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Abstract 

Damage detection inevitably involves uncertainties originated from measurement noise and modeling error. 
It may cause incorrect damage detection results if not appropriately treating uncertainties. To this end, 
vibration-based Bayesian model updating (VBMU) is developed to utilize vibration responses or modal 
parameters to identify structural parameters (e.g., mass and stiffness) as probability distribution functions 
(PDF) and uncertainties. However, traditional VBMU often assumes that mass is well known and invariant 
because simultaneous identification of mass and stiffness may yield an unidentifiable problem due to the 
coupling effect of the mass and stiffness. In addition, the posterior PDF in VBMU is usually approximated 
by single-chain based Markov Chain Monte Carlo (MCMC), leading to a low convergence rate and limited 
capability for complex structures. This paper proposed a novel VBMU to address the coupling effect and 
identify mass and stiffness by adding known mass. Two vibration data sets are acquired from original and 
modified systems with added mass, giving the new characteristic equations. Then, the posterior PDF is 
reformulated by measured data and predicted counterparts from new characteristic equations. For efficiently 
approximating the posterior PDF, Differential Evolutionary Adaptive Metropolis (DREAM) Algorithm are 
adopted to draw samples by running multiple Markov chains parallelly to enhance convergence rate and 
sufficiently explore possible solutions. Finally, a numerical example with a ten-story shear building and a 
laboratory-scale three-story frame structure are utilized to demonstrate the efficacy of the proposed VBMU 
framework. The results show that the proposed method can successfully identify both mass and stiffness, 
and their uncertainties. Reliable probabilistic damage detection can also be achieved.   
Keywords: Vibration-based Bayesian model updating; Uncertainties; The coupling effect of mass and 
stiffness; Added mass; Differential Evolutionary Adaptive Metropolis (DREAM). 

1. Introduction 

Civil infrastructures are inevitably exposed to different types of structural damages (e.g., aging, 
deterioration, shrinkage, corrosion, and degradation, etc.) over their lifespan due to internal factors like 
deficient structural design, imperfect construction, and material defects; and external factors like natural 
disasters, environmental change, and man-made disasters [1]. Visual inspection is a common way to 
evaluate structural health and integrity, usually conducted every two years to comply with the federal and 
local regulations. However, visual inspection results predominantly rely on inspectors’ experience and 
knowledge, yielding a subjective decision. In addition, visual inspection is sometimes inaccessible to large 
and complex structures; its implementation is costly and inefficient due to traffic closure [2]. Therefore, 
developing a robust and efficient damage detection strategy is demanding and practically significant.  

Vibration-based damage detection (VDE) has been extensively investigated due to the advancement of 
the measurement and acquisition of vibration signals at a low cost [3]. The main principle of vibration-
based SHM is that damage in structural parameters (e.g., mass and stiffness) can be reflected on the change 
in vibration responses (e.g., acceleration and displacement) and modal parameters (e.g., natural frequency, 
damping ratio, and mode shape) [4]. Generally, VDE can be categorized into two groups: response-based 
and model-based methods. Response-based methods directly or indirectly interpret dynamic responses 
without computer-simulated models (nonparametric approach). Damage is identified by changes in modal 
parameters between healthy and damaged conditions [5]. However, response-based methods have a critical 
drawback of only detecting damage location and cannot quantify damage severity. Also, measured 
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responses from the field are always limited. Model-based methods use measured data to update the 
parameterized computer-simulated models so that damage can be detected, localized, and qualified by the 
variation in structural parameters [6]. A comprehensive overview of VDE can be found in [7]. Traditional 
VDE is a deterministic estimation that only yields a single damage quantification solution and ignores 
uncertainties originating from measurement noise and modeling error. A false alarm in condition evaluation 
may be conducted if underlying uncertainties are not correctly estimated.  

Vibration-based Bayesian model updating (VBMU) has been widely applied in various structures for 
damage detection due to its simple mathematical theorem and powerful capability of handling uncertainties. 
Successful applications of VBMU includes buildings [8, 9], bridges [10, 11], and lab-scaled structures [12, 
13]. Beck et al. [14] established the foundation of the Bayesian model updating approach. Further 
derivatives and modifications [10, 15, 16] extended the Bayesian approach’s capability and efficacy. 
Bayesian approach characterizes to-be-updated structural parameters as random variables and formulates 
parametric model updating function within the Bayes’ theorem. The posterior PDF is explicitly built using 
prior knowledge from engineering judgment and likelihood function consisting of measured data. In short, 
VBMU utilizes vibration data to identify structural parameters as probability distribution functions (PDF). 
The PDF naturally serves as a measure of parameter uncertainty, such as mean, and variance can be easily 
determined. The key strengths of the  Bayesian approach are as follows: 1) rationally and reliably handling 
incomplete experimental data; 2) using Bayes’ theorem, physical model parameters are characterized by 
the PDF; 3) only repeating straightforward model evaluations to avoid the most inverse problem’s 
challenges of unidentifiability, ill-posedness, and non-uniqueness [11]. 

However, classical VBMU usually assumes that mass is well known and invariant; only stiffness is 
identified [10, 15], believing that mass is less critical. However, this is not always valid when noticeable 
variation in mass occurs. Furthermore, the classical characteristic equation is given by: 

(𝐊 − 𝝀𝐌)𝝓 = 0    (1) 
where 𝐌 is a mass matrix; 𝐊 is a stiffness matrix; 𝝀 are eigenvalues (square of natural frequencies);	𝝓 are 
eigenvectors (mode shapes). 

Eq. (1) shows that structural parameters in mass and stiffness are coupled concerning the natural 
frequency and mode shape. Therefore, simultaneous identification of mass and stiffness can be defined as 
an unidentifiable problem because an infinite combination of mass and stiffness exists and gives the same 
natural frequency (herein, the coupling effect of mass and stiffness) [17]. To avoid this issue, mass is usually 
well-estimated or exactly known for updating stiffness in traditional VBMU due to the availability of the 
mass information in a deterministic manner (e.g., dimensions).  

The coupling effect is recently successfully addressed by updating mass and stiffness with an acceptable 
level. However, it still requires certain prior information and remains a challenge to quantify parameter 
uncertainties. Xu et al. [18] proposed a time-domain nonlinear restoring force to identify mass and stiffness; 
however, an external force is required. Zhang and Li [19] presented a loop substructure identification 
method for mass and stiffness, while mass magnitude at sensor location should be known. Do and Gül [20] 
established a time series-based model to identify mass and stiffness features. Using incomplete measured 
data, Lei et al. [21] employed an extended Kalman filter (EKF) to determine the mass-stiffness coupled 
coefficient. Xu et al. [22] used cross-modal energy sensitivity with a cross-model cross-mode method to 
identify mass and stiffness changes; Khanmirza et al. [23] applied soft-computing methods to identify mass-
damping-stiffness for multistory shear building. In addition to these methods, Rezaiee-Rajand et al. [24] 
developed a sensitivity-based method with modal kinetic and modal strain energy to update mass and 
stiffness. Nevertheless, the aforementioned methods are deterministic estimations and cannot provide 
uncertainties of structural parameters.  

