig. 2a and 2b). Here, it is considered
that the positive vertical liquid movement points to positive z direction. It is also noted that the
vertical and horizontal liquid movements (i.e. displacements, velocities and accelerations) are the
same because of the assumption of the same cross sectional areas.

Projecting the liquid movement u, which is a pseudo deflection, onto each tube of the O-TLCD,
one can find the liquid movement of ith tube ui as

ui = u cos(α− θi), (1)
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Figure 2: Graphical representation of the DoF of an O-TLCD and its TLCD representative with the equivalent
damping effect in the excitation direction α with horizontal liquid length of H (a,b); the contribution of each tube
to the liquid movement u depending on α in a typical 3-Larm O-TLCD (c).

where θi represents the location of the ith L-arm with respect to the first L-arm and is defined as

θi = 2(i− 1)π/n. (2)

when α is in terms of radian.
It is noted that, by using the pseudo TLCD, Eq. 1 represents O-TLCDs, regardless of number

of L-arms, as a single degree of freedom system (SDoF). Eq. 1 is the key relation in mathematical
description of O-TLCDs since it determines both the flow share and flow direction in each L-arm
and that only based on u. It is evident that positive and negative values for ui in Eq. 1 demonstrate
upward and downward liquid motions, respectively. As an example, Fig. 2c illustrate the liquid
movements in the columns of an O-TLCD with three L-arms. It can be proven that a sum over
all n L-arms in Eq. 1, the total liquid movements, is zero which was already expected physically
as the amount of liquid is constant:

n∑
i=1

ui = u

n∑
i=1

cos(α− θi) = 0. (3)
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2.3. Equation of motion of O-TLCD

To develop the equation of motion of the n-L-arm O-TLCD, the Lagrange’s principle is em-
ployed:

d

dt

(
∂Ekin
∂u̇

)
− ∂Ekin

∂u
+
∂Epot
∂u

= Qu, (4)

where Ekin is the kinetic energy, Epot is the potential energy and Qu is the non-conservative force.
Unless otherwise mentioned, it is assumed that n ≥ 2 in the following. Furthermore, it is considered
the geometric parameters, such as A are constant and do not vary with time.

2.3.1. Kinetic energy

The kinetic energy of an O-TLCD with n L-arms can be written as follows:

Ekin =
1

2
ρA

n∑
i=1

(
H

2
|u̇H,i|2 + V |u̇V,i|2

)
, (5)

where ρ is the liquid density; u̇H,i and u̇V,i are the total liquid velocity vectors in the horizontal and
the vertical parts of the ith L-arm, respectively, which, for the case α is a constant, can be defined
considering the magnitude of the relative liquid velocity u̇i = u̇ cos(α − θi) and the magnitude of
excitation velocity ẇ (see Eq. 1 and Fig. 2) as

u̇T
V,i =

[
ẇ sinα ẇ cosα u̇ cos(α− θi)

]
, (6)

u̇T
H,i =

[
u̇ cos(α− θi) sin θi + ẇ sinα u̇ cos(α− θi) cos θi + ẇ cosα 0

]
, (7)

which bring,

Ekin =
1

2
ρA

((
H

2

(
u̇2 + 2u̇ẇ

)
+ V u̇2

) n∑
i=1

cos2(α− θi) + nẇ2

(
H

2
+ V

))
, (8)

and

d

dt

(
∂Ekin
∂u̇

)
=

1

2
ρA (H (ü+ ẅ) + 2V ü)

n∑
i=1

cos2(α− θi). (9)

It is noted that for the case of the time-variant α, u̇i = u̇ cos(α− θi)− α̇u sin(α− θi) should be
considered for calculating the kinetic energy in Eq. 5. However, for the sake of simplicity in the
following, we consider that α is constant during an excitation event.

2.3.2. Potential energy

The potential energy comes from the influence of the gravity on the liquid movement in vertical
tubes:

Epot =

n∑
i=1

1

2
ρgA (V + u cos(α− θi))2 . (10)
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Expanding the squared term and using Eq. 3, one can end up with

Epot =
1

2
ρgA

(
nV 2 + u2

n∑
i=1

cos2(α− θi)

)
, (11)

∂Epot
∂u

= ρgAu

n∑
i=1

cos2(α− θi). (12)

2.3.3. Non-conservative force, Qu
In fluid dynamics, the non-conservative force of a pipe portion can be computed using the

pressure loss ∆pL and pipe cross section A at the flow region under consideration:

Qu = −∆pLA, (13)

The ∆pL depends on the stagnation pressure ρv2/2 and loss factor λ(Re):

∆pL = ρ
v2

2
λ(Re), (14)

where the term ρv2/2 is also known as dynamic pressure [55]. The pressure loss ∆pL reduces to
the following form for turbulent flow (Re & 4000 in circular pipes)

∆pL = ρ
v2

2
λ, (15)

where v is the liquid flow velocity and λ is the loss factor which is here independent of Reynolds
number Re.

The dynamic pressure ρv2/2 represents the pressure rise when the fluid in motion is brought
to a stop isentropically, which occurs at the so called stagnation point [55]. The O-TLCD presents
n flow regions where the liquid in each horizontal tube can reach a stagnation point. Accordingly,
the total non-conservative force of O-TLCD can be represented as the sum of non-conservative
forces in all L-arms. Therefore, the sum of non-conservative forces in all horizontal tubes can be
considered as

Qu = −
n∑
i=1

Qu,i = −
n∑
i=1

Aρλ
u̇2i
2

= −1

2
Aρλu̇2

n∑
i=1

cos2(α− θi) n ≥ 3 (O-TLCD). (16)

For TLCD, on the other hand, the non-conservative force is defined in literature as (e.g. see
Hochrainer [56])

Qu = −1

2
Aρλu̇2 cos2(α− θi) n = 2 (TLCD), (17)

which, here, is extended to the case where the excitation is not aligned with the TLCD.
Introducing Eq. 9, Eq. 12, Eq. 16, and Eq. 17 into Eq. 4, one can end up with the equation

of motion of TLCDs (n = 2) and n-L-arm O-TLCDs (n ≥ 3) with identical pipe cross sections as
follows:

ü+ δ|u̇|u̇+ ω2
du = −γẅ, (18)
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where the effective length L, the natural frequency ωd, and the geometric factor γ are defined as

L = 2V +H ωd =

√
2g

L
γ =

H

L
, (19)

and the head loss coefficient δ as

δ =

{
1
2Lλ if n = 2 (TLCD)
1
Lλ if n ≥ 3 (O-TLCD).

(20)

The solution of Eq. 18 is the liquid deflection of the pseudo TLCD which is introduced in Fig. 2.
Subsequently, the liquid deflection in the ith L-arm of the O-TLCD is simply obtained using Eq. 1.

