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ABSTRACT12

In this paper, a novel method is proposed based on a windowed one-dimensional convolutional13

neural network (1D CNN) for multiclass damage identification using vibration responses of a14

full-scale bridge. The measured data is first augmented by extracting samples of windows of raw15

acceleration time-series to alleviate the problem of a limited training dataset. 1D CNN is developed16

to classify the windowed time-series into multiple damage classes. The damage is quantified using17

the predicted class probabilities, and the damage is localized if the predicted class is equal to18

the assigned damage class, exceeding a threshold associated with majority voting. The proposed19

network is optimally tuned with respect to various hyper-parameters such as window size, random20

initialization of weights, etc., to achieve the best classification performance using a global 1D CNN21

model. The proposed method is validated using the Z24 bridge benchmark data for multiclass22

classification for two different damage scenarios, namely, pier settlement and rupture of tendons,23
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under the various extent of the damage. The damage identification is carried out on various bridge24

components to collectively identify the structural component with a damaged signature. The results25

show that the proposed windowed 1D CNN method achieves an accuracy of 97%, and performs26

well with different types of damage.27

INTRODUCTION28

In civil infrastructure, continuously increasing heavy traffic, unexpected natural calamities29

and human-made damages reduce their load-bearing capacity and service life. With ageing, the30

structures exhibit various damage signatures in several critical locations. In the absence of timely31

repair and maintenance, progressive damage leads to the collapse of structures. Despite the32

simplicity, the traditional manual inspection suffers difficulty while scanning the inaccessible areas33

in large structures such as bridges or tall buildings. Over the past few decades, structural health34

monitoring (SHM) has been a promising tool to supplement the knowledge of structural integrity35

over time. However, efficient diagnosis and prognosis of large-scale infrastructure require a reliable36

assessment of its damage under in-service conditions. SHM aims to provide suitable diagnostics37

and prognosis, and assist infrastructure owners and decision-makers in maximizing the safety,38

serviceability, and functionality of critical structures. An autonomous SHM will allow efficient39

and cost-effective disaster management and will lead to resilient infrastructure with faster recovery40

under natural disasters. In this paper, an autonomous multiclass damage identification method is41

proposed by utilizing artificial intelligence in the sequential data, such as vibration measurements.42

Data-driven damage diagnosis is a critical component of infrastructure asset management43

(Piryonesi and El-Diraby 2019). Although there is a plethora of research on parametric methods44

based on time-frequency (TF) decomposition techniques (Staszewski and Robertson 2006, Sadhu45

et al. 2017, Almasri et al. 2020, Barbosh et al. 2020, Kankanamge et al. 2020, Sony and46

Sadhu 2020, Sony and Sadhu 2021), non-parametric methods (Nakamura et al. 1998, Wang47

and Ong 2015, Abdeljaber and Avci 2016) have shown significant promises in data-driven SHM48

methods. Parametric methods include extracting dynamic parameters such as modal parameters,49

while inferring the change in these parameters to detect any possible changes in the structures. On50
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the other hand, non-parametric methods include extracting parameters that are estimated based on51

the computational models, where the parameters are mathematically derived in a statistical sense.52

Structural damage identification can be considered as a pattern recognition-based non-parametric53

problem, which is divided into three stages, namely, data acquisition, feature extraction, and feature54

classification. With proliferation of various machine learning (ML) algorithms, the SHM com-55

munity has prominently used various supervised learning algorithms (Hou and Xia 2020, Avci et56

al. 2021). In (Gardner et al. 2020), the authors explained the interface between nondestructive57

evaluation and machine-learning-based SHM for damage detection. In another study, Su et al.58

(2020) presented a critical review of field monitoring of high-rise structures. The study reviewed59

techniques for comfort assessment, seismic and wind effects, and environmental effect on monitor-60

ing of super-tall structures. Recently, the SHM community has explored both vibration and image61

data for structural damage identification and localization.62

With advancements in artificial intelligence, image-based SHM has garnered as an inexpensive63

way to monitor large scale structures using Convolutional Neural Networks (CNNs). While image-64

based 2D CNN techniques remain a popular method for SHM (Kumar et al. 2019, Chang and Chi65

2019, Gulgec et al. 2019, Sony et al. 2019), they involve significant complexity in obtaining a66

large amount of labelled data, pre-processing and classifying the images. As a solution, researchers67

have studied algorithms that directly operate on the sequential data such as vibration data. Guo68

et al. (2014) proposed sparse coding as a feature extraction method for unlabeled acceleration69

measurements obtained from wireless sensors. The damage classification was carried out using70

a CNN, and the results were compared with logistic regression and decision trees. A three-span71

bridge was considered to evaluate the efficacy of the proposed method, and it was shown that sparse72

coding-CNN based method outperforms other methods with an accuracy of 98%. Gulgec et al.73