Recently, Zeng and Kim [16] proposed a new VBMU framework to identify both mass and stiffness 
and their uncertainties for 2D and 3D numerical shear frames and demonstrated that classical VBMU cannot 
update both mass and mass stiffness, simultaneously. The coupling effect of mass and stiffness is 
successfully addressed using two sets of vibration data acquired from two systems: original and modified 
with added known mass. The new prior distribution, incorporating the new characteristic equation with 
mass addition, is derived, giving a new posterior PDF. Mass addition strategies are practically achievable, 
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such as moving vehicles on the bridge [25, 26] and adding stationary weights to the structure [27]. Zeng 
and Kim [16] employed the asymptotic approximation method [14] to circumvent high-dimensional 
integrals involved in the posterior PDF for Bayesian inference. To be specific, the objective functions are 
obtained by taking the negative logarithm of the posterior PDF. The analytical formulations of optimal 
model parameters are derived by the linear optimization method; associated uncertainties are quantified by 
an inverse Hessian matrix of the objective function. Finally, structural parameters are iteratively updated 
using modal parameters, e.g., frequency and mode shape. However, the asymptotic approximation method 
assumes that parameters have unimodal and Gaussian distribution that does not necessarily guarantee an 
actual physical model when a high level of modeling error and measurement noise occur in practice, 
especially for multi-modal and non-Gaussian posterior [9, 11]. Also, an insufficient amount of data and 
complex model class may lead to an unidentifiable problem.  

One promising way to solve multi-modal and unidentifiable problems is using Markov Chain Monte 
Carlo (MCMC) to generate samples to approximate the posterior PDF. The high-dimensional integrals in 
the Bayesian approach can be reasonably calculated. Another attractive feature in MCMC does not require 
the assumption on the physical model and accurately represents the posterior PDF. Various MCMC 
techniques have been developed for posterior distribution sampling, such as Metropolis-Hastings (MH) 
algorithms [28], Gibbs sampling [29], Hamiltonian Markov chains [30], and delayed rejection adaptive 
Metropolis (DRAM) [8, 11]. These methods adopt a single Markov chain to draw samples, it has 
demonstrated a limited capability to treat high-dimensional, multi-modal, and flat manifold PDFs. 
Therefore, they have a relatively low convergence rate and cannot guarantee adequate exploration in 
parameter space for a target PDF [31]. 

This work proposed using the Differential Evolution Adaptive Metropolis (DREAM) [31] algorithm to 
proceed with the distribution estimate. DREAM is essentially a multi-chain MCMC that runs different paths 
in parallel to target the posterior PDF. It combines different powerful strategies, including a genetic 
algorithm for population evolution [32], self-adaptive randomized subspace sampling, and outlier chain 
detection [33], to quickly achieve convergence and seek the best solution by running multiple Markov 
chains. A wide range of applications has shown that DREAM exhibits excellent performance for complex 
problems with high-dimensionality, nonlinearity, numerous peaks, and large uncertainties in different 
research fields, including hydrology [34, 35], chemistry [36, 37], geophysics [38, 39] and renewable energy 
technique [40], etc. However, to the authors’ best knowledge, DREAM has not been investigated in SHM 
for civil infrastructures. The current study attempts to explore the efficacy of DREAM in VBMU. 

This paper presents a new VBMU by treating both the mass and stiffness as equally important. The 
proposed VBMU intrinsically addressed the coupling effect of mass and stiffness by two sets of vibration 
data measured from the original and modified system with added known mass. The new characteristic 
equations are constructed to substitute the traditional one in Eq. (1). The posterior PDF is reformulated by 
measured modal data and predicted counterparts from the new characteristic equations. The DREAM 
algorithm is then employed to generate samples for approximation of the posterior PDF. The proposed 
VBMU simultaneously identifies the mass and stiffness; their uncertainties are also straightforward 
provided by the estimated PDF. A numerical study on a ten-story shear building and an experimental study 
on a three-story aluminum frame small-scale model are used at intact and damaged structural states to verify 
the accuracy and feasibility of the proposed method. 

The outline of the presented work is listed as follows. The background of classical VBMU and a brief 
review of the Bayesian approach’s theory are first described in Section 2, along with model 
parameterization. Section 3 presents the methodology of the proposed VBMU, in which the new 
characteristic equations, strategies of mass addition, and DREAM algorithm are introduced explicitly. 
Section 4 shows one illustrative example to validate the methodology using a numerical example, followed 
by the validation of laboratory-scale testing. Probabilistic damage detection is also performed. Finally, 
conclusions and summaries are provided in Section 5. 
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2. Classical vibration-based Bayesian model updating approach 

In this section, the structural model's parameterization is first introduced in Section 2.1. The background 
of classical vibration-based Bayesian model updating is then presented in Section 2.2. The challenge of 
updating mass and stiffness using the classical Bayesian approach is also discussed.   

2.1. Model parametrization 

Assuming a structural model is linear and can be parameterized by model parameters with Degree-of-
freedoms (DOFs), 𝑁!, and defined model class, 𝐶. A commonly used parameterization of stiffness matrix, 
𝐊(𝜽), and mass matrix, 𝐌(𝜷), could be described as follows [10]: 

             𝐊(𝜽) = 𝐊" +∑ 𝜃#𝐊#
$!
#%&           𝐌(𝜷) = 𝐌" +∑ 𝛽'𝐌'

$"
'%&       (2) 

where 𝜽 = [𝜃&, 𝜃(, ⋯ , 	𝜃$!])  and 𝜷 = 7𝛽&, 𝛽(, ⋯ , 	𝛽$"8
) are stiffness and mass parameters vectors, 

respectively, which will be updated to let the FE model agrees with the real structure using vibration 
measurements. 𝑁* and 𝑁+ are the number of stiffness and mass parameters, respectively; The 𝑙th stiffness 
parameter forms the 𝑙th elemental stiffness matrix, 𝐊# = 𝜕𝑲/𝜕𝜃#; similarly, the 𝑚th mass parameter forms 
the 𝑚th elemental mass matrix, 𝐌' = 𝜕𝑴/𝜕𝛽'. Note that 𝐊" and 𝐌" are defined as constant matrices 
that are not dependent on model parameters. For the sake of simplicity, 𝐊" and 𝐌" are set as zero. The 
parameterization in Eq. (2) allows to update the model at an elemental level and capture local variations in 
stiffness and mass, as each parameter characterizes an elemental matrix. This also leads to a more 
reasonable and accurate damage detection with different levels of deterioration. 

2.2. Background of classical VBMU 

The strength of the Bayesian model updating approach lies in that it uses both the prior information 
(existing structural knowledge) and measured data (new structural knowledge) to estimate the posterior 
PDF. In other words, the Bayesian approach updates the prior PDF by measured data, yielding the posterior 
PDF.  

Consider a model class 𝐶 which represents the relationship between measured data 𝐷 and parameters 
of interest 𝜴, containing stiffness parameter 𝜽 and mass parameter 𝜷. Then, by following Bayes’ theorem, 
the posterior PDF of uncertainty parameter 𝜴 is given by [10]:  

𝑃(𝜴|𝐷, 𝐶) =
𝑃(𝜴|𝐶)𝑃(𝐷|𝜴, 𝐶)

𝑃(𝐷|𝐶)
 (3) 

where 𝑃(𝜴|𝐶) is the prior PDF, reflecting the probability of uncertainty parameters without observed data. 
In many cases, the selection of prior PDF depends on engineers’ judgment and physical meaning. The 
uniform distribution is widely used as the uninformative prior PDF to ensure the measured data entirely 
dominates Bayesian inference and minimizes the effect of prior information. The term of 𝑃(𝐷|𝐶) is a 
normalizing constant so that the posterior PDF can be integrated to unity over the parameter space, which 
is given by, 

𝑃(𝐷|𝐶) = C𝑃(𝜴|𝐷)𝑃(𝐷|𝜴, 𝐶)	𝑑𝜴 (4) 

The likelihood function, 𝑃(𝐷|𝜴, 𝐶), describes how likely the measurements are reproduced from a model 
parameterized by a set of 𝜴. Considering an uninformative prior PDF, the posterior PDF is proportional to 
the likelihood function: 

𝑃(𝜴|𝐷, 𝐶) = 𝑐"𝑃(𝐷|𝐶) (5) 
where 𝑐" represents a constant value to reflect both 𝑃(𝐷|𝐶) and 𝑃(𝜴|𝐷).  

