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Abstract

The machine learning-based feature selection approach is presented to estimate the effect of un-
certainties and identify failure modes of structures that incorporate a low failure probability and high-
dimensional uncertainties. As structures are designed to have few failures, a dataset classified based
on the failure status becomes imbalanced, which poses a challenge for the predictive modeling of ma-
chine learning classifiers. Moreover, in order to improve the accuracy and efficiency of the model per-
formance, it is necessary to determine the critical factors and redundant factors, especially for a large
feature set. This study benchmarks the novel method for sensitivity analysis by using datasets that ex-
acerbate the problems involved in class imbalance and large input features. This study investigates two
planar steel frames with spatially uncorrelated properties between structural members. Geometric and
material properties are considered as uncertainties, such asmaterial yield stress, Young’smodulus, frame
sway, and residual stress. Six feature importance techniques including ANOVA, mRMR, Spearman’s rank,
impurity-based, permutation, and SHAP are employed to measure the feature importance and identify
parameters germane to the prediction of structural failures. Logistic regression and decision tree mod-
els are trained on the important feature set, and the predictive performance is evaluated. The use of
the feature importance approach for structures with a low probability of failure and a large number of
uncertain parameters is validated by showing identical results with the reliability-based sensitivity study
and appropriate predictive accuracy.

1 Introduction
A reliability-based sensitivity analysis estimates howuncertainty in the input parameters affects systemper-
formance by analyzing the dependence of the failure probability on the inputs, which requires repeated
evaluation of the performance function, resulting in significant computational cost and time. This chal-
lenge is exacerbated for large-scale engineering problems which often carry a large quantity of uncertain
parameters. Researchers have made efforts to improve the computational efficiency of sensitivity analysis.
For example, Wu [1] proposed the adaptive importance sampling approach, which improves computational
efficiency by minimizing oversampling in the safe region of the limit-state surface. The score function ap-
proach proposed by Rubinstein and Kroese [2] estimates all sensitivities by the gradient and derivative of
parameters. The score function method does not require additional simulations for reliability sensitivity
analysis. Torii et al. [3] applied polynomial expansions to the performance function and its derivatives for
the probability of failure sensitivity analysis. Proppe [4] introduced the local reliability sensitivity analysis
using the moving particles method, which estimates the failure probability based on the new locations of
the moved data points in the design space.

In recent years, the interest in artificial intelligence has been growing in the field of structural engineering
because it provides efficient solutions to the problems in this field relative to traditional computational
techniques. The use of artificial intelligence in steel structural design has been focused on artificial neural
networks for design of steel members or connections such as compression members [5], steel panels [6],
steel connections [7, 8], and cold-formed steel channels [9]. For reinforced concrete (RC) members or
systems, machine learning techniques are implemented to predict structural responses such as the shear
capacity of fiber RC beams [10], structural response of RC deep beams [11] and RC slabs [12]. Data-driven
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machine learning approaches were used for fragility, risk, and vulnerability assessment of a special steel
moment resisting frame building [13] and RC building frames [14]. Also, machine learning approaches were
used to identify failuremodes and rank the significant factors affecting the failuremode of RCmembers [15],
RC frames [16], and steel frames [17]. Regarding the assessment of structural members of systems using
machine learning techniques, RC structures have been mainly investigated rather than steel structures. In
particular, studies on steel structures have used neural networks, which is a specific technique of machine
learning, and have focused more on structural members than systems.

Koh and Blum [17] introduced themachine learning-based feature selection framework to be used for struc-
tural sensitivity analysis. This framework measures the feature importance of all parameters and ranks
them to determine the important or redundant parameters for the prediction of system failure. Two pla-
nar steel frameswere investigatedwith the consideration of uncertainties that affect steel frame behaviors,
such as yield stress, Young’s modulus, frame sway, and residual stress. The frames have different failure
modes and the ultimate frame strength obtained from finite element analysis was used as the response
variable. The feature rankings derived by four feature importance techniques showed the identical order
of factors resulting in the largest failure probability obtained from the conventional sensitivity studies. It
is demonstrated that the general procedure of the proposed feature importance method can be used for
sensitivity analysis. The approach is efficient because all feature importances are estimated from a single
training. Moreover, variable space can be reduced by removing irrelevant parameters to improve both
computational efficiency and accuracy.