2.4. Equation of motion of O-TLCD-structure systems

This section presents the equation of motion of a structural system equipped with an O-TLCD
(Fig. 3). A symmetric 3-dimentional SDoF structure, with the mass ms, the stiffness coefficient ks
and the damping coefficient cs, is considered. The structure is excited by an external excitation F ,
which is applied at the mass center and in arbitrary constant direction α. Accordingly, the floor
moves with single degree of freedom w in the direction α.

y

x

w

u

 �2 

𝜓 

𝜓 

𝜓 

α

H/2

F

(a) Plan view

cs ks/4ks/4

F sin α w sin α

z

A

x

A
V

u3 u1 u2 at rest

(b) Front view

Figure 3: Coupled O-TLCD-structure system in the plan (a) and front view (b), excited by an external excitation
F ).

To derive the interaction equations, first, the active liquid mass mact,i of the ith L-arm is
identified:

mact,i =
H/2

n(V +H/2)
md =

1

n
γmd, (21)

which is the horizontal liquid portion of the total liquid mass md.
To calculate the resultant inertial forces of the O-TLCD, Eq. 1 is used to form the liquid

acceleration vector of all n L-arms:

üT = [ü cos(α− θ1) ü cos(α− θ2) . . . ü cos(α− θn)] . (22)
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Figure 4: Distribution of the restoring force exerted by a typical O-TLCD to a structure (a); comparison between
the performance of the O-TLCD and the TLCD when the excitation angle varies (b).

Furthermore, since the resultant inertial force of the O-TLCD is in the excitation direction, a
vector p is defined to project the liquid motion of each tube onto this direction:

pT = [cos(α− θ1) cos(α− θ2) . . . cos(α− θn)] . (23)

Then, the equation of motion of the O-TLCD-structure system can be obtained based on
equilibrium of forces in the excitation direction and using the elements of vectors ü and p (Fig. 4a):

(ms +md)ẅ + csẇ + ksw +

n∑
i=1

(
mact,iü cos2(α− θi)

)
= F. (24)

To finalize Eq. 24, it is necessary to differentiate TLCDs with n = 2 from O-TLCDs with n ≥ 3
in calculating the summation. For TLCDs, we have

n∑
i=1

cos2(α− θi) = 2 cos2 α n = 2 (TLCD). (25)

For O-TLCDs, on the other hand, it can be proven that

n∑
i=1

cos2(α− θi) =
n

2
n ≥ 3 (O-TLCD). (26)

Applying the Eq. 25, Eq. 26 and Eq. 21 to Eq. 24, the interaction equation of motion can be
written as

msẅ + csẇ + ksw = F −mdẅ − qγmdü, (27)

or equivalently

ẅ + 2Dsωsẇ + ω2
sw = f − µ(ẅ + qγü), (28)
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for

q =

{
cos2 α if n = 2
1
2 if n ≥ 3,

(29)

where f = F/ms mass-normalized external force, Ds is the damping coefficient and ωs is the
natural frequency of the main structure; µ is the mass ratio between the liquid mass and the mass
of the structure. It is noted that, in Eq. 28, the movement of the structure in the x and the y
direction can be simply obtained by w sinα and w cosα, respectively; the liquid acceleration ü in
the path of the excitation comes from Eq. 18. Furthermore, if the external excitation is a ground
motion applied at the projected mass center of the structure on the ground in α direction, the
equations of motion in Eq. 18 and in Eq. 28 can be presented as

ü+ δ|u̇|u̇+ ω2
du = −γ(ẅ + ẅg), (30)

ẅ + 2Dsωsẇ + ω2
sw = −ẅg − µ(ẅ + ẅg + qγü), (31)

where ẅg is the ground acceleration.
Eq. 28 (or Eq. 31) states that, in contrast to TLCDs whose counteracting force is α-dependent as

expected, by employing a symmetric O-TLCD with 3 or greater number of L-arms, the interaction
equation of motion is independent of the excitation angle α when α is not changing during the
excitation event. This is significant since O-TLCDs can exert identical counteracting forces in
all directions to the structure regardless of the excitation angle. For the sake of simplicity, as
mentioned before, we present here the equations for the excitation direction, which is not changing
during the excitation event. If α is changing, the Lagrange formulation with its components can
be expanded as well.

Concerning the mass ratio in Eq. 28 (or Eq. 31) which is generally defined as

µ =
nρA(V +H/2)

ms
, (32)

it is important to note that increasing the number of L-arms n increases the active mass ratio µ∗,
which is defined in analogy with TMDs by introducing u∗ = u/γ [56] into the coupled equations
of motion in Eq. 18 and Eq. 28 (or Eq. 30 and Eq. 31):

µ∗ =
µγ2

1 + µ(1− γ2)
, (33)

which in turn decreases the optimal frequency fd,opt (proposed by Warburton [57] for TMDs without
superscript *), which can be used for the O-TLCD as

fd,opt = f∗s

√
1− µ∗/2
1 + µ∗

, (34)

where based on the increased mass of the structure m∗
s due to the dead mass of the liquid:

m∗
s = ms(1 + µ(1− γ2)), (35)

f∗s can be obtained out of the natural frequency of the main structure fs:

f∗s = fs

√
ms

m∗
s

. (36)
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Eq. 34 shows that, according to Eq. 19, while changing the number of L-arms n does not affect
the natural frequency of the O-TLCD, the change in n may demand retuning the O-TLCD, which
results in a different geometry. Therefore, it is generally not simple to directly find the influence
of number of L-arms on the control force in Eq. 28 and, for example, find a clear comparison
between the magnitude of control forces produced by O-TLCDs and TLCDs. However, to provide
a relative comparison, it is considered here that O-TLCDs and TLCDs are designed individually
and optimally to work with full capacity for a single system. Accordingly, the performance of each
system can be normalized to their maximum control force and recorded for different incremental
excitation angle from 0 to 180◦, which is illustrated in Fig. 4b.

3. Design criteria and optimization scheme

This paper proposes a constrained optimization scheme (Fig. 5) to design the O-TLCD. The
tuning criteria proposed by Warburton [57], which is basically the extension of the criteria of Den
Hartog [58] for harmonic vibrations to random excitations, is employed in this approach. Using
Warburton’s formulas for TMDs and the definition of active mass ratio in Eq. 33, the optimal
frequency and the optimal damping ratio for O-TLCDs are calculated by Eq. 34 and Eq. 37 for
undamped structures, respectively.