Generally, for vibration-based system identification, the common measured data in the likelihood 
function consists of measured natural frequencies and mode shapes. Then, two error functions (EF) of a 
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given one mode, 𝑚, are adopted to formulate the likelihood function, namely frequency EF and mode shape 
EF [15]. Frequency EF, 𝜀,,', is defined as:  

𝜀,,' = 𝑓H' − 𝑓'(𝜴) (6) 
where 𝑓H' is the 𝑚th measured frequency, 𝑓'(𝜴) is the 𝑚th calculated frequency in a model given a set of 
𝜴.  
Mode shape EF, 𝜀'.,', is defined as: 

𝜀'.,' = 𝝓I' − 𝑳"𝝓'(𝜴) (7) 
where 𝝓I' and 𝝓'(𝜴) are measured mode shape and calculated one of the 𝑚th mode, respectively. 𝑳" 
consists of '1s' or '0s' to match measured partial mode shapes with theoretical counterparts. Note all mode 
shapes are normalized to unity norm to map them in the same context.  
With the assumption that 𝜀,,'		and 𝜀'.,' follow zero-mean Gaussian distribution, then the posterior PDF 
in Eq. (3) is rewritten as follows: 

𝑃(𝜴|𝐷, 𝐶) = 𝑐"exp	 N−
1
2𝜅(

𝐽(𝜴)S          (8) 

The objective function, Eq. (9), can evaluate the accuracy of predicted natural frequency and mode 
shape obtained from new characteristic equations against the measured data. 

𝐽(𝜴) = 	 T UV𝑓H' − 𝑓'(𝜴)W
( + NX𝝓I' − 𝑳"𝝓'(𝜴)Y

)
X𝝓I' − 𝑳"𝝓'(𝜴)YSZ

/

'%&

	 (9) 

where 𝜅 is an uncertainty parameter of prediction error. In the current study, the variances of the measured 
frequency and mode shape are used as 𝜅(. 𝜅 consists of 𝜎,,' and 𝜎'.,';	𝜎𝑓,𝑚 and 𝜎'.,' are the standard 
derivation of the 𝑚th measured frequency and mode shape, respectively. These two weighting factors can 
be identified by either Bayesian modal analysis [41] or stochastic subspace identification (SSI) based 
uncertainty analysis [42], rather than manually tunning. 

For avoiding intractable high-dimensional integrals, MCMC is employed to approximate the posterior 
PDF in Eq. (8) without any assumption on a model by iteratively drawing samples from the target 
distribution. Classical VBMU calculates theoretical frequency, 𝑓'(𝜴), and mode shape, 𝝓'(𝜴) in Eq. (9), 
given a set of 𝜴  using the classical characteristic equation in Eq. (1). Understandably, simultaneous 
updating stiffness and mass yield an unidentifiable problem due to the coupling effect of mass and stiffness. 
The infinite sets of mass and stiffness derive the same frequency so that correct model updating cannot be 
achievable. The new characteristic equations with added mass will substitute classical ones and address the 
coupling effect in the next section.  

3. Formulation of a new vibration-based Bayesian model updating approach 

 New characteristic equations with added known mass are first presented in Section 3.1 to address the 
coupling effect of mass and stiffness for updating mass and stiffness. The mass-adding strategies are 
discussed in Section 3.2, including the number, location, and magnitude of added mass. The DREAM 
algorithm, a multi-chain MCMC to approximate the posterior PDF, is presented in section 3.3. 

3.1. New characteristic equations with added mass 

Classical VBMU adopts a classical FE model, e.g.,	(𝐊 − 𝝀𝐌)𝝓 = 0 to update stiffness with known 
mass. In the proposed method, two groups of measured data acquired from original and modified systems 
with added mass ∆𝒎, are used to derive the new characteristic equations. This aims to address the coupling 
effect of mass and stiffness.  

The original and modified systems with added mass, ∆𝒎, are merged into one equation based on the 
fundamentals of structural dynamics. The core idea of addressing the coupling effect of mass and stiffness 
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is to eliminate either mass or stiffness when updating each of them. For example, first, characteristic 
equations for the original and modified systems are expressed as: 

𝑲𝝓 = 𝑴𝝓𝝀      (10) 
𝑲𝝓2 = (𝑴+ ∆𝒎)𝝓2𝝀′      (11) 

where 𝝀 and 𝝓 are eigenvalues (square of natural frequencies) and mode shapes before modification; 𝛌′ 
and 𝝓2 are eigenvalues and mode shapes after modification. 
Second, the new eigen-equation error with added mass when updating mass is derived as: 

(𝝀 − 𝝀2)3&𝛌2𝝓2)∆𝒎𝝓−𝝓2)𝑴𝝓 = 𝟎  (12) 
For the sake of simplicity, more details can be found in [16]. Eq. (12) can be rewritten as: 

V𝛌2𝝓2)∆𝒎− 𝝀𝝓2)𝑴+ 𝛌2𝝓2)𝑴W𝝓 = 𝟎  (13) 
Define 𝐀 = 𝛌2𝝓2)∆𝒎+ 𝛌2𝝓2)𝑴 , 𝐁 = 𝝓2)𝑴, then Eq. (13) is expressed as: 

(𝐀 − 𝝀𝐁)𝝓 = 𝟎 (14) 
Similarly, when updating stiffness, the new eigen-equation error is shown as [16]: 

(𝝀23𝟏 − 𝝀3𝟏)3𝟏𝝓2)∆𝒎𝝓−𝝓2)𝑲𝝓 (15) 
Eq. (15) can be rewritten as: 

V𝝀23𝟏𝝓2)𝑲− 𝝀3𝟏𝝓2)𝑲−𝝓2)∆𝒎W𝝓 = 𝟎 (16) 
Define 𝐄 = 𝝀23𝟏𝝓2)𝑲−𝝓2)∆𝒎 , 𝐅 = 𝝓2)𝑲, then Eq. (16) is expressed as: 

(𝐅 − 𝝀𝐄)𝝓=0 (17) 
Eqs. (14) and (17) are defined as the new characteristic equations to replace the classical ones in Eq. (1). It 
is noted that the two new characteristic equations have the same formats as the generalized eigenvalue 
problem, 𝝀 and 𝝓 can be easily solved in mathematics or solver in the computer program, such as ‘eig’ 
function in MATLAB. 

Two new characteristic equations eliminate the coupling effect of mass and stiffness. For example, 
mass updating by using Eq. (14) does not require any stiffness information. Likewise, updating stiffness 
does not require any mass information by using Eq. (17).  

For output-only modal analysis, the mode shapes are not mass-normalized, and only unscaled mode 
shapes are identified because of unknown excitation forces. Before the model updating, the measured mode 
shapes have to be normalized by either the mass-change scaling method [27] or stiffness-change scaling 
method [43] to ensure measured and predicted mode shapes are comparative. In this paper, the mass-change 
scaling method is adopted to calculate scaled mode shapes. In addition, because only a few DOFs are 
available related to the sensor location, limited sensors in practice usually lead to incomplete measured 
mode shapes. Therefore, mode shape expansion techniques [44] can expand measured mode shapes to 
complete mode shapes of full DOFs. 