This study benchmarks the feature importance approach on the datasets that incorporate a larger set of
uncertainties, more data points, and a high imbalanced ratio. The importance of benchmark studies has
been emphasized in the machine learning community [18, 19]. Machines carry out tasks based on learning
from a given dataset, therefore the best algorithmwill not be the same for all the datasets [20]. Therefore,
benchmarking of the feature importance approach must be accomplished to draw conclusions for the use
of the approach in a wide range of structural systems.

The steel frames investigated in this study have the same layout as for Koh and Blum [17] but have a dif-
ferent spatial correlation scenario. Unlike the correlated scenario that considers all columns (or beams)
to have the same properties, this study applies the uncorrelated scenario where all structural members
have different properties. Sensitivity studies on structural systems with uncorrelated properties inform
which specific structural member largely influences the frame failure. However, the increased number
of uncertainties poses additional challenges in performing reliability sensitivity studies, which require re-
peated evaluations of the performance function. Regarding the feature importance approach, a large set of
uncertainties would make the feature importance method difficult to derive consistent rankings between
various techniques. In addition, the uncorrelated scenario contains a fewer number of failures than the cor-
related case, therefore the class-imbalanced ratio increases. Machine learning classifiers are sensitive to
imbalanced data because the prediction is biased towards the majority class [21, 22]. As structural failures
should always occur rarely in structural design, it is critical to overcome the class imbalance problem. In
summary, this study aims to examine how the feature importance approach works on structural sensitivity
analysis when fitting high-dimensional and extremely class-imbalanced data, which presents challenges in
model training for structural engineering problems.

This study implemented six existing feature importance methods to measure the importance score. There
are typically two categories in feature importance methods: (1) data analysis techniques that directly ana-
lyze the data without model fitting to measure the feature importance and (2) model analysis techniques
that identify important features based on predictions from trained models [23]. (1) ANOVA (Analysis of
variance), (2) mRMR (minimal-redundancy-maximal-relevance) [24], and (3) Spearman’s rank correlation
coefficient [25] are utilized as data analysis techniques. This study used a decision tree classifier [26] to
measure the feature importance by using model analysis techniques. Model analysis techniques include
two feature importance methods, which are (4) impurity-based importance and (5) permutation impor-
tance, and (6) SHAP (SHapley Additive exPlanations) [27]. Based on the measured feature importance,
logistic regression [28] and decision tree [26] models are fitted to predict whether a steel frame fails. The
predictive performance is evaluated by specificity, recall, and the Matthews correlation coefficient [29].
The results are compared with the reliability-based sensitivity analysis results to validate the feature im-
portance framework. Finally, the best feature importance technique depending on the failure modes is
discussed.
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2 Machine learning techniques for the feature importance approach
The primary task of this study is to estimate the effect of uncertainties on failure modes of steel frames
using the machine learning-based feature importance approach. In a high-dimensional dataset, it is im-
portant to determine the relevant features and remove the redundant features in an effort to prevent
overfitting of a model and reduce training time, thereby improving the model performance and computa-
tional efficiency. This study measures the feature importance and compares the critical features between
the feature selection methods. Once the feature rankings are derived from the feature importance tech-
niques, a classification model is employed to predict the failure status of a structure by increasing the size
of the feature set used for training. The model accuracy of each feature importance method is measured
to determine how many features are informative or irrelevant for identifying structural failures. The fea-
ture ranking as well as the model performance are considered when evaluating the feature importance
techniques for structural sensitivity analysis.

2.1 Feature importance techniques
2.1.1 ANOVA

The ANOVA test compares the relationship between features and response variables based on the value
of F-statistic. The feature importance score JANOV A is equal to the value of F-statistic. The score can be
calculated by Eq. 1:

JANOV A(xi) =

M∑
m=1

Nm(x̄
(i)
m − ¯̄x(i))/(M − 1)

M∑
m=1

(Nm − 1)s2m/(N − 1)

(1)

where Nm = the number of instances that y = m, x̄(i)m = the sample mean of feature xi for class m, s2m
= the sample variance of feature xi for classm, ¯̄x(i) = the grand mean of feature xi,M = the number of
classes,M = 2 in a binary dataset, N = the total number of instances. The importance score is the ratio
of between-group variance to within-group variance, thus this technique assesses the difference between
the mean values of the corresponding feature xi between the classes. A higher value of the F-statistic
indicates a larger difference between themean values among the classes, thus the feature has a significant
effect on the classes. Note that ANOVA is always positive because it is based on variance, which is always
positive.