(2017) conducted a simulation study on a steel gusset plate connection by varying the size and74

location of the damage. A CNN was used to classify damaged signals, and the proposed method75

achieved a testing error of 2% and showed robustness against environmental noise.76

Fallahian et al. (2018) explored the applicability of dynamic features such as mode shapes,77
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frequency response functions, and natural frequencies as damage indicators under varying tem-78

peratures. The authors used a combination of coupled sparse coding and deep neural network as79

an ensemble method for damage detection and localization. The proposed method was validated80

on a numerical truss bridge and experimental benchmark dataset. Bao et al. (2019) proposed a81

CNN-based anomaly detection using acceleration measurements by converting them into grayscale82

images. The authors used several anomaly parameters such as missing, minor, outlier, square,83

drift, and trend data points to train the datasets using a stacked autoencoder architecture. In another84

recent study, Shang et al. (2020) proposed deep convolutional denoising autoencoders for structural85

damage detection. The proposed method extracted damage features from field measurements under86

environmental noise. However, most of these methods are based on 2D CNN (Sony et al. 2021),87

which are primarily relied on images.88

RECENT DEVELOPMENT OF 1D CNN-BASED SHM89

Recently, 1D-CNN has shown promising results in capturing the temporal information and90

damage detection using vibration data. For example, Abdeljaber et al. (2017) introduced 1D CNN91

for real-time vibration-based damage detection. The authors trained 1D CNN on a vibration signal92

database obtained from a truss, named Qatar Grandstand, by damaging each joint and keeping the93

other joints undamaged. The proposed model was trained individually on each joint, and near-94

perfect classification accuracy was proposed. However, the proposed method was not tested for a95

multiclass damage scenario. Zhang et al. (2019) utilized the computational powers of 1D CNN96

to detect changes in structural parameters such as stiffness and mass. Three different structural97

components were used for data acquisition and model validation, namely, T-shaped steel beam,98

short and long steel girder bridge, and a mean classification accuracy of 98% was achieved. In99

another study, Ni et al. (2019) showed the applicability of 1D CNN with autoencoders for anomaly100

detection under data compression. The proposed algorithm was validated using a long-span101

suspension bridge with an accuracy of 97.53%.102

A recent study by Azimi and Pekcan (2020) explored the concept of transfer learning in103

vibration measurements. The authors used a four-story IASC-ASCE SHM model for numerical104
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training, and the proposed model was tested on experimental studies using IASC-ASCE SHM105

benchmark building and the Qatar University Grandstand Simulator with an accuracy of 90-100%.106

Recently, Sharma and Sen (2020) showed the applicability of 1D CNN for damage detection in107

the structural frames. Experimental validation was performed on a 2D-steel frame with different108

damage location and severity of the damage. The method was shown to identify different damage109

scenarios and the false-positive rate was also evaluated and found to be well within the acceptable110

limits. Furthermore, Liu et al. (2020) conducted a study by integrating traditional TF methods111

with the capability of neural networks. The authors used transmissibility function-based 1D CNN112

to effectively identify damage at the ASCE SHM benchmark structure. The proposed method was113

compared with the time-series and fast Fourier transform-based frequency-domain information,114

where the TF signals exhibited more significant damage-sensitive features.115

Overall, 1D CNN exhibited superior performance over artificial neural networks (ANNs) in116

the context of computation efficiency and noise insensitivity for big data (Kiranyaz et al. 2019).117

Recently, Bao et al. (2020) evaluated a combination of finite element method (FE) and 1D CNN for118

localizing damage for a jacket-type offshore structure. However, the datawas generated synthetically119

using a finite element model, which might not resemble the actual real-world data with operational120

and environmental noise contamination. In addition, the damage was induced artificially using the121

FE model that was clearly distinguishable from an undamaged structure that does not concur with122

the real-world data. In another recent study, Sarawgi et al. (2020) used 1D CNN for each joint in an123

experimental setup to identify hypothetical damage simulated using removal or addition of external124

braces. However, such individual CNN model per damaged node does not scale well to real-world125

structures with multiclass damages due to computational complexity. Moreover, the need for large126

datasets and the selection of the appropriate architecture of the network still remain a challenge.127

The proposed research explores the existing challenges of multiclass damage identification in a128

full-scale bridge. Unlike the simulated data, the real-world data is limited and noise-contaminated,129

where multiclass damage localization becomes a significant challenge. In this paper, an enhanced130

windowed-1D CNN is explored for multiclass damage localization with varying damage severity131
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under different damage scenarios. The issue of the limited dataset is solved by augmenting the data132

using windowing the acceleration measurements, and the classification results are improved using133

a novel majority voting approach of a global 1D CNNmodel. The effectiveness of the proposed 1D134