Dd,opt =

√
µ∗(1− µ∗/4)

4(1 + µ∗)(1− µ∗/2)
. (37)

The tuning constrains of the optimization scheme are defined as

fd − fd,opt
fd,opt

≤ ∆f , Dd,opt ≥ Dd,min, (38)

where fd = ωd/2π is the natural frequency of the O-TLCD; ∆f is the tolerance value, for which
0.01, and Dd,min is the minimum desired optimal damping, for which 0.05 is recommended. For
comparison with optimal damping ratio in Eq. 37, the damping ratio of the O-TLCD is approxi-
mated by a linearized viscose damping ratio used for harmonic vibrations [25]:

Dd,lin =
4U0δ

3π
, (39)

where U0 is the liquid vibration amplitude.
The mass ratio µ, defined by Eq. 32, is constrained by a plausible upper limit (µmax) with

respect to the total mass of the primary structure that is either known or can be conservatively
estimated based on the modal mass. Concerning the geometry, an O-TLCD with rectangular cross
section, which is easier to be manufactured than the circular one and brings the advantage of using
different dimensions for providing the cross section A, is considered. To find an optimum and
feasible geometry a set of linear and nonlinear geometric constraints are defined, for which Fig. 6
introduces the geometric parameters that facilitates the description of the constraints.

In this figure, parameter s, which is equal to (Hi − tV
2 ), indicates the net horizontal column

of each L-arm and together with the half of the vertical column width tV determines the outer
horizontal length of the L-arm in O-TLCDs, while the Hi determines the centered one. It can be
found from Fig. 6 that the parameter s depends on the width of each L-arm b, the angle between
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Figure 5: The proposed optimization scheme for designing O-TLCDs under an arbitrary excitation.

L-arms ψ (i.e. also the number of L-arms n), tV and Hi. Accordingly, in order to achieve a desirable
space for the horizontal column length of each L-arm, the following constraint can be defined

b ≤ Cb
2(1− cosψ)

sinψ
(Hi −

tV
2

), (40)

where Cb is a user-defined coefficient in [0, 1] interval; in practice, Cb ≤ 0.50 results in a reasonable
geometry. The right hand side of Eq. 40 is introduced as ballwd which defines an upper design limit
for b and will be used for the optimization scheme.

The other important constrain comes from the responses of the primary structure and the O-
TLCD. In the optimization scheme in each loop (j, i), simulation of the resulted coupled system
using desirable sample and simulation time and a solver type as numerical integration method is
performed online. The RMS of the response of the controlled structure (the structure with O-
TLCD) RMSwith is constrained to be smaller than the RMS of the response of the uncontrolled
structure (the structure with off O-TLCD whose liquid movement is suppressed despite existence)
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Figure 6: Geometric parameters of the O-TLCD used in the optimization scheme.

RMSoff under arbitrarily chosen excitation. More precisely,

RMSwith
RMSoff

≤ CRMS , (41)

where CRMS is a user-defined upper limit in the [0, 1] interval. Although the value for CRMS

depends on the intensity of the excitation and the desire of the control designer, CRMS = 0.50
is recommended for reasonable O-TLCD geometries. Incrementally decreasing the CRMS by a
predefined value CRMS,incrmnt in j loops:

CRMS,j = CRMS,j − CRMS,incrmnt, (42)

the algorithm finds the optimum O-TLCD geometry as long as the prescribed RMS upper limit at
the jth loop, CRMS,j , can be achieved.

Furthermore, the considered equation of motion of O-TLCD would no longer be valid if the
liquid deflection u is larger than the theoretical liquid height V in the vertical column [17]. There-
fore, in the optimization scheme, the maximum liquid deflection umax under arbitrarily chosen
excitation is constrained—to be in the safe side—not only to V but rather to the net liquid height
located immediately above the horizontal column uallwd = V − tH/2.

To implement the proposed optimization scheme, the minimum of constrained nonlinear multi-
variable (fmincon) function in Matlab is employed; it is worth mentioning that other optimization
algorithms such as genetic algorithm (GA) is applicable in the proposed scheme as well. Five
parameters b, V , Hi, A (see Fig. 1) and δ (see Eq. 20) are selected as the independent unknown
variables and the γ, defined in Eq. 19, is considered as the objective function to be maximized.

Finally, it should be highlighted that, in order to fairly compensate the role of the initial
point (x0) in the minimization process which may lead to local minima, the developed scheme can
initialize the problem at least from three different origins. Two of these points are clearly higher
(x0,h) and lower (x0,l) estimated initial guesses and the third one is a random initial point (x0,r)
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generated based on either the first or the second chosen initial point. The initial points are checked
successively in i loops.

The outcome of the described scheme is a unique geometry for the O-TLCD optimized when the
coupled O-TLCD-structure system is exposed to an arbitrary excitation, such as an earthquake,
with a particular intensity. In this system, the same O-TLCD can be still utilized under other
excitations with higher intensities and different content as long as the liquid deflection does not
violate uallwd, which can be possibly achieved by increasing the head loss coefficient δ in Eq. 20.
On the other hand, it can be also the case under weaker excitations for which lower δ might be
required to employ the advantage of higher liquid deflection for more vibration mitigation during
the excitation. However, it should be ascertained that the manipulation of the head loss coefficient
requires a semi-active control of the O-TLCD, which is beyond the scope of the current study.

4. Numerical Investigations

A seismically excited SDoF structure with an O-TLCD is investigated. To evaluate the perfor-
mance of O-TLCDs, a symmetric high-rise structure (Fig. 7) with natural frequency fs = 0.280 Hz
is taken into account. Furthermore, it is assumed that the first modal mass is ms = 400 t and the
first modal damping ratio is Ds = 1 %

O-TLCD
md = 155.74 t
(µ = 0.39)
fd = 0.201 Hz
δreq =1.310 m-1

(δ =0.838 m-1)
γ = 0.841

 Structure
ms = 400 t
fs = 0.280 Hz
Ds = 1 %

x

y w

wg

u3

u1
u2

𝛼 

 

 

  

 

(a)

8.
04
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(b)

Figure 7: The example structure controlled by the O-TLCD (a) and the plan and the side view of one of the designed
O-TLCDs (µ = 0.39) (b).

In the following, first, the optimized O-TLCDs using different mass ratios are designed, which
function with optimum head loss coefficient δ for the described structure under a particular earth-
quake. Next, the coupled O-TLCD-structure systems are evaluated under an ensemble of earth-
quakes, for which the general need for a higher head loss coefficient δreq is presented. The O-TLCDs
equipped with δreq are further investigated under a free vibration, harmonic excitation and white
noise, subsequently.

4.1. Optimized O-TLCD

To design the O-TLCD, four mass ratios ranging from µ = 10 to 40 % with respect to the
first modal mass of the structure are chosen as the mass-ratio upper-limits in the optimiza-
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tion scheme. Estimating a total mass of such structure to be, for example, three times the
first modal mass, the investigated mass ratios cover a quite reasonable range with respect to
the total mass of the structure. Other constrains include ∆f = 0.01, ∆D = 0.1, Cb = 0.50,
CRMS,1 = 0.50, CRMS,incrmnt = 0.01, and lower bound lB = [1, 0.1, 1, 0.1, 0.01] and upper bound
uB = [100, 10, 100, 10, 10] for the five unknown geometric variables [b, V,Hi, A, δ] with the corre-
sponding units as [m] for b, V,Hi, [m2] for A, and [m-1] for δ. To compute the RMS value in Eq. 41,
the displacement response of the structure is utilized.