2.1.2 mRMR

The mRMR technique [24] ranks features by mutual information, which considers both relevance and re-
dundancy of features. The feature relevance indicates a correlation with the response variable, and the
feature redundancy represents the information duplicated between features. As the dataset is discrete
not continuous, the mutual information difference (MID) is used as the mRMR criterion, which can be
estimated by Eq. 2:

JmRMR(xi) = I(xi, y)− 1

|S|
∑
xj∈S

I(xi, xj) (2)

where |S| = the feature set size (number of features), S = a feature set, xj = a feature not selected in the
set S, and I = the mutual information. The first term represents the relevance of the feature xi about
the response variable y. The relevance is determined from the outcome variable prediction. The second
term estimates the redundancy, which is measured within the selected features xi and xj . By intuition, a
feature with a negative JmRMR value has a small relevance and large redundancy, therefore, including it
in model training would decrease the predictive performance of the model.

2.1.3 Spearman’s rank

The Spearman’s rank correlation coefficient [25] measures a monotonic nonlinear relationship between
two variables, a feature xi and the response variables y. Themeasured coefficient varies between -1 as the
perfect negative correlation and +1 as the perfect positive correlation. A feature with the largest absolute
value is considered the most important.
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2.1.4 Impurity-based importance

Impurity-based importance considers the node impurity in a tree to estimate the importance. A node con-
taining instances of one class only is pure while a node with greater than or equal to two classes is impure.
The impurity-based feature importance can be computed by Eq. 3 [30], which measures the impurities at a
node j before and after splitting and then averages the impurity decrease byN (i), which is the number of
nodes in a tree split based on xi. A negative feature importance value (Jimpurity) indicates that including
it in model training would decrease the predictive performance of the model.

Jimpurity(xi) =

∑
i∈N(i)

(Impurity before node k − Impurity after node k)

|N (i)|
(3)

2.1.5 Permutation importance

Permutation importance measures the importance by removing a single feature column in a dataset. First,
a tree-based algorithm is fitted to obtain the baseline model performance. After training the model, a sin-
gle feature column is randomly shuffled to remove the association between the feature and the response
variable. The performance of the permuted model is evaluated and compared with the baseline model
performance. The difference in accuracy is considered to be the importance score as shown in Eq. 4. The
feature that results in the largest Mean Decrease in Accuracy (MDA) is the most important. The permu-
tation method provides a negative score when a feature has no effect and shuffled data are shown to be
more accurate.

Jpermutation(xi) = accuracy for dataset without permutation

− accuracy for permuted dataset of xi
(4)

2.1.6 SHAP

The SHAP algorithm [27] identifies how much each feature contributes to the response variable based on
the predictions for linear models trained on all feature subsets. The difference of the predictions from the
model fS∪{i} trained on a feature subset S including a feature xi and another model fS excluding xi is
interpreted as the effect of xi. The SHAP importance score is a weighted average of all possible differences,
as shown in Eq. 5:

JSHAP (xi) =
∑

S⊆F\i

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{i}(xS∪{i})− fS(xS)] (5)

where F = the set of all features, and S = all feature subsets without xi. Since all possible subsets are used
to measure the SHAP score, the computation time of the SHAP algorithm is expensive because the model
is repeatedly trained on all possible feature subsets. SHAP measures the influence of features in terms of
the prediction of either positive (minority class) or negative (majority class) outcomes.