3.2. Strategy of adding mass  

The optimized mass-change strategy has been comprehensively discussed in [27], including mass 
magnitude, number of added mass, and locations of added mass. Generally, two criteria for creating a 
modified system with added known mass are required: Step 1) noticeable frequency change is observed 
between the original system and modified system; Step 2) mode shapes after modification change slightly.  

The frequency change and mass addition are correlated by natural frequencies in the original and 
modified systems. Considering a structure with multiple DOFs, the relation between added mass and 
frequency shift can be expressed as [27]: 

∆𝑓
𝑓
= 1 − e

1

1 + ∆𝑀𝑀∗

 (18) 

where ∆𝑓 is the frequency change after adding mass (=	𝑓2 − 𝑓); 𝑓 and 𝑓′ are the natural frequencies in the 
original and modified systems, respectively; ∆𝑀 = 𝝍)∆𝒎𝝍; 𝑀∗ = 𝝍)𝑴𝝍, where 𝝍 is unscaled mode 
shape in the original system; ∆𝒎 is a diagonal matrix with main diagonal are added mass; 𝑴 is a mass 
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matrix in the original system. Eq. (18) allows us to determine expected added mass when the terms of ∆𝑓, 
𝑓, and 𝑀∗ are known; 𝑓 and 𝝍 are identified by modal analysis, the analytical mass is used as 𝑀∗. Based 
on [27], we select a frequency ratio, 𝑓/𝑓′ to determine ∆𝑀 in Eq. (18). Note that the selection of ratio 
depends on the expected accuracy in modal analysis and mode shape normalization. Finally, the magnitude 
of added mass can be estimated using Eq. (18). 

The number of added mass depends on the number of modes to identify in modal analysis. Ideally, the 
added or attached mass should be as many as possible. López-Aenlle et al. [27] recommended that the 
number of added mass should be at least the number of peaks and valleys of each mode shape. To optimize 
the location of added mass, the most significant frequency shift can occur when the mass is attached to the 
peaks and valleys of mode shape, while the frequency shift is minimal when mass is attached to the nodal 
positions.  

3.3. DREAM algorithm  

 The posterior PDF needs high-dimensional integrals that is impractical for complex structures. In the 
present work, the DREAM algorithm proposed by Vrugt et al. [33] is used to approximate the posterior 
PDF by generating samples based on a differential evolutionary algorithm. Compared to other single-chain 
MCMC methods, the DREAM has the appealing feature of running multiple chains simultaneously to 
explore global solutions. The DREAM algorithm uses randomized subspace sampling to automatically tune 
the mean and variance of the proposal distribution. Therefore, it is highly robust to the selection of the prior 
distribution.  
 The removal of outlier chain and crossover schemes are also used to expedite convergence to a target 
distribution. Practical applications exhibited high efficiency and accuracy in the sampling for the problems 
having high-dimensionality, nonlinearity, numerous peaks, and local optima. Theoretical background and 
detailed MATLAB procedures in DREAM can be found in [31, 33]. The flowchart of the DREAM 
algorithm is also shown in Fig. 1. The main implementation steps of the DREAM algorithm are summarized 
as follows:  

 
Fig. 1.  Flowchart of DREAM algorithm 

Step 1: Initialize the problem dimension 𝑁, the number of Markov chains 𝑃, unknown parameter 
vector, 𝜴6

7  (𝑖 = 1, 2, 3⋯ ,𝑁; 	𝑗 = 1, 2, 3⋯ , 𝑃 ), and the maximum iteration, 𝐼'89 . 𝑁  individual 
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samples for each chain are randomly generated from the selected prior distribution as initial values, 
such as 𝜴6&, 𝜴6(, ⋯, 𝜴6:. 
Step 2: A mutation operation is performed to generate candidate samples at each parameter sample 
of each iteration for the 𝑘th Markov chain. Crossover operation is then used to iteratively update 
current candidate samples from the mutation process based on crossover probability 𝐶𝑅 within the 
range of [0,1]. 
Step 3: Calculate the posterior probability and acceptance rate of updated candidate samples at the 
𝑠th iteration: 

𝛼V𝜴6,.
7 , 𝑤6,.;&

7 W =

⎩
⎨

⎧min z
𝑝V𝑤6,.;&

7 |𝐷W

𝑝V𝜴6,.
7 |𝐷W

, 1}	; 		𝑝V𝜴6,.
7 |𝑦W > 0

1																																						; 		𝑝V𝜴6,.
7 |𝑦W < 0

 (19) 

where 𝜴6,.
7  and 𝑤6,.;&

7  are the samples at the 𝑠th iteration and (𝑠 + 1)th iteration, respectively; 
𝛼V𝜴6,.

7 , 𝑤6,.;&
7 W is the acceptance rate; 𝑝V𝑤6,.;&

7 |𝑦W and 𝑝V𝜴6,.
7 |𝑦W are the posterior probability of 

𝑤6,.;&
7  and 𝜴6,.

7 , respectively. 𝐷 is the measured data. 
Step 4: Determine whether accepting or rejecting the samples of  𝑤6,.;&

7 . If 𝛼V𝜴6,.
7 , 𝑤6,.;&

7 W > 𝑢, 𝑢 
is randomly generated from a uniform distribution 𝑈(0, 1). Then, accept a new sample of 𝑤6,.;&

7 , 
otherwise reject and keep the iteration. 
Step 5: Remove the outlier chain using the Inter-Quartile-Range (IQR) statistical method [33]. 
Specifically, ℋ is firstly defined as the mean of the logarithm of the posterior distribution of the 
last half samples in each chain. ℋ = 𝑄< − 𝑄& is calculated, where 𝑄& and 𝑄< are the lower and 
upper quartile of the 𝑃 chains. Chains with ℋ < 𝑄& − 2 ∙ IQR are detected as aberrant ones. Note 
removal of outlier chain is necessary, as outlier chains will impair the distribution estimate and 
slow down the evolution so that reaching a good convergence is impossible. In addition, outlier 
chains frequently present in high-dimensional problems and tend to be stuck in local optima, 
resulting in a biased distribution [33]. 
Step 6: The iteration process stops when Markov chains converge to the target posterior 
distribution. Otherwise, repeat steps 2-5. DREAM algorithm uses Gelman-Rubin statistics, scale 
reduction factor 𝑅.=8=  [45], as a convergence criterion to determine whether the calculation 
terminates or not. DREAM algorithm stipulates that if 𝑅.=8= < 1.2 for all unknown parameters, a 
stable posterior PDF is achieved. Note the value of 1.2 has been demonstrated as a robust indication 
to officially declare stationary and reliable convergence [33].	𝑅.=8= has an expression as follows:  

𝑅.=8= =	e
𝛾 − 1
𝛾

+
𝑃 + 1
𝑃 ∙ 𝑍

𝐵
𝛾

 (20) 

where 𝛾 is the number of iteration samples of each chain; 𝑃 is the number of Markov chains used 
for sampling; 𝑍  is the mean of the variance of total 𝑃  Markov chains; the ratio of 𝐵/𝛾  is the 
variance of the mean of 𝑃 parallel Markov chains.  