The earthquake record Kobe (1995) with the intensity factor of one is utilized for the design
of each of four O-TLCDs using the optimization scheme described in the last section. Therefore,
as the Kobe record is used in the optimization, the El Centro (1940), Hachinohe (1968) and
Northridge (1994) earthquakes are opted for the validation phase. Fig. 8 shows the earthquake
records. The simulations are conducted using the ode8 (Dormand-Prince) time integration method
in Simulink/Matlab. The simulation time of each calculation is 150 s with a time increment of
0.01 s for Hachinohe and 0.02 s for other records.

0 10 20 30 40 50 60
Time [s]

-4

-2

0

2

4

A
cc

el
er

at
io

n 
[m

/s
2 ]

(a) El Centro (1940)

0 10 20 30 40 50 60
Time [s]

-8

-6

-4

-2

0

2

4

6

8

A
cc

el
er

at
io

n 
[m

/s
2 ]

(b) Kobe (1995)

0 10 20 30 40 50 60
Time [s]

-2

0

2

A
cc

el
er

at
io

n 
[m

/s
2 ]

(c) Hachinohe (1968)

0 10 20 30 40 50 60
Time [s]

-8

-6

-4

-2

0

2

4

6

8

A
cc

el
er

at
io

n 
[m

/s
2 ]

(d) Northridge (1994)

Figure 8: Time-history plots of earthquake records used in this study.

Table 1 and 2 summarize the outcomes of the optimization scheme for the aforementioned four
mass-ratio upper-limits in two parts and Fig. 9 depicts the obtained geometries. First of all, search-
ing for the most optimized geometry, it is noted in the table and the figure that the optimization
scheme exploited the mass-ratio upper-limits fully for all cases except for the 40 % limit. This
implies that no larger tuned geometry for O-TLCD, which can attenuate uncontrolled responses
more than CRMS = 0.25, exists to accomodate liquid mass more than 0.389ms. Therefore, it is
confirmed that the developed optimization scheme is able to converge to the most plausible and
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efficient O-TLCD for the structure under consideration, which, according to the indices µ∗, Dd,opt,
Dd,lin, γ, and CRMS in Table 1 and 2, is the O-TLCDµ=0.39.
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Figure 9: Characteristics of the investigated O-TLCDs with different mass ratios (dimensions are in [m]; the optimal
head loss coefficient δ and the required one δreq are in [m-1]).

Table 1: Parameters (Part 1) of the designed O-TLCDs with different mass ratios µ.

b [m] V [m] H [m] A [m2] δ [m-1] δreq [m-1] µ∗ [-] m∗
s [-]

µ = 0.10 3.65 1.21 5.20 3.58 0.407 0.579 0.05 421.92
µ = 0.20 4.46 1.25 6.48 5.93 0.640 0.705 0.09 438.38
µ = 0.30 6.34 1.11 8.50 7.46 0.640 0.950 0.17 444.63
µ = 0.39 8.04 0.98 10.34 8.45 0.838 1.310 0.25 445.52

Table 2: Parameters (Part 2) of the designed O-TLCDs with different mass ratios µ.

f∗s [Hz] fd,opt [Hz] fd [Hz] Dd,opt [-] Dd,lin [-] uallwd [m] γ [-] CRMS [-]
µ = 0.10 0.273 0.258 0.255 0.10 0.18 0.72 0.68 0.46
µ = 0.20 0.267 0.238 0.235 0.15 0.18 0.59 0.72 0.34
µ = 0.30 0.266 0.217 0.215 0.19 0.21 0.52 0.79 0.27
µ = 0.39 0.265 0.199 0.201 0.23 0.25 0.45 0.84 0.25

Beside the geometries, Table 1 and Fig. 9 show the head loss coefficient δ coming from the
optimization scheme under the selected earthquake Kobe for all mass ratios. However, since the
occurrence of intenser excitations than Kobe is probable, these optimized head loss coefficients (δ)
might not be sufficient to prevent the liquid motion from exceeding the provided liquid deflection
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uallwd which is also reported in Table 2 for each O-TLCD. This can be investigated when we
simulate the performance of the presented O-TLCDs in controlling the structure in Fig. 7 under
different excitations.

4.2. Earthquake excitation, with δ
Fig. 10 and Fig. 11 show the response of the structure equipped with the O-TLCDµ=0.10 and

the O-TLCDµ=0.39, which are the lightest and the heaviest O-TLCDs and present the lowest and
the highest active mass ratios µ∗ (Table 1), under all four earthquakes, respectively. In spite of
notable uncontrolled-response mitigation, the peak liquid deflections of the O-TLCDµ=0.10 and
the O-TLCDµ=0.39 under the Northridge record in Table 3 indicate that the induced peak liquid
deflections (umax = 0.836 m and umax = 0.533 m) indeed exceed the provided liquid deflections
for O-TLCDµ=0.10 and O-TLCDµ=0.39 (uallwd = 0.720 m, uallwd = 0.450 m). Similar results are
observed when we study the peak liquid deflections of other O-TLCDs with 20 and 30 % mass
ratios in Table 3 compared with the provided ones uallwd. Therefore, this observation dictates
the need for a higher head loss coefficient for the O-TLCDs if they are to be also effective under
intenser excitations such as Northridge.
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Figure 10: Displacement response of the uncontrolled structure versus the controlled structure equipped with O-
TLCDµ=0.10 when δ = 0.407 m-1 coming from the optimization process under the selected earthquake Kobe.
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Figure 11: Displacement response of the uncontrolled structure versus the controlled structure equipped with O-
TLCDµ=0.39 when δ = 0.838 m-1 coming from the optimization process under the selected earthquake Kobe.

4.3. Earthquake excitation, with δreq

The higher required head loss coefficient is denoted here by δreq. To obtain δreq, for each
mass ratio, the O-TLCD-structure system is simulated under the Northridge earthquake in a loop
where the head loss coefficient of the O-TLCD increases incrementally as long as the induced
liquid deflection is greater than the provided one, uallwd. Consequently, the obtained value for
the δreq out of each loop for each O-TLCD is reported in Fig. 9. Next, one important aspect is
if these values as the head loss coefficient are realistic, for which Eq. 19 and Eq. 20 can be used.
For example, for O-TLCDµ=0.39, the loss factor λ is obtained through the effective liquid length
L = 2× 0.97 + 10.34 = 12.29 m and δreq = 1.310 m-1:

λ = δL = 1.310× 12.29 = 16.10, (43)

which is plausible, for instance, by the means of butterfly valves [59] in the midway of the liquid
passage in the horizontal columns of the O-TLCD.

Since these required head loss coefficients are to be passively assigned to the corresponding
O-TLCDs, all the following assessments are conducted considering that the four O-TLCDs are
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equipped not with the Kobe-optimized head loss coefficient δ but with the Northridge-required
head loss coefficient δreq. To do this, δ in Eq. 18 (or Eq. 30) is replaced with δreq.