2.2 Classification-based techniques
2.2.1 Logistic regression

Logistic regression [28] is trained using the top-k features obtained from the feature importance methods,
where k = the number of important features. Logistic regression is used for the classification problems,
which uses the logistic sigmoid function and transforms the output into a probability value between 0 and
1 as follows in Eq. 6:

P (Y = m) =
1

1 + exp(−(w0 +
∑
i∈n

wixi))
(6)

where P (Y = m) is the probability of presence of Class m; Class 0 represents no failure and Class 1
represents failure in this study, wi = regression coefficients, xi = input features, and n = the number of
input features.
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A linear function is embedded in the logistic regression model, which is given as the natural logarithm of
the ratio ofP (Y = 1) toP (Y = 0). Logistic regression estimates the regression coefficients byminimizing
the value of the ratio shown in Eq. 7.

log(
P (Y = 1)

1− P (Y = 1)
) = log(

P (Y = 1)

P (Y = 0)
) = w0 +

∑
i∈n

wixi (7)

Feature scaling was performed on the datasets used for training a logistic regression classifier, which is
sensitive to the location of data points. A decision tree is scale-invariant because it trains the model based
on decision rules. Therefore, the datasets for the logistic regression algorithm are transformed to a stan-
dardized scale, which has a mean value = 0 and standard deviation = 1.

2.2.2 Decision tree

A tree-based classifier, decision tree [26], is used to measure the performance in addition to estimate
the feature importance score of the model analysis techniques including impurity-based, permutation,
and SHAP. Decision tree continuously splits the data according to a certain parameter such as impurity or
entropy. Decision rules for splitting and the leaf nodes are the final outcomes of the decision tree. The
decision tree algorithm used in this study splits the nodes based on entropy (Eq. 8) until all leaves are
pure:

H(S) = −
c∑

m=1

pmlog2pm (8)

where pm = the probability of Classm occurring in the data.

2.3 Evaluation metric
After training a model with a training set, the model performance is evaluated by using a test set, which
was not involved in training. A confusion matrix provides a visualization of the model performance and it is
used as a performance measurement for a machine learning classification problem. The confusion matrix
for binary classification consists of the four different cases as shown in Eq. 9:

M =

(
TP FN
FP TN

)
(9)

where True Positive (TP) = the number of actual positives that are correctly predicted positives, True Nega-
tive (TN) = the number of actual negatives that are correctly predicted negatives, False Negative (FN) = the
number of actual positives that are incorrectly predicted negatives, and False Positive (FP) = the number
of actual negatives that are incorrectly predicted positives.

Several statistical rates can be computed based upon the values given in the confusion matrix. For ex-
ample, Accuracy is defined as the ratio of the correctly predicted instances to all the instances, (TP +
TN )/(TP + TN + FP + FN ). F1-score represents the harmonic mean of precision and recall, where
precision is TP/(TP + FP ) and recall is TP/(TP + FN). Accuracy and F1-score are the most popular
metrics, but they lead to the overoptimistic inflated measures especially on imbalanced datasets because
several classifiers learn towards the majority class [21, 22]. For instance, when a dataset has 0.01% mi-
nority class and a model predicts all minority classes incorrectly, i.e., all data points are classified as the
majority class, the model accuracy is 99.99%, which is nearly perfect. In structural engineering practice,
however, it is critical to identify structural failures (the minority class) rather than safe structures (the ma-
jority class), thereby necessitating using the right metric that can correctly predict both classes in a binary
classification.

When a structure is designed to have little load redistribution, the target reliability index βT is 2.7 [31],
which corresponds to the failure probability Pf of 3.5×10−3, derived from β = −Φ−1(Pf ), where Φ−1 =
inverse standard normal cumulative density function. Moreover, ASCE 7 [32] suggests using a target relia-
bility index between 3.0 and 4.0 for structural components subjected to dead, live, and other loads except
earthquake loads, depending on the risk category from I through IV where category I represents the lowest
level of risk to human life. Likewise, a classification dataset for structural design problems will be severely
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imbalanced, which is indicated from the values of βT and Pf . As structural design problems often include
an imbalanced dataset, it is challenging to select an adequate statistical metric that provides informative
and truthful results.