 In summary, the proposed VBMU addresses the coupling effect of mass and stiffness by using two sets 
of measurements from the original and modified system with added mass. Two new characteristic equations 
(herein, Eq. 14 and 17) substitute the classical one (Eq. 1). Fig. 2 shows the flowchart of the proposed 
method. First, the natural frequencies and mode shapes of the original and modified system are identified 
using the output-only modal analysis method. Note that mode shapes need to be normalized by the mass-
change scaling method before updating mass and stiffness (described in Section 3.1). Second, the objective 
functions in Eq. (9) with measurements in the original system are used to measure the accuracy of analytical 
frequencies and mode shapes satisfying with new characteristic equations, e.g., Eqs. (14) and (17). Third, 
the DREAM is used to approximate the posterior PDF and estimate the quantity of interests (PDF, mean, 
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and variance) (described in Section 3.3.). The procedures of updating mass and stiffness are independent 
and individually implemented. Therefore, the coupling effect has been removed in the entire updating 
process.  

 
Fig.2. The flowchart of the proposed Bayesian model updating 

3.4. Probabilistic damage detection 

 The quantities of interest obtained from samples are useful to infer the probability of variation in mass 
and stiffness parameters. The mean of updated parameters and associated uncertainties can be used to 
quantify the damage probability given a specific damage fractional level, 𝑑, compared with the structural 
healthy condition. Based on asymptotic Gaussian approximation, the probability of damage in the 𝑙th 
structural parameter can be given by [14]: 
																																							𝑃#!8'(𝑑) = 𝑃V𝜴#

>! < (1 − 𝑑)𝜴#?!|𝐶W   

																																																		= C 𝑃V𝜴#
>! < (1 − 𝑑)𝜴#?!|𝜃#?! , 𝐶W𝑝(𝜴#?!

@

3@
|𝐶)𝑑𝜴#?! 

 
(21) 

                                              » Φ�
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where Φ(∙) represents the standard Gaussian cumulative distribution function for random variables; 𝜴# and 
𝜎#  represents the optimal value of the 𝑙=F  structural parameter and its standard derivation, respectively. 
Superscripts, 𝑢𝑑 and 𝑝𝑑, represent the undamaged and possibly damaged structural state, respectively. 

4. Illustrative examples 

 The efficacy of the proposed VBMU is evaluated by a numerical example in Section 4.1, followed by 
an experimental test with a laboratory-scale three-story shear frame in Section 4.2.  

4.1. Numerical example: a ten-story shear building 

 The ten-story shear building sketch is shown in Fig. 3, modeled as a ten-DOFs structure. Assume the 
connection between column and floor is rigid; mass and stiffness at each floor are uniformly distributed. 
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Also, suppose one sensor is installed on each floor to measure all modal displacements in each mode shape. 
Lumped mass is used and taken as M6 = 25	kg, 𝑖 = 1,2,⋯ ,10. While the inter-story stiffness at each floor 
is taken as K6 = 1.5 × 10G	N/m, 𝑖 = 1,2,⋯ ,10. We define stiffness coefficient (SC) as 𝜃6 = K68/K6, and 
mass coefficient (MC) 𝛽6 = M6

8/M6 , where K68  and K are the 𝑖 th actual and theoretical stiffness, 
respectively; M6

8and M are the 𝑖 th actual and theoretical mass, respectively, resulting in a total of 20 
coefficients to be updated.  
 The FE model of this shear building is constructed based on fundamental structural dynamics using 
MATLAB. The natural frequencies and mode shapes for the original structure can be obtained by the 
eigenvalue problem so that the first six natural frequencies are 5.827, 17.350, 28.486, 38.985, 48.613, and 
57.156 Hz. To create a modified structure, we first select a frequency ratio, 𝑓/𝑓′, of 1.02. Using Eq. (18), 
the magnitude of added mass can be estimated as 1 kg. For the sake of simplicity, each floor has the 
equivalent mass addition by concrete blocks with the weight of 1 kg, as shown in Fig. 3 (b). Gaussian white 
noise with zero-mean and 1% coefficient of variation (COV) is considered and added to the exact frequency 
and mode shape for all the modes of interest. Note that the value of 1% could reflect realistic noise level in 
practice based on modal test by Bayesian modal analysis [46]. Mass and stiffness are updated by two sets 
of simulated measured data acquired from original and modified systems. 

  
(a) (b) 

      Fig. 3. Ten-story shear building: (a) original structure; (b) modified structure with mass addition 
(concrete block) 

4.1.1. Finite model updating 

 In the first case, no modeling error is assumed between the actual structure and the FE model. Also, the 
structure is healthy by setting all 𝜃 and 𝛽 as unity. The first six modes are assumed as available measured 
data. The DREAM algorithm is used to generate samples for estimating of the posterior PDF. Every sample 
will yield the analytical frequencies and mode shapes using new characteristic equations. Initial settings in 
DREAM are defined as: ten Markov chains are run parallelly with 6,000 samples per chain; initial values 
for 10 SCs and 10 MCs are set as a range of [0.5	1.5].  
 

  
(a-i) (a-ii) 
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(b-i) (b-ii) 

Fig. 4. Trace plots and 𝑅.=8= in healthy scenario: (a-i): Trace plots of ten MCs; (a-ii) Trace plots of ten 
MCs SCs; (b-i): 𝑅.=8= of MCs (b-ii): 𝑅.=8= of SCs 

 
Fig. 4 shows the results of updated coefficients. Fig. 4 a-i and a-ii are trace plots of one Markov chain 

that show how each MC and SC are updated with samples, respectively. All the parameters achieved a 
stable state. Fig. 4 b-i and b-ii display the variation of the convergence diagnosis for mass and stiffness 
updating, respectively. The scale reduction factor, 𝑅.=8=, assesses whether the Markov chain converges or 
not. The 𝑅.=8= of each parameter quickly decays below 1.2, satisfying DREAM's convergence criterion and 
attains the stationary posterior distribution. The last 30,000 samples herein of ten Markov chains are used 
to calculate the quantity of interests of all parameters, such as mean and standard derivations.  

The results of updated coefficients are listed in Table 1, including mean and standard derivation (S.D.). 
The identified mean values exhibit an excellent agreement with actual counterparts. The errors and standard 
derivations for all coefficients are small; the maximum error of 2.08% is observed. The histograms of the 
marginal distribution of ten SCs and MCs are shown in Fig. 5; red curves represent a fitted distribution 
based on mean and standard derivation. Each histogram has a clear peak and is well-approximated by 
Gaussian distribution. Overall, each parameter is reasonably identified as the correct values and has a fairly 
good convergence. 
 

 
     (a) 

 
       (b) 

Fig. 5. Histograms of updated coefficients: (a) MCs; (b) SCs 
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Table 1. Results of updated coefficients 

Coefficients Actual                    Updated  
Mean S.D. (%) Error (%) 

𝛽& 

1.0000 

0.9831 1.31 1.69 
𝛽( 0.9922 1.27 0.78 
𝛽< 0.9997 1.81 0.03 
𝛽H 1.0013 1.71 0.13 
𝛽I 1.0132 2.01 1.32 
𝛽G 1.0102 1.49 1.02 
𝛽J 1.0023 1.68 0.23 
𝛽K 0.9795 2.02 2.05 
𝛽L 1.0051 1.56 0.51 
𝛽&" 1.0016 1.29 0.16 
𝜃& 0.9842 1.01 1.58 
𝜃( 0.9911 1.66 0.89 
𝜃< 0.9956 1.63 0.44 
𝜃H 0.9899 1.48 1.01 
𝜃I 0.9972 1.87 0.28 
𝜃G 0.9963 2.19 0.37 
𝜃J 0.9830 1.49 1.70 
𝜃K 0.9914 2.79 0.86 
𝜃L 1.0132 1.90 1.32 
𝜃&" 0.9792 1.69 2.08 

 
Table 2. Results of updated frequencies and MAC values  

Mode No. Actual Frequency (Hz) MAC Updated Error (%) 
1 5.827 5.803 0.41 1.0000 
2 17.350 17.275 0.43 1.0000 
3 28.486 28.490 0.02 0.9999 
4 38.985 38.920 0.17 0.9998 
5 48.613 48.580 0.07 0.9996 
6 57.156 56.854 0.53 0.9985 
7 64.422 64.171 0.39 0.9973 
8 70.248 70.225 0.03 0.9979 
9 74.506 74.521 0.02 0.9987 
10 77.099 76.936 0.21 0.9988 

The updated frequencies and MAC values are summarized in Table 2. It is observed that updated 
frequencies are almost the same as actual ones; the relative error is less than 1%. The values of the Modal 
assurance criterion (MAC) [47] that reflect the similarity of updated and actual mode shapes are also close 
to unity. It is worth mentioning that the higher modal parameters from the 7th to 10th order are not used in 
the updating process, but they are still successfully identified.   