CNN model is evaluated using a systematic suite of hyperparameter tuning such as window size,135

random initialization of weights, and optimum learning rates to show the robustness of the selected136

optimal architecture of the 1D CNN network.137

The paper is structured as follows. A brief introduction of the structural damage identification,138

its need, and a literature review based on 1D CNN techniques are presented first, followed by the139

theoretical background of the proposed algorithm. The capability of the proposed algorithm to140

identify multiclass damage, the importance of hyperparameter tuning and various metrics to show141

the damage parameters of the structures is explained later along with the key conclusions.142

PROPOSED METHODOLOGY143

Formulation of 1D CNN144

Convolutional Neural Networks (CNNs) are a type of feedforward neural network model that145

is designed to approximate a function H = 5 (G; \). For classification, the model maps an input G to146

a category (class) H. The parameters \ are learned to best fit a given training dataset by a gradient147

descent optimization algorithm (Goodfellow et al. 2017). The most common type of CNNs are 2D148

CNNs used in the field of computer vision for tasks such as image classification, where the inputs149

G are matrices (2D-shaped) representing images. 1D CNNs are a simpler variant of CNNs, where150

the inputs G are vectors (1D-shaped), typically representing a time-series. They are commonly used151

for tasks involving sequential signal processing such as speech recognition (Kiranyaz et al. 2019).152

Since the last few years, 1D CNNs became popular in SHM due to its computational simplicity in153

comparison to its parent family of 2D CNNs as it requires simple array application and a shallow154

network.155

A typical 1D CNN architecture used in this study is shown in Fig. 1. It consists of an input156

layer (time-series), multiple alternating convolutional and pooling layers, and one or more fully157

connected layers at the end. An input time-series G presented to the input layer is transformed by158
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the forward pass through the hidden layers and the output softmax layer produces the class label H.159

When the number of hidden layers is high, this architecture is referred to as a deep convolutional160

neural network. The convolutional layer is the core building block of a CNN. The parameters of161

each convolutional layer consist of a set of learnable kernels, which are defined by a kernel length162

(<). Convolutional layers have a reduced number of parameters in comparison to fully connected163

layers as a single kernel shares the weights for spatial locations in the input. The convolution164

process can be expressed as Eq. 1 (Goodfellow et al. 2017):165

H(=) = 5 (G(=) ⊗ ℎ(<)) (1)166

where G(=) is the input vector of length = and ℎ(<) is kernel of length<. The symbol ⊗ denotes167

the traditional 1D convolution between two signals as defined in Eq. 2,168

G(=) ⊗ ℎ(<) =
=∑
:=0

G(:)ℎ(= − :) (2)169

The function 5 is called an activation function, which is typically a non-linear transformation on the170

traditional 1D convolution. Non-linear activations enable the network to learn complex mappings171

between the input signal and the class labels. In this study, Rectified Linear Unit (ReLU) is used as172

the activation function, which effectively removes negative values from an activation map by setting173

them to zero. A pooling layer is added after the convolution layer to sub-sample the convolution174

output. The pooling operation reduces the dimensionality of a given mapping while highlighting175

the prominent feature and it also helps to reduce overfitting. Max pooling refers to selecting the176

maximum value in a window that slides over the input map. In Fig. 1, the max pooling layer177

has reduced the size of each convolution output size by a factor of two. For the output layer, the178

choice of activation function depends on the type of output. For classification problems, SoftMax179

activations are preferred. SoftMax function for a n-class problem (representing = probabilities of180

input belonging to each of n-classes) is shown in Eq. 3.181
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%(class = 9 |I) = 4I 9∑=
:=1 4

I:
(3)182

where I 9 is the input to the softmax node 9 from the previous layer.183

Multiclass damage detection using windowed-voted 1D CNN184

A method based on a 1D CNN model is proposed to classify the vibration measurement into185

multiple damage classes (i.e., multiclass classification). First, each acceleration signal is scaled to186

fit a standard normal distribution. The scaling improves the convergence rate of models trained on187

the dataset and prevents any outlier from dominating the input (Ioffe and Szegedy 2015). In order to188

train a neural network to achieve high test accuracy, a large amount of training data is required. Due189

to the scarcity of vibration-based multiclass data for civil infrastructure, it is critical to augment190

the training dataset. In the proposed method, the dataset of raw acceleration signals is augmented191

by extracting windows of samples from the original signals, as shown in Fig. 2. Each extracted192

window is assigned the same damage level as the original time-series. A new dataset is formed by193

taking the extracted windows and their labels as the training instances. In addition to increasing the194

number of training instances, this windowing technique also reduces the data dimensionality (i.e.,195

shorter input signals), which allows training machine learning models with less over-fitting.196