This study employed three statisticalmeasures to evaluate the performance including specificity, recall, and
the Matthews correlation coefficients (MCC) [29]. For imbalanced class distributions, the majority class is
typically referred to as the negative outcome and the minority class is assigned to the positive outcome.
Therefore, structural failure is the positive outcome and no failure is the negative outcome. Specificity is
the probability that an actual negative will test negative and is calculated by TN/(TN+FP ), which is the
true negative rate. Specificity refers to howwell amodel identifies the frameswhich have no failure. Recall,
also called the true positive rate, is the ratio of correct positive predictions to the total positive examples
and is computed by TP/(TP + FN). Recall informs how many positive predictions are missed from
the prediction. The MCC is a reliable measure for imbalanced classification problems because it takes into
account the ratio between positive and negative outcomes, which are not considered in both specificity and
recall. The MCC is independent of the class imbalance, thus can reduce misleading results on imbalanced
datasets [22]. The value of MCC varies between -1 and 1, similar to other correlation coefficients. The score
is high only when all four categories in the confusion matrix are generated correctly. TheMCC is computed
by:

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
(10)

3 Reliability-based sensitivity analysis
Existing steel design specifications [33–36] provide guidance for inelastic analysis, also referred to as ad-
vanced analysis and GMNIA, which directly considers geometric and material nonlinearities and includes
uncertainty in system, member, and connection strength and stiffness. Estimating structural performance
with certainty is challenging because of the inherent uncertainty in a structural systemwhich affects system
performance. Reliability-based sensitivity analysis estimates the effect of an input variable by evaluating
the structural performance with the variable under consideration as random while all other variables are
at their nominal values. After repeated simulations for each property under consideration, the probability
of failure Pf is estimated by n/N [37] where n = number of simulations which resulted in failure andN =
total number of simulations. The system reliability index β is computed based on Pf . Unlike a reliability
analysis which takes into account multiple random variables simultaneously, a sensitivity analysis consid-
ers only one random variable per simulation set to examine how the random variable affects the system
behavior, therefore the strength distribution might have a smaller COV compared to that from a reliability
analysis. The normal probability plot [38] is used to estimate Pf and β when no failure cases occur.

Researchers have investigated the system reliability of various steel structures estimated by considering
uncertainties in the systems. Buonopane [39] conducted a reliability sensitivity study on two steel frames
by considering uncertainties in yield strength, elastic modulus, residual stress, and sway and bow imperfec-
tions. Szyniszewski [40] investigated the effect of random geometric imperfections on progressive collapse
propagation by analyzing 3-D steel framed buildings with uncorrelated geometric imperfections between
structural members. Shayan et al. [41] presented a probabilistic study regarding modeling random geomet-
ric imperfections on regular and irregular sway and braced planar steel frames. Thai et al. [42] evaluated
the system reliability of steel frames with semi-rigid connections. Uncertainties in gravity loads, material
properties, cross-sectional properties, and connection properties were included in the reliability analysis.
Zhang et al. [43] examined the system reliability of five steel structures including a beam, a portal frame,
and three low-rise frames. Randomness considered in the analysis includes gravity loads, material proper-
ties, cross-sectional properties, and sway imperfection. Cardoso et al. [44] calibrated the system reliability
of cold-formed steel portal frames with uncertain parameters in material properties, cross-section thick-
ness, joint properties, and geometric imperfections.
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4 Data collection

4.1 Structural system
Two example steel frames designed according to AISC 360 [34] are analyzed in this study, which have the
same layout but different member sizes and loads, adopted from [45]. Fig. 1a and Table. 1 summarize the
information of the example frames including geometry and applied loads. The frames are modeled in
OpenSees [46] with displacement-based and fiber-type elements. All cross-sections contain the residual
stress with the Galambos and Ketter pattern [47] and the fiber distribution as shown in Fig. 2. The nominal
peak compressive residual stress value is 0.3Fyn, where Fyn = nominal material yield strength of 248
MPa (36 ksi). Initial sway imperfection of h/500 was given to all columns in the frame, where h is the
story height. The inelastic finite element (FE) analyses are conducted with all nominal properties to find
the nominal value of the ultimate load ratio λ, which is the ratio of ultimate to factored design loads. The
ultimate load ratios λ obtained from the analyses are 1.08 for both frames, i.e., they have a limited capacity
for load redistribution. Fig. 1b and c illustrate the location of the most highly yielded zones for Frames 1
and 2, respectively. Frame 1 fails by the instability (inelastic buckling) of a ground floor column C2 and at
failure members C2 and B2 are partially yielded. Frame 2 fails from a gradual sequence of yielding, thereby
multiplemembers have highly yielded zones where a location along themember yielded greater than 75%,
which are B1, B2, B3, B4, C5, and C6.