4.1.2 Probabilistic damage detection 

In the second case, the probabilistic damage detection is performed to detect simulated damage location 
and extent by the proposed VBMU. Damage extent is defined as the change in mass/stiffness coefficients 
at a specific floor. The damage scenario considered in this example is shown in Table 3. The negative sign 
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denotes the reduction of mass/stiffness. The model at healthy condition is assumed known. The unity of 
MCs and SCs represents a healthy structural state. 

Table 3. Damage scenario 
Parameters Mass  Stiffness  

Reduction in percent 
(location) 

-10% (2nd floor), -20% (6th floor),  
-30% (9th floor) 

-10% (3rd floor), -20% (6th floor),  
-30% (9th floor) 

The same modified system is created by adding mass as described in Section 4.1.1, and the same 
measurement points and vibration data are selected to identify the damage, e.g., the first six frequencies 
and mode shapes. In addition, the initial settings in DREAM are the same as the healthy example in Section 
4.1.1. Fig. 6 shows the results of damage detection. Fig. 6 a-i and a-ii are trace plots of one of ten Markov 
chains for MCs and SCs, respectively, visualizing that all the coefficients stably converge. In Fig. 6 b-i and 
b-ii, the convergence criterion, 𝑅.=8= is less than 1.2, indicating the stationary Markov chains are achieved. 
The last 30,000 samples are used to calculate the mean and standard derivation of all coefficients. 

  
(a-i) (a-ii) 

   
(b-i) (b-ii) 

Fig. 6. Trace plots and 𝑅.=8= in damages scenario: (a-i): Trace plots of ten MCs; (a-ii) Trace plots of ten 
MCs SCs; (b-i): 𝑅.=8= of MCs (b-ii): 𝑅.=8= of SCs  

Table 4 lists identified coefficients and their standard (S.D.) derivations in damage scenarios. It is 
observed that all updated MCs and SCs are almost identical to actual values. The maximum errors for all 
coefficients are less than 2% except 𝜃&" with the error of 2.48%, revealing an outstanding performance in 
damage localization and quantification on both mass and stiffness. Fig. 7 shows the histograms of MCs and 
SCs; the red curves are fitted Gaussian distribution based on samples. The Gaussian distribution can 
desirably approximate the posterior PDF. It is also found that the fitted curves in SCs are relatively wider 
spreading than those in MCs, demonstrating that identified stiffness has larger uncertainty than mass. 
 
Table 4. Results of updated coefficients for damage scenario 

Coefficients Actual                    Updated  
Mean S.D. (%) Error (%) 

𝛽& 1.0000 1.0140 1.31 1.40 
𝛽( 0.9000 0.8885 1.11 1.28 
𝛽< 1.0000 1.0133 1.26 1.33 
𝛽H 1.0000 1.0026 1.30 0.26 
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𝛽I 1.0000 1.0130 1.15 1.30 
𝛽G 0.8000 0.7932 0.98 0.85 
𝛽J 1.0000 0.9876 1.28 1.24 
𝛽K 1.0000 1.0126 1.34 1.26 
𝛽L 0.7000 0.6887 0.87 1.61 
𝛽&" 1.0000 0.9847 1.33 1.53 
𝜃& 1.0000 1.0171 1.45 1.71 
𝜃( 1.0000 1.0196 1.48 1.96 
𝜃< 0.9000 0.8891 1.30 1.21 
𝜃H 1.0000 1.013 1.52 1.30 
𝜃I 1.0000 1.0147 1.35 1.47 
𝜃G 0.8000 0.7865 1.16 1.69 
𝜃J 1.0000 1.0175 1.45 1.75 
𝜃K 1.0000 1.0177 1.40 1.77 
𝜃L 0.7000 0.6943 0.99 0.81 
𝜃&" 1.0000 1.0245 1.42 2.45 

The updated frequencies and MAC values in the damage scenario are derived using updated MCs and 
SCs, as shown in Table 5. All errors are less than 1% indicating the efficacy of damage detection.  Although 
incomplete modal information, e.g., only the first six modes were used, all the frequencies and MAC values 
are identified accurately.  

 
     (a) 

 
       (b) 

Fig. 7. Histograms of updated coefficients for damage scenario: (a) MCs; (b) SCs 
 

Table 5. Results of updated frequencies and MAC values for damage scenario 

Mode No. Actual Frequency (Hz) MAC Updated Error (%) 
1 5.937 5.976 0.65 1.0000 
2 17.149 17.223 0.44 1.0000 
3 27.968 28.083 0.41 0.9999 
4 37.528 37.646 0.31 0.9998 
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5 48.866 48.992 0.26 0.9998 
6 56.971 57.204 0.41 0.9993 
7 66.449 66.822 0.56 0.9992 
8 71.327 71.519 0.27 0.9987 
9 74.604 74.831 0.30 0.9984 
10 77.088 77.434 0.45 0.9985 

 

               
                  (a)                       (b) 

Fig. 8. Probabilistic damage curves: (a) MCs; (b) SCs 
 

The probabilistic damage curves are also plotted using identified coefficients and uncertainty 
information by Eq. (21), as displayed in Fig. 8. It is found that curves at the damaged location are 
distinguishable from those at a healthy location by observing the curve’s distance from healthy cases. 
Furthermore, some quantities can be interpreted from curves. For example, mass on the sixth floor (𝛽G) and 
stiffness on the ninth floor (𝜃L) have a possible reduction of 20% and 30% with a high probability of 83.2% 
and 81.6%, respectively. Thus, the proposed VBMU exhibits excellent performance on damage detection 
on mass and stiffness; both damage location and severity are successfully identified. 

4.2. Experimental test: a three-story shear frame 

The experimental test was performed to verify the accuracy and efficacy of the proposed VBMU for 
both mass and stiffness identification. A shear building, made of aluminum, has a height and width of 914 
and 305 mm., respectively. All the plates and columns have the same geometric properties. The length and 
width of a plate are both 305 mm with a 25 mm thickness. The column has the length, width, and thickness 
of 254, 25, and 6 mm, respectively. The initial Young’s modulus and mass density of the aluminum are 
estimated as 69 GPa and 2,700 kg/m3, respectively. The shear building is modeled as a three-DOF structure 
using the MATLAB program based on the dimensions and material properties.  

Free vibration test was performed by inducing the excitation using a rubric hammer. The hammer 
impacted the structure on the top floor. Horizontal responses were measured by the three IMI 603C01 
accelerometers fixed with magnets in the middle of the left side of each floor plate; the associated LabVIEW 
data acquisition software was used to process the measured signal. In the measurement, ten-second data 
were recorded with a sampling frequency of 2,000 Hz. The acceleration at each floor is also preprocessed 
by a low-pass filter with a cut-off frequency of 50.2 Hz, and down sampled to 200 Hz to identify the 
frequencies of interest and remove noise from high frequencies.  