The dataset is then split into training, validation and test sets. A 1D CNN model is trained197

on the dataset using a standard gradient descent optimizer. Hyper-parameters of the 1D CNN198

model include the number of layers and number of nodes in each layer, activation function and199

the kernel size in convolutional layers. Additionally, the length of the extracted windows is also200

a hyper-parameter. Finding the optimal hyper-parameters (also known as hyper-parameter tuning)201

is conducted using a random search over the parameter space and selecting the configuration that202

yields the high accuracy on the validation set (Bergstra and Bengio 2012).203

In order to classify a new acceleration signal at test time, windows are extracted as before204

and fed into the trained 1D CNN model, which outputs a set of classification probabilities for each205

window. The predicted set of classification probabilities %? (H2) for a full accelerationmeasurement206
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is obtained by summing the class probabilities of all the window sequences in a single time-series.207

The class with the maximum probability is the predicted damage level classification of the series208

as shown in Fig. 2. It may be noted that this is equivalent to voting for the majority classification209

label of the individual window sequences to arrive at the prediction based on the entire time-series.210

Although it is possible for a well-trained model to misclassify some of the individual window211

sequences that comprise a time-series, the probability of misclassifying a majority of them is212

very low (Sony 2021). Therefore, the voting process improves the prediction accuracy and other213

evaluation metrics in the time-series. This result is empirically observed in the full-scale studies214

and discussed in model performance section. The proposed machine learning pipeline for the215

multiclass damage classification problem is shown in Fig. 3.216

Performance criteria217

In machine learning, a number of performance metrics are used to evaluate the efficacy of the218

computational model. A brief description of metrics used to evaluate classification models in the219

context of SHM is provided below. The confusion matrix is a tabulation of classifications made220

by a model, typically with the actual class in rows and predicted class in columns. There are221

various metrics that are derived from confusion matrix and are presented in Table 1. In the context222

of SHM and multiclass damage detection, ROC-AUC, Accuracy, FNR and F1 score are used to223

evaluate the performance of the proposed method. Accuracy is a primary performance metric used224

to evaluate the ability of a model to correctly classify the data samples into various class labels.225

Another important metric that has not been discussed in the literature is FNR. In the SHM context,226

it is critical that a damage detector have a low false negative rate, as a false negative corresponds227

to the potentially catastrophic case of a damaged signal being classified as an undamaged signal.228

Furthermore, a damage detector must have high values for accuracy, and F1 score. Additionally,229

two curves are used to evaluate the trade-off between performance metrics. The receiver operating230

characteristic (ROC) curve shows the trade-off between True Positive (TP) Rate (TPR) and False231

Positive (FP) Rate (FPR) as the decision threshold of the classifier varies. The precision-recall (PR)232

curve shows the trade-off between precision and recall as the decision threshold of the classifier233
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varies. The area under the curves (AUC) for both ROC and PR is a summary metric that reflects234

the level of possible trade-off. Both curves are useful for an academic and practicing engineer to235

find a suitable decision threshold.236

Algorithm for Component-level Damage Identification237

Component level damage is identified for multi-class problems using Algorithm 1. The entire238

structure ismodeled as one experiment rather thanmodeling each sensor separately as in (Abdeljaber239

et al. 2017) and prediction probabilities are acquired for each sensor location. This provides control240

over all the features for one experiment and prevents errors arising from multiple models working241

on different sensors. However, as there are multiple sensors covering the entire structure, different242

structural components are collectively used to localize damage using a limited number of sensors243

for each component. The damage is confirmed if the true predicted probability class is equal to244

allocated class label for all cumulative windowed series for each sensor location and %? (H2) is245

greater than the threshold.246

Algorithm 1:Multiclass damage identification
Input: A signal G(C)
Output: Prediction probabilities %? (H2) for damage component level identification.
(a) The acceleration data is pre-processed into multiple windows of time-series and
damage class-label is allocated to each windowed data.
(b) The structure is modeled as whole (i.e., a global CNN model) as compared to per
sensor (Abdeljaber et al. 2017) for computational efficiency and ease of modeling.
(c) The windowed data is trained using 1D CNN with optimal parameters (e.g., window
size, random initialization of weights etc.) and tested on a separate dataset.
(d) The probabilities of classification are obtained for each sensor of every windowed
series and damage is confirmed if true predicted probability class of a sensor is equal to
allocated class label, while an average of %? (H2) for various structural components is
used as threshold of damage.
(h) If the %? (H2) ≥ threshold, a localized damaged is confirmed.