It is noted that assigning δreq, which is generally greater than δ and therefore limits liquid
movements more, influences the O-TLCD performance—can be either improvement or deterioration
depending on the vibration content—under less demanding excitations, but important is it can
preserve the functionality of the O-TLCD exposed to severer excitations. The peak liquid motion
of all four O-TLCDs functioning with their corresponding δ and δreq under Northridge record are
brought in Table 3 where now all the peak liquid deflections using δreq are in the range of uallwd.
Subsequently, to evaluate the approximated damping ratio of the O-TLCDs, Dd,lin in Table 2, U0

and δ in Eq. 39 are replaced with uallwd and δreq, respectively.
For assessment, applying the four earthquake records, Fig. 12 to Fig. 17 present the overall

performance of the O-TLCDµ=0.10 and the O-TLCDµ=0.39 with δreq by plots of the displacement
response of the primary structure in the time and the frequency domain as well as the correspond-
ing liquid deflection u from Eq. 30. To achieve a finer resolution in the frequency domain, the
simulations are conducted for 2000 sec; corresponding sampling rate according to the sample time
of each utilized earthquake is employed. For the sake of comparison, the performance of O-TLCDs
for all four mass ratios ranging from 10 to 39 % are summarized based on the evaluation of the
RMS and the peak of controlled and uncontrolled displacement response of the structure in Fig. 18
with absolute values and in Fig. 19 with relative values with respect to the uncontrolled responses.
Here, the uncontrolled responses refer to the structure without O-TLCD (bare structure).

Table 3: Peak amplitude of the liquid deflection u (Eq. 30) of all four O-TLCDs mounted on the structure vibrated
under Northridge earthquake with head loss coefficient δ or δreq shown in Fig. 9 versus the allowed deflection uallwd.

µ = 0.10 µ = 0.20 µ = 0.30 µ = 0.39
Allowed liquid deflection uallwd [m] 0.720 0.590 0.530 0.450

Peak liquid deflection with δ [m] 0.836 0.610 0.601 0.533
Peak liquid deflection with δreq [m] 0.722 0.588 0.525 0.450

It is seen in these two figures that the O-TLCDµ=0.39 presents the most effective performance
where, according to Fig. 18a, the RMS of the displacement drops from around 10 cm to almost
5 cm under the Kobe and at most from 19 cm to 7 cm under the Northridge earthquake; 4 cm
under the Kobe and 20 cm under the Northridge are the least and the most absolute amounts of
peak displacement attenuation, respectively. The figures report that, even with the lowest mass
ratio, the O-TLCD significantly improves the responses of the structure. According to Fig. 18a,
the RMS of the displacement of the structure with the smallest damper O-TLCDµ=0.10 is reduced
at least by 31 % under the Kobe and at most by 46 % under the Northridge earthquake. The peak
displacement, except a slight increase under the Kobe record, is decreased at least by 11 % under
the Northridge and at most by 24 % under the Hachinohe earthquake with this O-TLCD. These
results indicate that the structure can experience further vibration mitigation when the attached
O-TLCD is designed with a higher mass ratio although this improvement from one mass ratio to
the other may not be uniform.

4.4. Free vibration and harmonic excitation, with δreq

For further evaluation, the O-TLCD-structure system is investigated under a harmonic excita-
tion for the O-TLCDµ=0.10 and the O-TLCDµ=0.39. For the uncontrolled case (without O-TLCD),
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Figure 12: Displacement response of the uncontrolled structure versus the controlled structure equipped with O-
TLCDµ=0.10 when δreq = 0.579 m-1 (Northridge-required head loss coefficient) under earthquakes.

it is obvious that the excitation frequency should equal to ωs. To evaluate the resonant frequency
of the controlled case (with O-TLCD), we conduct a free vibration test with initial displacement
of 0.15 m for 2000 s and process the displacement response using fast Fourier transform (FFT)
with sampling rate of 100 Hz, which is brought in Fig. 20 and Fig. 21 in time interval of 300 s
and frequency band of 0.5 Hz for the O-TLCDµ=0.10 and the O-TLCDµ=0.39, respectively. In
these figures, as mentioned earlier, off O-TLCD refers to the O-TLCD-structure system where the
O-TLCD exists but is deactivated.

The response in the frequency domain in Fig. 21b shows that the system with off O-TLCDµ=0.39

presents

fs,d = fs

√
ms

ms +md
= 0.280

√
400

400 + 155.74
= 0.238 Hz, (44)

which is the natural frequency of the structure carrying the whole mass of the O-TLCDµ=0.39 with
stationary liquid; fs,d = 0.267 for the O-TLCDµ=0.10. On the other hand, when the O-TLCD
is activated (with O-TLCD), fs,d is split into a lower and a higher frequency, which according
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Figure 13: Displacement response of the uncontrolled structure versus the controlled structure equipped with O-
TLCDµ=0.39 when δreq = 1.310 m-1 (Northridge-required head loss coefficient) under earthquakes.

to Fig. 21b, are fs,d,l = 0.187 Hz and fs,d,r = 0.270 Hz, respectively, for the O-TLCDµ=0.39;
fs,d,l = 0.243 Hz and fs,d,r = 0.283 Hz for the O-TLCDµ=0.10.

Therefore, the harmonic excitation is defined as

ẅg = A sin(ωrest), (45)

where, for the O-TLCDµ=0.39, by choosing the right frequency of the coupled system fs,d,r,

ωres =

{
ωs = 0.28× 2π = 1.759 rad s-1 for the uncontrolled structure (without O-TLCD)

ωs,d,r = 0.270× 2π = 1.697 rad s-1 for the controlled structure (with O-TLCD),

(46)
and A is an appropriate amplitude (here A = 0.05 m s-2); ωs,d,r = 1.778 rad s-1 for the O-
TLCDµ=0.10. The displacement response of the coupled system and the corresponding liquid
deflection under the harmonic excitation in Eq. 45 are depicted for the O-TLCDµ=0.10 with
δreq = 0.579 m-1 and the O-TLCDµ=0.39 with δreq = 1.310 m-1 in Fig. 22 and Fig. 23, respec-
tively. It is noted, since the employed head loss coefficients δreq are generally higher than the
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Figure 14: Spectral amplitude (normalized to the peak uncontrolled amplitude) of the response of the uncontrolled
structure versus the controlled structure equipped with O-TLCDµ=0.10 when δreq = 0.579 m-1 (Northridge-required
head loss coefficient) under earthquakes.

obtained optimal one δ (Table 1), the peak response of the coupled system may occur not at the
right but at a slightly lower frequency, which is the result of excessive damping on the optimal
tuning (see e.g. [58]) and is neglected here.