4.57m

6.10m

Po

0.467Po

6.10m 14.63m

 53.5%

80.9%

93.8%    95.8%       85.8%

81.7%

63.1% 91.4%

92.5%   82.5%

C4    C5            C6

C1    C2            C3

B3   B4

B1   B2

(a)          (b)        (c)

C2

B2
C5           C6

B3    B4

B1    B2

Figure 1: (a) Frame layout; location of highly yielded zones for (b) Frame 1; (c) Frame 2

Table 1: Member sizes and applied loads
Element Frame 1 Frame 2
C1 W6× 20 W12× 14
C2 W14× 82 W14× 99
C3 W14× 68 W14× 82
C4 W6× 8.5 W10× 12
C5 W14× 145 W14× 109
C6 W14× 145 W14× 109
B1 W30× 132 W27× 84
B2 W36× 182 W36× 135
B3 W24× 55 W18× 40
B4 W30× 116 W27× 94
Loads (Po) 111.86 kN/m 109.45 kN/m

4.2 Uncertainty
TheMonteCarlo samplingmethod is used to generate samples of the uncertainties inmaterial yield strength
Fy , modulus of elasticity E, sway imperfection, and residual stress. Table 2 summarizes the statistical infor-
mation and references of the uncertainties. Yield strength and elastic modulus are modeled following the
distributions published in Bartlett et al. [48]. Nominal yield strength Fyn of 248 MPa and nominal elastic
modulus En of 200 GPa are utilized to determine the mean value of yield strength and elastic modulus,
respectively. The distribution of sway imperfection followed the distribution of Lindner and Gietzelt [49].
The scale factor ofmaximum compressive residual stressX is modeled as a normal distribution provided in
Shayan et al. [50]. The random scale factorX was multiplied by σRC to consider the uncertainty of resid-
ual stress magnitudes. The peak tensile residual stress (σRT ) within a cross section was determined by the
geometry and the peak compressive residual stress (σRC ), which equals 0.3Fyn, as shown in (Fig. 2). σRT

includes X indirectly because it is calculated based on equilibrium. Once σRC and σRT are determined,
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Figure 2: Residual stress pattern and fiber distribution

the rest of the residual stresses in the cross section were set based on the residual stress pattern. The
residual stress condition is constant along the length of a member. To account for the maximum number
of uncertainties and investigate the effect of each parameter on structural failure, the frames are assumed
as spatially uncorrelated, i.e., all structural members have different random properties.

Table 2: Description of feature variables
Variable Mean COV Distribution References
Fy 1.1Fyn 0.06 Lognormal Bartlett et al. [48]
E En 0.04 Lognormal Bartlett et al. [48]
Sway imperfection 1/770 0.875 Lognormal Lindner and Gietzelt [49]
X 1.064 0.27 Normal Shayan et al. [50]

4.3 Dataset
As the structural members are uncorrelated, each individual member had a different realization of the
random properties. In other words, there were no identical random values of the input variables shared
between all beams or all columns. For example, input feature variables consist of thirty-three different
parameters including ten different values of yield strength, elastic modulus, and residual stress and three
sway imperfections assigned to the three column locations – left, center, and right. The response variable
is the binary outputs based on the ultimate load ratio λ obtained from the FE analysis containing random
realizations of the input parameters. As the frame is designed according to the inelasticmethod provided in
AISC 360 [34], this study applied the probability-based limit state design criteria λ = 1.0 as the classification
criteria of the dataset. If the ultimate load ratio is less than 1.0, the frame experiences a structural failure
and the observation is assigned to Class 1. An ultimate load ratio greater than or equal to 1.0 indicates that
the frame is safe and the sample set is assigned to Class 0, which means no failure. A total of 500,000
simulations were run for Frame 1 and 1,000,000 simulations for Frame 2. A small percent of simulations
had convergence issues and were excluded from the datasets. In total, Frame 1 had 309 failures (Class 1)
out of 498,050 labeled data points. Frame 2 had 127 failures, which is less than that of Frame 1, out of the
total number of simulations, 903,272. The data points for each frame were randomly assigned into equal
training and test sets, for a 50%-50% split between training and testing datasets for each frame.