FULL-SCALE STUDY247

Details of the Z24 Bridge248

Damage detection, where classification is more than two classes, is considered as a multiclass249

problem. In this study, two types of damage cases are considered, namely, rupture of tendons,250
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and pier settlement of a full-scale bridge, namely, Z24 Bridge (Maeck and Roeck 2003). All the251

damage classes have multiple damage levels are used to evaluate the performance of the proposed252

method for multiclass damage detection. The bridge was located in the canton Bern near Solothurn,253

Switzerland. It was a classical post-tensioned concrete two-cell box-girder bridge with a main span254

of 30 m and two side spans of 14 m, as shown in Fig. 4. The bridge was demolished at the end of255

1998 because a new railway adjacent to the highway required a new bridge with a larger side span.256

During the demolition, the bridge data was acquired using 15 accelerometers placed at different257

spans of the bridge, as shown in Fig. 5. The bridge was excited by two shakers, one at the mid-span258

of the bridge and another at a side-span. Because of the size of the bridge, response was measured259

in nine setups of up to 15 sensors each, with three accelerometers and the two force sensors common260

in all setups. The data was sampled at 100 Hz, and the data was made publicly available by the261

researchers at the Katholieke Universiteit Leuven (https://bwk.kuleuven.be/bwm/z24). The data262

was acquired by performing various progressive damage scenarios during the demolition period.263

For the brevity of this study, only two different damage scenarios are considered: rupture of tendons,264

and pier settlement. It may be noted that each damage scenario have different classes of damage, and265

they were chosen to evaluate the performance of the proposed method to classify various multiclass266

damage cases. For example, rupture of tendons have three levels, and pier settlements have four267

levels, and together they made a case of two separate damage classes. For detailed explanation of268

how the damages were induced in the bridge, the readers are suggested to refer (Roeck and Teughels269

2004). The reference undamaged condition is considered as class-zero for all the cases and the other270

damages were assigned classes starting from 1 to = depending upon the level of damage, as shown271

in Table 2. For example, in the case of rupture of tendons, the damage was induced at first, rupture272

of two tendons, and second, rupture of four tendons, third, rupture of six tendons, thereby creating273

three classes of damages for rupture of tendons. Similarly, there are four classes for pier settlement.274

The rupture of tendon dataset contains 1,231 time-series (i.e., vibration signals) and the lowering of275

pier dataset contains 1,056 time-series. Each time-series contains 65,530 samples. Both datasets276

are class-balanced, and they are split into three sets of train-validation-test as 60%-10%-20% of the277
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original suite of time-series.278

Hyper-parameters of the 1D CNN model279

A variety of hyper-parameters is incorporated to improve the robustness of the proposed model280

and avoid overfitting. For example, learning rate is evaluated for various scenarios to improve281

the accuracy while reducing the overfitting by empirically changing the gradient during back-282

propagation. In this study, first a search space of hyper-parameters is designed by considering283

a wide range of values for each hyper-parameter. In order to make the search feasible, extreme284

values (e.g., very small window sizes) that yielded poor performance or unstable training dynamics285

(training error does not decrease) were removed from the search space. A random search is286

performed on this hyper-parameter space, and the set of hyper-parameters that yielded highest287

accuracy is selected as the optimal configuration. The evaluation metrics based on the proposed288

method are described later with a comparison between window-voted and non-voted results. In this289

study, a range of hyper-parameters are selected first and tuned using random search algorithm to290

achieve a set of hyper-parameter that provides the optimal accuracy. The range of hyper-parameters291

used for 1D CNN is presented in Table 3. For example, window size is adopted within a range of292

32-512 samples. Window size is the only external parameter and is decided by the user. Thus, a293

sensitivity analysis is performed to understand the behavior of the performance evaluation metrics294

(%<) under different window sizes (F). Two different metrics, accuracy and FN, are used for295

sensitivity analysis as they represent overall accuracy of the model and false-negative alarm critical296

for civil infrastructure.297

The optimal hyper-parameters of this dataset are obtained after tuning and are presented for all298

the models in Table 4. An analysis is performed to understand the effect of F versus %<. The results299

are shown for various damage cases in Fig. 6. For example, Fig. 6 (a-b) shows that the optimal300

performance is achieved at F=256, with highest ROC and accuracy, and lowest false-negative.301

Although, the FNR remains consistent after F=512 and other metrics are at their peak, however,302

due to larger F, the data size reduces per damage class and it leads to over-fitting of the data.303
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Random initialization of weights304