It is also worth mentioning that the two points of intersection of with-O-TLCD and off-O-
TLCD cases in the middle of the spectrum graph in Fig. 21b are not in the same level, which
may be interpreted as not properly optimized tuning of the dampers, for which the reason can
be twofold. First, the utilized tuning formulas (Warburton) have been proposed for undamped
structures while the structure of the current study presents slight damping. Second, the free
vibration causes harmonic oscillations, for which Den Hartog’s tuning criterion,

fd = fd,opt =
f∗s

1 + µ∗
=

0.265

1 + 0.247
= 0.213 Hz, (47)

for a theoretic O-TLCDµ=0.39 (here we neglect that the layout of a real O-TLCD affects f∗s and
µ∗, too) with the same δreq = 1.310 m-1 results in the performance shown in Fig. 24d, which brings
the two points of intersection on the y axis closer to each other. Similar influence is seen for the
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Figure 15: Spectral amplitude (normalized to the peak uncontrolled amplitude) of the response of the uncontrolled
structure versus the controlled structure equipped with O-TLCDµ=0.39 when δreq = 1.310 m-1 (Northridge-required
head loss coefficient) under earthquakes.

other mass ratios in this figure.
This observation, however, cannot necessarily lead to a better performance for a random vibra-

tion, because of which the Warburton criteria were chosen for this study although the investigations
of the authors (not reported here) on different types of vibrations using different damper frequen-
cies highlight that the Warburton’s criteria cannot be taken as impeccable tuning principles for a
whole vibration scenario either. This issue, like the discussion of the required head loss coefficient
mentioned earlier, remarks that there would be a need for a continuous tunability in liquid dampers,
in which the O-TLCD is no exception, to realize their full potential. Moreover, Fig. 24 reports
that the more the mass ratio increases the wider frequency band is used to split the frequency of
the off-O-TLCD-structure system.

4.5. White-noise excitation, with δreq

The last contribution of this study in the numerical investigation part is the application of a
random-generated signal as the excitation. In doing so, the performance of the lightest and the
heaviest O-TLCDs have been investigated under band-limited white noise, with sample time of
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Figure 16: Time-history plots of liquid deflection u (from Eq. 30) of O-TLCDµ=0.10 with δreq = 0.579 m-1 on the
structure excited by earthquakes.

0.01 s and noise power of 0.005, applied to the structure as a base acceleration lasting for 300 s
in the Simulink/Matlab. Results in the time and the frequency domain brought in Fig. 25 once
again confirm here that even the O-TLCDµ=0.10 has been able to reduce excessive vibrations of
the structure acceptably. On the other hand, and similar to the case under the real earthquake
records, O-TLCDµ=0.39 performs the highest response reductions with the least liquid movement.

Chief among these observations is that this effective performance of the O-TLCD is not excitation-
direction dependent, but omnidirectional. In other words, regardless of the excitation angle of
incidence, the O-TLCD provides the structure with the same control force all along a vibration
scenario. This omnidirectionality, without adding extra complication coming from extra DoFs to
the motion equation of the damper, is accounted as a remarkable advantage compared to other
counterparts such as TLCDs whose control forces fade when the excitation diverges from the
damper’s alignment.
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Figure 17: Time-history plots of liquid deflection u (from Eq. 30) of O-TLCDµ=0.39 with δreq = 1.310 m-1 on the
structure excited by earthquakes.

5. Experimental Investigations

This section investigates the validity of the proposed mathematical representation of the O-
TLCDs experimentally. For this purpose, an O-TLCD prototype is fabricated and experiments on
it are conducted at the Control Engineering Laboratory of the RWTH Aachen University. The
focus of the experiments is two governing equations: (i) calculation of the natural frequency of
the O-TLCDs (Eq. 19) and (ii) calculation of the response of the O-TLCDs subjected to different
excitation angle of incidence (Eq. 18).

5.1. Description of the experimental setup

The O-TLCD prototype is fabricated using transparent PVC-U pipes (inner diameter = 55 mm)
connected to each other by PVC-U angles 90◦ and a PVC-U crosspiece with adhesive sleeves (inner
diameter = 63 mm) as shown in Fig. 26. This O-TLCD has four L-arms (see numbers 1 to 4 ) with
equal vertical and horizontal cross sections distributed symmetrically around the center, where
the liquid level in the vertical columns is V = 121 mm and the horizontal length of each L-arm
is H/2 = 270 mm. Furthermore, in order to provide a reference device, a classical TLCD with
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Figure 18: Displacement absolute values: the RMS (a) and the peak (b) response evaluation of the O-TLCD-structure
system (controlled) with different mass ratios µ and with the corresponding δreq (Fig. 9) versus the response of the
bare (uncontrolled) structure under four earthquakes.
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Figure 19: Displacement reduction percentage: the RMS (a) and the peak (b) response evaluation of the O-TLCD-
structure system (controlled) with different mass ratios µ and with the corresponding δreq (Fig. 9) relative to the
response of bare (uncontrolled) structure under four earthquakes.

two vertical columns is also fabricated using the same material with the same dimensions of inner
diameter, V and H.

As shown in Fig. 26, the O-TLCD (as well as the TLCD) prototype is tested on a uniaxial
shaking table (5 ). The shaking table is built in a way that a threaded rod, which is operated by
a step motor with the frequency range of 0.10–50 Hz and ±50 mm stroke, forms the horizontal
motion of the O-TLCD. The O-TLCD is mounted on the shaking table using two rectangular
wooden platforms (6 and 7 ). The lower platform (6 ) is directly fixed to the shaking table; the
upper one (7 ) is fixed to the O-TLCD and can be screwed to the lower platform at two diagonal
points (8 ). At these two points, two steel threaded inserts are placed on the lower platform, which
guarantee no relative movement between the platforms. Accordingly, on the diagonal quarters of
the upper platform, seven holes (orienting holes) are equally spaced at 15◦ in a circular pattern
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Figure 20: Free vibration: Displacement response of the O-TLCDµ=0.10-structure system for two cases of the deacti-
vated (off O-TLCD) and the activated (with O-TLCD) O-TLCD with δreq = 0.579 m-1 in the time domain (a) and
the frequency domain (b) when 0.15 m initial displacement is applied to the structure.

so that the upper platform fixed to the O-TLCD can be oriented in seven different ways ranging
from 0 to 90◦ with respect to the motion direction of the shaking table (Fig. 26a). With this setup
multidirectional vibration tests are conducted on the O-TLCD.

The liquid motion is dynamically measured using an ultrasonic distance measuring sensor (9 ),
UNDK 30U6112/S14, which is installed over the vertical column of the L-arm 1. Furthermore,
the motion of the shaking table is independently monitored by a laser sensor (10 ), by which the
accurate application of the requested excitation is validated. The data acquisition is conducted by
a micro-controller with an analog-to-digital (A/D) converter and processed in Simulink/Matlab.
The Simulink model is compiled in a real-time PC and the control command is sent to the step
motor. In this setup, the measurements are recorded with the sample rate of 100 Hz. For the
sake of statistical accuracy, each test is conducted at least three times and the average values are
reported.