The automated stochastic subspace identification (SSI) [48] is used to identify modal parameters, e.g., 
natural frequencies and mode shapes, and associated uncertainties. Uncertainties on modal parameters 
measure modal parameters’ accuracy and can be used as weighting factors, such as 𝜅 in Eq. (8). Fig. 9 (a) 
shows the experimental setup in the laboratory for the original system at the Civil and Environmental 
Engineering at the University of Louisville. To create the modified system, the ratio of frequency in the 
original system to that in the modified system is assumed to be 1.04; the magnitude of mass addition is then 
estimated as 0.545 kg using Eq. (18). Therefore, the concrete block with a weight of 0.545 kg is added to 
each floor, as shown in Fig. 9 (b). The same measurement and modal identification are carried out for the 
modified system. Before model updating and damage detection, mode shapes in two systems are normalized 
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by the mass-change scaling method. Similar to the numerical example, it is convenient to use MCs and SCs 
as updating indices. Each floor has a representative value of MC and SC, giving a total of six coefficients 
to be updated, e.g., 𝛽&, 𝛽(, and 𝛽< (MCs) and 𝜃&, 𝜃(,		 and 𝜃< (SCs) with labeling a subscript number from 
the bottom floor (1) to the top floor (3). 

  
(a) (b) 

Fig. 9. Test setup of the shear building: (a) original system; (b) modified system with concrete block 

4.2.1. Finite model updating 

In the first case, the natural frequencies and mode shapes in the original and modified system under the 
healthy state are used to update the model. The initial settings in DREAM are as follows: ten Markov chains 
are simultaneously run to generate a total of 20,000 samples (2,000 samples per chain); all MCs and SCs 
have initial values ranging from 0.5 to 1.5. The number of samples designed for the experimental test is 
less than that in the numerical example, because we have fewer coefficients to update in this test. 

 
(a) 

  
(b) (c) 

Fig. 10. Results of updated mass: (a) trace plot; (b) square: the sample mean of each chain, error bar: 
±2	standard derivations; (c) convergence diagnosis, 𝑅.=8= 

 

 
(a) 
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(b) (c) 

Fig. 11. Results of updated stiffness: (a) trace plot; (b) square: the sample mean of each chain, error bar: 
±2 ∙ S. D.; (c) convergence diagnosis, 𝑅.=8= 

 
Figs. 10 (a) and 11 (a) are the trace plots of the variation of MCs and SCs values, respectively, as 

samples increases in one Markov chain. The stable convergence of each coefficient is visually observed. 
The rest of the figures in Figs. 10 and 11 give the updating results over ten Markov chains and convergence 
diagnosis. The sample mean of MCs and SCs in each Markov chain and  ±2 ∙ S. D.		are shown in Fig .10 (b) 
and 11 (b), respectively. The mean value of each coefficient is almost identical to one another among ten 
chains, indicating that the updating results are reliable and accurate. The convergence diagnosis, 𝑅.=8=, 
shown in Fig. 10 (c) and 11 (c), are a useful graphical tool to evaluate convergence state. The resulting plots 
of 𝑅.=8= that quickly decrease below 1.2, indicating that the sampling process is performed to achieve the 
stationary Markov chain. Herein, the last 10,000 samples are used to calculate the quantities of interest, 
mean and standard derivation. 
 

  
Fig. 12. Density distribution of updated coefficients 

 
The density distribution of each coefficient estimated by the Gaussian kernel estimator (GKE) is also 

presented in Fig. 12. It can be seen that the density distributions of 𝛽&, 𝛽<, 𝜃&, and 𝜃< are non-Gaussian and 
multi-modal, indicating in practice, stiffness and mass do not necessarily follow the Gaussian distributions. 
The estimated distributions illustrate that DREAM is appropriate to approximate the distribution with non-
normal shape and multi-peaks. Furthermore, except 𝛽( and 𝜃( which are distributed over a narrow region, 
the coefficients have a wide-ranging distribution, suggesting they have larger uncertainties (see S.D. in 
Table 6). 

 
Table 6. Results of updated coefficients under healthy condition 

Coefficients Initial                     Updated  
Mean S.D. (%) Change (%) 

𝛽& 

1.0000 

1.2341 10.36 23.41 
𝛽( 1.1864 8.91 18.64 
𝛽< 1.1237 11.52 12.37 
𝜃& 0.7995 16.44 -20.05 
𝜃( 1.2452 10.20 24.52 
𝜃< 1.0680 17.81 6.80 
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Table 7. Results of updated frequencies and MAC values under healthy condition 

Mode No. 
Frequency (Hz)     MAC   

Actual FE model Initial Updated Initial Error (%) Updated Error (%) 
1 7.657 8.667 13.20 7.78 1.63 0.9882 0.9979 
2 22.47 24.213 7.76 22.23 1.08 0.9938 0.9972 
3 33.77 34.856 3.22 34.00 0.68 0.9954 0.9965 

Table 6 shows updated MCs and SCs and their S.D. The updated frequencies and MAC values are 
tabulated in Table 7. All the MCs increase but 𝜃& decreases. The model updating aims to match measured 
responses with analytical counterparts. In this case, measured frequencies are overall smaller than those in 
the FE model (see Table 7). From fundamental structural dynamics, frequency is proportional to stiffness 
but inversely proportional to mass. Therefore, stiffness and mass have to decrease and increase, respectively, 
to match measured frequencies with those in the FE model. The frequency errors of all modes are 
significantly reduced and MAC values are updated to be close to 1.0. These values demonstrate satisfactory 
updating model results.  

4.2.2. Probabilistic damage detection 

Two damage scenarios are intentionally introduced with increasing severity in the shear building by 
reducing the thickness of column and increasing the weight of the floor, as shown in Table 8, the 
positive/negative sign denotes the increasing/reduction. The thickness of one column at the second and third 
floor is reduced by 50%, resulting in a 21.8% stiffness reduction in the corresponding floor; A concrete 
block with the weight of 1.54 kg is added to the second and third floor to mimic mass change due to damage, 
which produces 21.5 % mass increase in the corresponding floor. 

 
Table 8. Damage scenarios 

Notation Mass change Stiffness change 

D1 +21.5% (3rd floor) -21.8% (3rd floor) 

D2 +21.5% (2nd floor), +21.5% (3rd floor)  -21.8% (2nd floor), -21.8% (3rd floor) 
 

      
(a)  (b) (c) (d) 

Fig. 13. Test setup for two damage scenarios: (a) D1; (b) D1 with added mass; (c) D2; (d) D2 with 
added mass. 

The concrete block with a weight of 0.545 kg (the same as Section 4.2.1) is added to each floor to 
construct the modified structure for both damage scenarios. The same measurement procedures were 
performed as described in Section 4.2 for two damage scenarios. Fig. 13 shows the experimental setup of 
two damage scenarios. Modal analysis is also implemented by automated SSI to extract natural frequencies 
and mode shapes of the original and modified system in two damage scenarios. The proposed method is 
then performed to identify MCs and SCs based on the updated FE model (healthy condition), as described 
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in Section 4.2.1. In the updating process, the DREAM algorithm generates samples to target the posterior 
PDF by the same initial settings as before.       