Deep learning algorithms are iterative and require the user to specify value of initial weights305

of neurons to initiate the iteration and its optimization. In practice, all weights in the model are306

randomly drawn from a Gaussian or uniform distribution (Goodfellow et al. 2016). However, the307

scale (low or high magnitude) has a large effect on both the outcome and optimization procedure. In308

this study, random initialization with early stopping criteria is used and Adam optimizer (Kingma309

and Ba, 2014) is used with dropout in each layer for regularization. After acquiring the optimal310

tuned parameters, a parametric study is conducted to understand variance in the metrics of 1D CNN311

model for random initialization of weights. The metrics used for evaluating random initialization of312

weights are ROC-AUC, accuracy, FNR, and F1 score and are shown in Table 5. It can be observed313

that for pier settlement, the mean (`) of ROC-AUC is 0.97 with an accuracy of 0.85. The FNR is314

0.15 and the standard deviation (f) for all the trials is at its minimal of 1%. Similarly, for rupture315

of tendons, the ROC-AUC is 0.92 with an accuracy of 0.67 and FNR of 0.33 with minimal f of316

2%.317

Effect of window size318

The window size used to augment the data is an external parameter apart from other model319

parameters and it is critical to understand its effect on model performance. It can be observed that320

the best performance with a combination of maximumROC-AUC and accuracy and minimum FNR321

is achieved at 256 samples per window. It is shown in Fig. 6 (a), ROC-AUC increases to 1.0 at322

512, 800, 1024 samples per window, however, it leads to overfitting with increased FNR. A similar323

result can be observed from Fig. 6 (b) with optimal performance at 256 samples per window.324

Model performance325

The optimal parameters are first used to evaluate the performance of the proposed model on326

an entire series versus windowed and voted-windowed samples. The reason for comparison of the327

entire time-series, windowed and voted windows is to show the improved performance by voting the328

windowed samples. It should be noted that model performance on entire series results in very poor329

accuracy due to nonlinearity, and nonstationarity in the signal. It may be noted that micro-averaged330
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is the average of area under the curve for all the classes. It can be observed from Figs. 7 (a) &331

(b) for pier settlement, the ROC-AUC of a full-series signal is merely 0.56 while PR-AUC is only332

0.21. A similar observation can be deduced in case of rupture of tendon in Figs. 8 (a) & (b),333

where ROC-AUC and PR-AUC is 0.55 and 0.28, respectively. However, it is observed that voting334

on windowed dataset increases accuracy considerably and it exhibits in ROC-AUC and precision-335

recall (PR)-AUC curves, as presented in Figs. 7(c-f), and 8(c-f), respectively. The accuracy in336

terms of ROC-AUC and PR-AUC increased by 71% and 314% for pier settlement case, and by337

58% and 153.5% in case of rupture of tendons. Moreover, as shown in Fig. 7, majority voting on338

samples has further improved the AUC for both ROC and PR. It can be observed that in case of pier339

settlement, there is meager increase on ROC-AUC, however, there is a considerable improvement340

in the area under the curve for PR. This behaviour can be attributed to a more localized damage341

in case of pier settlement. Similarly, as observed in Fig. 8, when the damage was considerably342

distributed in case of rupture of tendons, majority voting on windows highly increase the PR-AUC343

for rupture of tendons.344

It can be observed that majority voting on windows of distributed damage signal increases345

the probability considerably by allocating the majority class and ignoring the non-prominent class346

along with augmenting the data samples per class. Another critical performance metric, FNR347

is used to evaluate the false negative alarm of damage in the proposed model. It can be noted348

that the FNR reduces as the entire time-series is windowed and further reduces with the majority349

voting. For example, in case of pier settlement, FNR reduces from 0.80 to 0.17 for the entire series350

versus majority voted augmented dataset. Similarly, FNR reduces from 0.71 to 0.34 for rupture of351

tendons, as shown in Table 6. The label 0, 1, and 2 are used to denote performance metrics of the352

entire time-series, windowed time-series and majority voted-windowed time series, respectively.353

The tuning process and the resulting performance improvement provide adequate justification to354

counter any potential errors caused by the windowing.355
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Component-level damage identification356

Component level damage identification is performed using Algorithm 1, for two multiclass357

damage scenario, namely, pier-settlement and rupture of tendons. The sensor locations are identified358

first, then, three different structural components of the bridge are used to localize the damage359

caused by the pier settlement and rupture of tendons during the demolition period of the bridge. An360

undamaged pier (Utzenstorf), bridge deck, and damaged pier (koppigen) are used for representation361

of predicted probability (%?) and infer damages in three components. The Koppigen pier is used362

for inducing the damage by lowering it in several increments starting with 20 mm, 40 mm, 80 mm,363

and moving to 95 mm at the last stage. Twelve different sensors are used to identify the location364

of damage, namely, 4 sensors (411, 421, 431, 441) on the undamaged pier (UDP), 4 sensors (216,365

221, 226, 231) on the bridge deck (BD), and 4 sensors (511, 521, 531, 541) on the damaged pier366