As discussed previously, a classification dataset for structural design problems will be severely imbalanced,
based on the selection of βT and the corresponding Pf . The no-information rate describes how much
the dataset is imbalanced, which is calculated by max(nClass 0, nClass 1)/(nClass 0 + nClass 1), where
nClass 0 is the number of Class 0 examples and nClass 1 is the number of Class 1 examples. The no-
information rates of Frame 1 and Frame 2 are 99.94% and 99.99%, respectively, approximately equal to
100%. As imbalanced classification data leads to biased prediction toward the majority class, this study
employed the oversampling method for the training set to reduce the problem caused by imbalanced clas-
sification. Theminority class is oversampled to have the same number as themajority class by the Synthetic
Minority Over-sampling Technique (SMOTE) proposed by Chawla et al. [51]. For example, Frame 2 had 7,111
times greater number of the majority class than the minority class. The new minority class examples are
generated 7,111 times in a training set to equal the number of majority class examples. The oversampled
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minority class are not duplicates of the existing samples, but are derived using k-nearest neighbors and
interpolation parameters.

5 Comparison of sensitivity analysis results
This section compares the sensitivity analysis results obtained by the feature importance approach and
the reliability sensitivity analysis. For the reliability-based sensitivity study, 40,000 simulations for each
uncertainty under consideration were conducted. The feature name consists of the structural member
name following the property name. Residual stress and sway imperfection are shortened to ‘rs’ and ‘sway’,
respectively. For example, E-B2 represents the elastic modulus of B2 and rs-C1 indicates the residual stress
of C1. Sway imperfections at the column locations – left, center, and right – are labeled as sway-C1, sway-C2,
and sway-C3, respectively.

Table 3 summarizes the reliability-based sensitivity analysis results including statistics of strength, proba-
bility of failure, and reliability index. Frame 1 has larger COVs than Frame 2, with a larger difference for
random elastic modulus and sway imperfection, which indicates that Frame 1 is more sensitive to these
factors. Although the nominal ultimate strength was equal to 1.08 for both frames, Frame 1 has smaller
values of β compared to those of Frame 2 due to the larger COVs of Frame 1 resulting in a lower boundary
of the strength distributions.

Table 3: Reliability-based sensitivity results for Frames 1 and 2
Frame 1 Frame 2
Strength Reliability Strength Reliability

Random variable Mean COV β Pf Mean COV β Pf

Yield strength 1.13 0.034 3.41 3.3× 10−4 1.16 0.031 3.79 7.5× 10−5

Elastic modulus 1.07 0.007 9.01 ≈ 0 1.07 0.004 16.8 ≈ 0
Sway imperfection 1.01 0.030 2.65 4.0× 10−3 1.08 0.011 3.51 2.3× 10−4

Residual stress 1.07 0.003 27.7 ≈ 0 1.07 0.002 37.2 ≈ 0

5.1 Frame 1: instability of a single column
The results of the feature importance method are shown in Fig. 3. The top row (Fig. 3a-c) shows the top
ten feature rankings of Frame 1 derived from the data analysis methods including ANOVA, mRMR, and
Spearman’s rank. The feature orders obtained from the model analysis techniques including impurity-
based, permutation, and SHAP are shown in the bottom row (Fig. 3d-f). As previously discussed in Section 2,
the feature importance techniques can derive either positive or negative values or both. As the feature
rankings show only ten highly-ranked features, the negative scores are not included in the figure except for
Spearman’s rank (Fig. 3c), which rated the features based on their feature importance value magnitude.
Sway-C2 and Fy-C2 are top-ranked from all the feature importance methods. Sway-C3 or E-C3 is third-
ranked but has a negligible importance score in comparison to the top two features. Although the order
of the remainder of the features is different between the various techniques, only the two highly-ranked
features have significant scores. In other words, only the first two features are significant to the prediction
of failure for Frame 1. Most methods result in scores approximately equal to zero for the least important
features. Frame 1 fails by the inelastic instability of C2, and this is reflected in the importance score results
as the features related to C2 are the most highly ranked.