Figs. 14 -17 show the updated results of mass and stiffness in two damage scenarios. Figs. (a)s in Fig. 
14 - 17 are trace plots that show the iteration of each coefficient with samples increasing; stable convergence 
is achieved in trace plots. The updating results of MSc and SCs over ten Markov chains are presented in 
Figs. (b)s in Fig. 14 - 17. It is seen that all coefficients in both damage scenarios are identified as consistent 
with each other among ten Markov chains, indicating reliable and accurate identification. In addition, the 
convergence diagnosis, 𝑅.=8=  quickly decays below 1.2 for all coefficients, demonstrating that the 
stationary convergence is reached. In damage detection, the last 10,000 samples are used to calculate the 
mean values and standard derivations. Note the mean values under the healthy condition in Section 4.2.1 
are used as baselines, so the undamaged floor has the MC and SC with unity value.      

 

 
(a) 

  
(b) (c) 

Fig. 14. Results of updated mass in D1: (a) trace plot; (b) square: the sample mean of each chain, error 
bar: ±2 ∙ S. D.; (c) convergence diagnosis, 𝑅.=8= 

 
(a) 

  
(b) (c) 
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Fig. 15. Results of updated stiffness in D1: (a) trace plot; (b) square: the sample mean of each chain, 
error bar: ±2 ∙ S. D.; (c) convergence diagnosis, 𝑅.=8= 

 

 
(a) 

  
(b) (c) 

Fig. 16. Results of updated mass in D2: (a) trace plot; (b) square: the sample mean of each chain, error 
bar: ±2standard derivations; (c) convergence diagnosis, 𝑅.=8= 

 

 
(a) 

  
(b) 

Fig. 17. Results of updated stiffness in D2: (a) trace plot; (b) square: the sample mean of each chain, 
error bar: ±2standard derivations; (c) convergence diagnosis, 𝑅.=8= 
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(a) 

  
(b) 

Fig. 18. Density distribution of updated coefficients: (a) D1; (b) D2 
 

Fig. 18 shows the density distribution estimated by GKE. It is observed that some coefficients exhibit 
multi-modal features and are non-Gaussian shaped. Especially, 𝜃& and 𝜃< in damage scenario No. 1 (D1) 
and 𝛽&, 𝛽( and 𝜃< in damage scenario No. 2 (D2). It indicates that structural parameters do not always 
follow Gaussian distribution, the asymptotic optimization method may not suitable to estimate the posterior 
PDF with a non-Gaussian shape. However, the proposed method is able to approximate non-Gaussian 
distribution with an accurate level. It is also found that the larger uncertainties are revealed in some 
coefficients, such as 𝛽(  and 𝜃&  in both damage scenarios (S.D. ranges from 7.9% to 16.2%). Their 
distributions are flatter and spread across a relatively wider region. While the distributions of other 
coefficients are concentrated in a narrow region and have pronuounced peaks, meaining these coefficients 
are more certain (S.D. ranges from 1% to 10.1%). 
 The identified damage severities of two damage scenarios is shown in Fig. 19. The identified damage 
severities of 𝛽< and 𝜃< in damage scenario No. 1 (D1) are 23.35% and 24.72%, respectively, which is close 
to actual values of 21.5% for 𝛽 and 21.8% for 𝜃; The identified damage severities of 𝛽(, 𝛽<, and 𝜃(, 𝜃< in 
damage scenario No. 2 (D2) are 24.55%, 23.14%, 19.18% and 20.18% respectively, which also agree well 
with actual values of 21.5% for 𝛽 and 21.8% for 𝜃. The false damage detection is only observed with less 
than 4%. These results demonstrate the efficacy of the proposed method in both mass and stiffness 
updatings and achieves damage localization and quantification. 
 

    
(a) (b) 

Fig. 19. Identified damage severity: (a) D1; (b): D2 
 
Table 9. Results of updated frequencies and MAC values in two damage scenarios  

Damage scenario Mode No. Measured Frequency (Hz) MAC Updated Error (%) 

D1 
1 7.140 7.234 1.31 0.9942 
2 19.800 19.420 1.92 0.9936 
3 32.311 32.680 1.14 0.9976 

D2 
1 6.905 6.922 0.25 0.9941 
2 19.641 20.244 2.98 0.9957 
3 29.043 29.512 1.59 0.9999 
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(a) (b) 

Fig. 20. Probabilistic damage curves: a: D1; b: D2 

The updated frequencies and MAC values are calculated using identified MCs and SCs, as shown in 
Table 9. It is observed that all modal parameters in both damage scenarios are in accordance with measured 
counterparts, indicating the FE model is successfully updated by the proposed method. Based on idetified 
mean values of MCs and SCs and their uncertainties under healthy and damaged state, the probabilitisc 
damage curves can be plotted, as shown in Fig. 20. It is worth mentioning that the negative, 𝑑 represents 
mass/stiffness increase, and vice versa. For damage scenario No.1 (D1),	𝛽< and 𝜃< have a probability (63.3% 
and 67.5%, respectively) of having possible damage 21.5% and 21.8%. For damage scenario No. 2 (D2), 
𝛽( and 𝜃( have a possible change of 21.5% and 21.8% with a probability of 62.1% and 67.7%, respectively. 
In practice, damage can be detected by probabilistic curves, because the curves related to damage location 
are generally easily distinguished from the ones related to healthy location. For example, the curves of 𝛽< 
and 𝜃< in D1 are clearly separated from others, indicating the location corresponding to 𝛽< and 𝜃< (herein 
is the third floor) may have certain damage. Similar observation is found in D2. The proposed method can 
detect damage in mass and stiffness along with location and severity in a probabilistic manner. The 
engineers can be informed that some repairing work may be necessary at certain location.  

5. Conclusions 

This paper proposed a novel vibration-based Bayesian model updating approach to simultaneously 
identify structural mass and stiffness. In this work, the coupling effect of mass and stiffness is successfully 
addressed using two sets of vibration data from original and modified system with added known mass. 
Following conclusion and contributions from numerical examples and experimental tests are summarized 
as follows: 

• The results in numerical example and experimental test illustrate that the proposed approach can 
simultaneously identify structural mass and stiffness with an accurate level and their uncertainties 
by addressing the coupling effect of mass and stiffness.  

• In experimental test, some mass coefficients exhibit larger uncertainties, indicating the effect of 
mass on structural integrity cannot be ignored, and the assumption of mass is known and invariant 
in classical Bayesian approach may be questionable when noticeable change in mass is observed, 
such as 21.5% mass increase in damage scenarios in this test for mimicking the mass change due 
to unknown damages. 

• The results in experimental test reveal the structural parameters, e.g., mass and stiffness, do not 
always follow Gaussian distribution. Thus, the asymptotic approximation method may not be 
suitable for this situation. The DREAM algorithm runs multiple Markov chains in parallel and 
sufficiently seek all possible solutions, resulting in high capability to treat the posterior PDF with 
high-dimensionality, multi-modality, and numerous peaks. To the best of authors’ knowledge, it is 
the first attempt to apply DREAM for Bayesian model updating in the field of civil engineering. 

• The probabilistic damage detection is also implemented by the proposed Bayesian approach. The 
results in experimental test demonstrate that the proposed approach enables to reliably and 
accurately identify damage location and severity. In addition, the probabilistic damage curves allow 
engineers to quickly localize damage, indicating the proposed approach is practically valuable. 
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Although the proposed vibration-based Bayesian approach exhibits potential applications, the efficacy 
of the approach should be verified in more complex structures. In addition, in the current study, the 
stationary mass is added to the structure, which may not be always practical in real-world settings. Therefore, 
moving mass, e.g., vehicles on bridge or elevator in building, can be used to create modified systems that 
can be considered in the future study.  
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