(DP), as shown in Fig. 9.367

The %? is plotted against the sensor index and a dash-dotted average of %? is shown as a368

representation of combined %? for the corresponding structural component, as shown in Fig. 10369

for 20 mm, and 40 mm and in Fig. 11 for 80 mm, and 95 mm lowering of pier, respectively.370

For example, Fig. 10 (0, 1, 2) represents %? for undamaged pier (UDP), bridge deck (BD), and371

damaged pier (DP) for 20 mm lowering of piers. Similarly, Fig. 10 (3, 4, 5 ) is for 40 mm lowering372

of piers, respectively. It can be observed that, unlike in pier settlement of 40 mm, the proposed373

algorithm does not provide conclusive evidence of nominal damage of 20 mm. However, Fig. 11374

(0, 1, 2) and (3, 4, 5 ) shows identification of damage for 80 mm and 95 mm, and it can be observed375

that the identification is clearly achieved through the proposed threshold where the %? is highest376

for DP followed by BD which is affected by differential settlement of one of the piers.377

It may be noted that, as the severity increases, the signals become more distinguishable and 1D378

CNN learns the classification more effectively. It can be observed from Fig. 12 that UDP shows379

lowest predicted probability due to its similarity to the response of the undamaged pier, however,380

both BD, and DP shows higher prediction accuracy. The reason for BD’s highest probability is381

attributed to the surface area and larger affect of differential pier settlement of the entire bridge. In382
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summary, it can be concluded that the proposed method performs well for damage levels of 40 mm,383

85 mm, and 95 mm, however, does not perform well for a very low level of damage, as shown in384

case of pier settlement of 20 mm. Finally, Table 7 shows the confusion matrix for the multi-class385

pier settlement damage classification problem with five classes, starting from no damage (class-0)386

to 95 mm damage (class 5).387

For rupture of tendons, the most affected area would be the bridge deck and the damage induced388

due to rupture of tendons will create a non-localized and distributed damage throughout the bridge389

deck in comparison to the damage in the bridge piers. The damage identification per sensors is390

avoided due to non-conclusive inference and a comparison between structural components of the391

bridge is provided in Fig. 13. It should be noted that rupture of tendons affects bridge deck and it392

is shown in Fig. 13, however, the proposed algorithm could not clearly show the effect of rupture393

of two and four tendons, while the rupture of six tendons proves to be the worse damage level394

scenario.395

CONCLUSIONS396

In this paper, a windowed-1D CNN is employed for multi-class damage detection using limited397

datasets. First, the limited dataset is augmented using windowing of the vibration data and the398

prediction accuracy is improved by a novel majority voting approach on windowed classes. It is399

observed that due to non-localization of sensors for data acquisition, damage identification for a400

minor level of damage (say, 20 mm of pier settlement) is a challenge to predict. However, the401

overall accuracy significantly improves with the increase in the severity of the damage (i.e., a402

pier settlement of 40-95 mm). The proposed algorithm is analyzed with a sensitivity analysis on403

window-size as the external parameter to the model as well as a parametric study to evaluate its404

sensitivity with random initialization of weights. The improvement in the accuracy is illustrated405

through a comparison between a single series dataset and windowed-voted time-series for ROC406

and precision-recall AUC. In this paper, it is demonstrated that a simple 1D CNN architecture with407

only one hidden layer is capable of classifying the time-series of vibration data into multi-class408

with high accuracy. There are still a few limitations of the proposed algorithm, which are reserved409
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to be addressed in the future research.410

• The obtained damage classification provided superior results; however, damage localization411

at the sensor level was not achieved. It may be noted that damage is identified with the412

exception of minor level of damage (e.g., 20 mm pier settlement). Future research is413

reserved to improve the proposed method and accommodate the minor level of damage by414

conducting an experimental simulation of a series of progressive damage cases with a wide415

range of minor damage.416

• The proposed 1D CNN model based on sequential data is independent of any feature selec-417

tion process and offers robust and accurate approaches to complex damage identification.418

However, like any other supervised technique, the 1D CNN also requires a significant419

amount of training data to classify and predict the damage, which can be considered as a420

limitation. However, with the recent advancement of remote and autonomous sensors and421

internet-of-things, long-term SHM technologies have shown significant promise to monitor422

critical infrastructure in smart cities. It is anticipated that the long-term monitoring will423

allow the SHM researchers and practitioners to acquire low-cost periodical data with multi-424

class health conditions of the structures, serving as the potential future training data for the425

deep learning techniques.426
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TABLE 1. Description of various performance metrics.

Metric Formula Remarks

ROC-AUC Recall Vs FPR Degree of separability between classes

Accuracy TP+TN
TP+FN+FP+TN Less useful for heavily imbalanced data

Precision TP
TP+FP Positive predicted value

Recall TP
TP+FN True positive rate or sensitivity

False Positive Rate (FPR) FP
TN+FP False alarm when there is no damage

False Negative Rate (FNR) FN
TP+FN No alarm for actual damage
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TABLE 2. Description of the multiclass damage scenarios and the class labels.