5.2. Natural frequency of the O-TLCD

The natural frequencies of the O-TLCD prototype are determined experimentally by frequency
sweeps. The O-TLCD is positioned at α = 0◦ (L-arm 1 is aligned with the motion of the shaking
table as shown in Fig. 26) and a series of tests are conducted under harmonic excitation of the
form,

w = A sin (2πft) , (48)

where the excitation amplitude A is a constant equal to 4.5 mm and the excitation frequency
f ranges from 0.65 Hz to 1.05 Hz with an increment of 0.02 Hz. For the sake of accuracy, the
frequency interval is divided by a finer increment of 0.005 Hz about the expected resonance region.
The frequency sweep test is performed for the TLCD prototype as well.

From the measured liquid deflection u1 (the liquid deflection in L-arm 1) the response curves
of both prototypes are determined and illustrated in Fig. 27. The frequencies of the peak values of
the response curves correspond to the natural frequencies of the tested prototypes. Using Eq. 19,
the analytical natural frequencies of both devices are calculated by substituting V = 121 mm and
H/2 = 270 mm. The experimental and analytical results are gathered and compared in Table 4.
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Figure 21: Free vibration: Displacement response of the O-TLCDµ=0.39-structure system for two cases of the deacti-
vated (off O-TLCD) and the activated (with O-TLCD) O-TLCD with δreq = 1.310 m-1 in the time domain (a) and
the frequency domain (b) when 0.15 m initial displacement is applied to the structure.
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Figure 22: Harmonic excitation: Displacement response of the uncontrolled (bare) structure versus the controlled
structure equipped with O-TLCDµ=0.10 with δreq = 0.579 m-1 under the base acceleration 0.05 sin(ωrest) where
1.759 rad s-1 for the uncontrolled and 1.778 rad s-1 for the controlled structure are considered as ωres (a) and the
corresponding liquid deflection u from Eq. 30 (b).

Table 4: Natural frequencies of the O-TLCD and TLCD prototypes determined experimentally from the frequency
sweep tests and calculated by Eq. 19.

Experiment Calculation Difference
fexp [Hz] fcalc [Hz] ∆f [Hz]

O-TLCD 0.830 0.797 0.033
TLCD 0.825 0.797 0.025

The obtained experimental natural frequencies are both for the O-TLCD and TLCD prototypes
very close to the calculation results. The frequency difference is acceptable and can be justified
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Figure 23: Harmonic excitation: Displacement response of the uncontrolled (bare) structure versus the controlled
structure equipped with O-TLCDµ=0.39 with δreq = 1.310 m-1 under the base acceleration 0.05 sin(ωrest) where
1.759 rad s-1 for the uncontrolled and 1.696 rad s-1 for the controlled structure are considered as ωres (a) and the
corresponding liquid deflection u from Eq. 30 (b).

with the uncertainties regarding the shaking table response and the frequency resolution of the
measured data. Furthermore, the calculations are based on the simplified dimensions V and H/2,
which do not consider the exact geometries of the prototypes and the liquid flow.

5.3. Response of the O-TLCD under different excitation angle

To evaluate the response calculation of O-TLCDs, the aforementioned experimental tests are
conducted numerically. The main purpose of this investigation is to verify the equation of motion
of the O-TLCD (Eq. 18) considering particularly the representation of the effects of the excitation
direction. The core of the presented equation of motion in Eq. 18 is the proposed definition of
the DoF of the O-TLCDs in Eq. 1, which assumes a pseudo TLCD in the excitation direction and
relates the liquid motion of this TLCD, u, to the liquid motions in the tubes of the O-TLCD, ui.

In the first part of the investigation, the frequency sweep tests are simulated for both O-
TLCD and TLCD prototypes under the harmonic excitation given in Eq. 48 in Simulink/Matlab.
The resulted two spectra are added to Fig. 27. Here, the natural frequencies and the head loss
coefficients of both devices are tuned to the resonance case. Accordingly, we simulate the peak value
u1,max = 42.2 mm for O-TLCD with fd = 0.830 Hz and δ = 2.19 · 10−3 mm-1. For TLCD, we use
fd = 0.825 Hz and δ = 2.26 ·10−3 mm-1. Wider frequency response spectra of the simulation shows
that the nonlinear damping representation used in the mathematical models basically predicts more
inherent damping than the one the prototypes presented physically in the laboratory.

In the second part of the investigation, the free vibration response of the O-TLCD is studied by
applying on the damper an impulse excitation by the shaking table. At each test, the orientation
of the O-TLCD, α, is varied from 0 to 45◦ with the increment of 15◦ with respect to the motion
direction of the shaking table. The liquid motions for each excitation direction are recorded in
the L-arm 1 for about 80 s and after zero padding till 1000 s are transformed into the frequency
domain by the FFT. The results are shown in Fig. 28 which confirms that the natural frequency
of the O-TLCD remains invariable by changing the excitation direction.
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Figure 24: Free vibration: Spectral amplitude (normalized to the peak uncontrolled amplitude) of response of the
uncontrolled structure versus the controlled structure equipped with O-TLCDs with Warburton’s optimal frequency
(O-TLCDW ) and with theoretic O-TLCDs with Den Hartog’s optimal frequency (O-TLCDD) when δreq = 1.310 m-1

for all mass ratios and 0.15 m initial displacement are applied to the structure.

In the third part of the investigation, the O-TLCD is excited harmonically by the shaking
table according to Eq. 48 with A = 8.4 mm and the obtained resonance frequency of the O-TLCD
f = 0.830 Hz. Also, these tests are repeated for seven excitation angles α, ranging from 0 to 90◦

with the increment of 15◦ with respect to the motion direction of the shaking table.
To compare with the experimental results, the O-TLCD response is simulated numerically under

the same harmonic excitation for the considered α values. As in the first part of the investigation,
the natural frequency fd and the head loss coefficient δ are tuned to the peak response (u1,max =
68.2 mm) at α = 0◦. Accordingly, the natural frequency used in the simulations is fd = 0.830 Hz
and the head loss coefficient is δ = 1.63 ·10−3 mm-1. Introducing fd and δ into Eq. 18, the response
of the pseudo TLCD u is obtained. According to this equation, the response u is independent
from the excitation direction α, since the assumed TLCD is defined to be always aligned with
α. On the other hand, as proposed by Eq. 1, the response of the O-TLCD is expected to change
depending on α. The liquid motion u1 of the measured L-arm 1 is calculated by introducing the
corresponding excitation direction α, L-arm orientation θ = 0◦ and the calculated liquid deflection
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Figure 25: White noise excitation: Displacement response of the uncontrolled structure versus the controlled structure
equipped with O-TLCDµ=0.10 with δreq = 0.579 m-1 and O-TLCDµ=0.39 with δreq = 1.310 m-1 in the time (a,b) and
the frequency domain (c,d); the corresponding liquid deflections u (from Eq. 30) in (e) and (f), respectively, under
white noise with sample time of 0.01 s and noise power of 0.005.
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Figure 26: The fabricated prototype of the O-TLCD with four L-arms (1 -4 ) attached on the uniaxial shaking table
(5 ) in the plan view (a) and the front view (b). A lower platform (6 ) is connected with a rotatable upper platform
(7 ) at two diagonal points (8 ) allowing multidirectional vibration tests with the excitation direction α = 0 to 90◦

with 15◦ increment. Here the O-TLCD is shown at α = 30◦. The liquid deflection is measured by an ultrasonic
sensor (9 ). The motion of the shaking table is measured by a laser sensor (10 ).