Problem Damage scenario Class label

0 Undamaged 0

1

Rupture of 2 tendons 1

Rupture of 4 tendons 2

Rupture of 6 tendons 3

2

Lowering of pier, 20 mm 1

Lowering of pier by 40 mm 2

Lowering of pier by 80 mm 3

Lowering of pier by 95 mm 4
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TABLE 3. Hyper-parameters used in 1D CNN for tuning by random search algorithm.

Parameter Values

Window size 32, 64, 128, 160, 256, 512

No. of hidden convolutional layers 1 - 6

No. of filters 1024, 512, 256, 128, 64, 32, 16

No. of fully connected layers 1 or 2 layers with 16 and 32 nodes

Learning rate 0.0003, 0.001, 0.01, 0.1

Batch size 32, 64, 256, 512

Kernel size 4, 8, 16, 32, 64
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TABLE 4. Optimal configuration of the hyper-parameters of the selected 1D CNN.

Parameter Values

Window size 256

No. of hidden convolutional layers 1

No. of filters 32

No. of fully connected layers 2 with 32 and 16 nodes, respectively

Learning rate 0.0003

Batch size 256

Kernel size 16
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TABLE 5. Random initialization of weights.

Pier settlement

Trial # ROC-AUC Accuracy FNR F1 score

1 0.98 0.85 0.15 0.85

2 0.97 0.85 0.15 0.85

3 0.98 0.86 0.14 0.86

4 0.97 0.83 0.17 0.83

5 0.98 0.86 0.14 0.86

` 0.97 0.85 0.15 0.85

f 0.00 0.01 0.01 0.01

Rupture of tendons

1 0.92 0.69 0.31 0.69

2 0.93 0.68 0.32 0.68

3 0.90 0.66 0.34 0.66

4 0.91 0.65 0.35 0.65

5 0.92 0.66 0.34 0.66

` 0.92 0.67 0.33 0.67

f 0.01 0.02 0.02 0.02
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TABLE 6. Training and testing performance of 1D CNN.

Lowering of pier

Dataset ROC PR A P R FPR FNR F1 score

0 0.56 0.21 0.20 0.20 0.20 0.2 0.80 0.20

1 0.95 0.84 0.77 0.77 0.77 0.06 0.23 0.77

2 0.97 0.91 0.83 0.83 0.83 0.04 0.17 0.83

Rupture of tendons

Dataset ROC PR A P R FPR FNR F1 score

0 0.55 0.28 0.29 0.29 0.29 0.23 0.71 0.29

1 0.87 0.71 0.59 0.59 0.59 0.14 0.41 0.59

2 0.92 0.82 0.66 0.66 0.66 0.11 0.34 0.66
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TABLE 7. Confusion matrix for a pier settlement damage problem.

Predicted Class
Pred-0 Pred-1 Pred-2 Pred-3 Pred-4

Tr
ue

C
la
ss True-0 192 8 3 0 5

True-1 56 137 16 0 3
True-2 1 0 203 3 5
True-3 0 0 24 183 5
True-4 1 0 8 4 199
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Fig. 1. The proposed 1D CNN architecture used in this study.
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Fig. 2. Extracting data sequences of windows from the vibration data using 1D CNN architecture.
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Fig. 3. Data pipelines for training the proposed 1D CNN network and obtaining predictions for a
given time-series.
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Fig. 4. Schematic of the Z24 bridge.
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Fig. 5. Sensor placement for data acquisition in the Z24 bridge.
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Fig. 6. Performance evaluation of 1D CNN based on window size for (a) pier settlement and (b)
rupture of tendons.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Performance of 1DCNN by windowing of the data of pier settlement (a) full series ROC, (b)
full series PR, (c)windowedROC, (d)windowed PR, (e)windowed-votedROC, (f) windowed-voted
PR.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Performance of 1D CNN by windowing of the data of rupture of tendons (a) Full series
ROC, (b) Full series PR, (c) windowed ROC, (d) windowed PR, (e) windowed-voted ROC, (f)
windowed-voted PR.
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Fig. 9. Schematic showing the sensor location and their numbers used in the analysis.
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Fig. 10. Damage identification for pier settlement with two damage levels, (0, 1, 2): 20 mm and
(3, 4, 5 ): 40 mm.
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Fig. 11. Damage identification for pier settlement with two damage levels, (0, 1, 2): 80 mm and
(3, 4, 5 ): 95 mm.
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Fig. 12. Damage identification for the pier settlement.
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Fig. 13. Damage identification for the rupture of tendons.
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