u of the pseudo TLCD into Eq. 1.
Fig. 29 compares the time histories of the numerically calculated liquid motion u1 with the

experimental one at α = {0◦, 30◦, 60◦, 90◦}. It is seen that the proposed mathematical model of
the O-TLCD predicts the experimental data accurately. The liquid deflection amplitude changes
depending on the excitation direction and matches the experimental data. As previously observed
in the frequency spectra in Fig. 27, it is again noted here that the simulation slightly overestimates
the inherent damping. Particularly in the response time history of α = 60◦, the simulated response
(u1,max = 33.6 mm) is slightly lower than the experimental result (u1,max = 36.2 mm).

During experiments, by rotating the O-TLCD from α = 0 to 90◦, we observed on the liquid
surface a gradually increasing wave formation in the excitation direction. At α = 90◦, the mea-
sured L-arm is perpendicular to the excitation direction and the liquid deflection at this excitation
is theoretically expected to be 0. However, from the recorded time history shown in Fig. 29 the
wave-induced liquid motion can be clearly seen. This response can be modeled by mathemati-
cal approaches proposed for TLDs and therefore does not belong to the scope of the O-TLCD
mathematical model. Physically the wave formation can be prevented in O-TLCD by dividing the
column vertically in smaller cells.

Fig. 30 gathers the experimental and numerical peak liquid motions for all considered excitation
angles. With increasing α, the predicted peak liquid deflection (u1,max) u1 reduces corresponding to
the experimental results. The curve belonging to the experimental results includes three measured
maximum deflection values and a mean value for each excitation angle. From the comparison of
the results we see particularly at α = 90◦ a marginal difference in the predicted liquid deflection
due to the previously mentioned numerically overestimated inherent damping and the wave effects.
Therefore, it is concluded that the proposed mathematical approach is able to imitate the behavior
of the O-TLCDs markedly where the liquid motions in any liquid column can be determined for
any excitation direction.
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Figure 27: Experimental (O-TLCDexp, TLCDexp) and numerical (O-TLCDsim, TLCDsim) frequency response curves
of the liquid deflection. The numerical calculations are performed for O-TLCD with the natural frequency fd =
0.830 Hz and the head loss coefficient δ = 2.19 · 10−3 mm-1. For TLCD the natural frequency is fd = 0.825 Hz
and the head loss coefficient is δ = 2.26 · 10−3 mm-1. Both dampers are subjected to a harmonic excitation w =
4.5 sin(2πft) mm and are aligned with the excitation direction (α = 0◦).

6. Conclusion

This paper proposed a mathematical modeling and optimization scheme for omnidirectional
tuned liquid column dampers (O-TLCDs), which are formed by circularly distributed of n (integer
n ≥ 3) L-arms about a common joint region at the center, through which the liquid moves between
horizontal tubes. Accordingly, introducing the concept of a pseudo TLCD with the liquid deflection
u in the direction of an excitation α, this study introduced a formal solution to determine the DoF
of the O-TLCDs, by which it was proven that the O-TLCDs behave as an SDoF system; the liquid
motion in each L-arm can be then obtained using u and α. Next, The paper derived the equations
of motion of the O-TLCDs using Lagrange’s principle and the coupled system using equilibrium
of forces and showed that, owing to its configuration, O-TLCDs can reinforce structures with
full counteracting force capacity in all transversal directions regardless of the excitation angle of
incidence. For designing O-TLCDs, a set of design criteria and a general optimization scheme,
which includes the online simulation of the system equipped with the O-TLCD exposed to an
arbitrary excitation, were also proposed. Numerical parametric studies on a SDoF structure with
an O-TLCD were performed for varying mass ratios and head loss coefficients. Seismic, harmonic
and white noise excitations were investigated in time and frequency domains showing the high
vibration reduction capability of the damper.

Aiming to verify the proposed mathematical approach, experimental investigations were per-
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(c) α = 30◦
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(d) α = 45◦

Figure 28: Free vibration: Spectral amplitude of the liquid deflection (normalized to the peak deflection) of the
prototype O-TLCD with four orientation angles α = 0 to α = 45◦ with respect to the axis of the shaking table.

formed on an O-TLCD prototype. The prototype was attached to the shaking table and tested
under harmonic vibrations, where the liquid motion was measured using an ultrasonic sensor. The
natural frequency of the O-TLCD was derived from frequency sweep test. The response of the
O-TLCD was measured for different excitation angles ranging from 0 to 90◦. Observations showed
that the proposed mathematical model can predict the response of O-TLCDs with circularly dis-
tributed n L-arms successfully.

Results of this study introduces a mathematical description for the O-TLCDs, which requires
no extra DoFs and is valid for any lateral excitation. The both numerical and experimental
observations regarding the actual optimal frequency and the required head loss coefficient for a
vibration scenario highlights also the need for a semi-active tuning capacity for the introduced
O-TLCDs, which necessitates further investigations.
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(b) α = 30◦

0 10 20 30 40
Time [s]

-60

-45

-30

-15

0

15

30

45

60

Li
qu

id
 d

ef
le

ct
io

n 
[m

m
]

Experiment
Simulation

(c) α = 60◦
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Figure 29: Comparison of the experimental and numerical liquid deflection u1 of the O-TLCD subjected to a harmonic
excitation w = 8.4 sin(2π0.83t) mm at the excitation direction α = {0◦, 30◦, 60◦, 90◦}. At α = 0◦, the observed L-
arm 1 of the O-TLCD is aligned with the excitation direction. At α = 90◦, the observed L-arm of the O-TLCD is
perpendicular to the excitation direction. The natural frequency is fd = 0.830 Hz and the head loss coefficient is
δ = 1.63 · 10−3 mm-1.
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Figure 30: Comparison of the experimental and numerical peak liquid deflection (u1,max) u1 of the O-TLCD subjected
to a harmonic excitation w = 8.4 sin(2π0.83t) mm at the excitation direction α = 0 to 90◦. At α = 0◦, the observed
L-arm 1 of the O-TLCD is aligned with the excitation direction. At α = 90◦, the observed L-arm 1 of the O-TLCD
is perpendicular to the excitation direction. The natural frequency is fd = 0.830 Hz and the head loss coefficient is
δ = 1.63 · 10−3 mm-1.
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