From the results of Table 3, random sway imperfection resulted in the lowest β in Frame 1, followed by yield
strength, elasticmodulus, and residual stress. A small elasticmodulus and large sway imperfection increase
lateral deflections, thereby increasing second-order bendingmoments. As Frame 1 fails by the instability of
C2, the frame capacity is most influenced by the factors resulting in increased bending moments.

Fig. 4 illustrates the scatter plots of input random properties versus the frame strength based on the
reliability-based sensitivity studies. As shown in Fig. 4a, the yield strength of C2 and the frame strength
have a nearly perfect correlation, which indicates that the strength of Frame 1 is controlled by C2. The yield
strength of the other members showed no correlation with frame strength. Fig. 4b and c show that the
frame strength has a weak correlation with the elastic modulus of C3 and the residual stress of C2. The
sway imperfection at the center column (C2) has the most significant impact on the strength among the
three column positions— left (C1), center, and right (C3)—by showing a strong positive correlation.
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(a)               (b)           (c)

(d)               (e)                       (f)

Figure 3: Importance ranking of the top ten features of Frame 1 derived by data analysis methods (top row)
and model analysis methods (bottom row)

The highly-ranked features determined from the feature importancemethods are identical with the factors
that resulted in a lower β from the reliability-based sensitivity analysis. The feature rankings determined by
the feature importance framework showed that sway-C2 andFy-C2 are themost important features among
the thirty-three random properties. The third-ranked feature is either sway-C3 or E-C3, which showed a
positive correlation with the frame strength, but less significant than sway-C2 and Fy-C2. Overall, the
random properties that have significant impacts on Frame 1’s capacity determined by the reliability-based
and machine learning-based sensitivity analyses are in agreement.

5.2 Frame 2: progressive yielding
Fig. 5 shows the top ten feature rankings of Frame 2 derived by the feature importance approach. As shown
in Fig. 5a-c, the top-ranked feature is either Fy-C6 or sway-C2, and the remaining order varies for each
data analysis technique, which identifies important features without model fitting. However, the model
analysis techniques, which require model training to measure feature importance, derived the same top
four features including sway-C2, Fy-C6, Fy-B2, and sway-C3 in descending order (Fig. 5d-f). The features
ranked fourth through tenth are similar between the model analysis methods. At least four yield strengths
are highly-ranked across all the methods, which indicates that yield strength is an influential factor in the
failure of Frame 2 and the failure mode is progressive yielding. As previously shown in Fig. 1c, Frame 2 has
six members that have critical impacts on the system failure, including four beams and two columns. In
particular, B2 and C6 have two highly yielded zones each, and the yield strengths of thesemembers are top-
ranked among all the yield strengths. The feature importance results show the significant members in the
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Figure 4: Scatter plots of Frame 1 strength versus random (a) Fy of C2 (b) E of C3 (c) X of C2 (d) sway
imperfection of C1 (e) C2 (f) C3

system in addition to the influential properties. Due to the complex failure mode of Frame 2, the feature
orders are not as straightforward as Frame 1, however the results indicate that the feature importance
approach is accurate for steel frames with various failure modes.

The reliability-based sensitivity study investigated the effects of random properties on the frame strength.
As shown in Fig. 6, the properties that have a significant effect are identical with the features that are highly
ranked by the feature importancemethods. Fig. 6a and b show dents on the upper left side, and they occur
when the value of the B2 yield strength is the maximum or the minimum among all members, respectively.
Fig. 6c and d indicate that Frame 2’s strength has positive correlations with elastic moduli of C2 and B2. As
X of C2 increases, the frame strength decreases (Fig. 6e) because the presence of residual stresses leads
to the onset of yielding at a lower applied load [39]. Random elastic modulus and residual stress of C2
and B2 are correlated with the frame strength but showed small COVs, which represents less significant
influence. The effects of random sway imperfection are shown in Fig. 6f-h. The center columns sway have
the most significant impact on the frame strength than the sway of other columns. This example illustrates
that not all factors influence the system behavior, and it is therefore unnecessary to assess the effects of
each factor individually, as is done in a reliability-based sensitivity analysis. On the other hand, the feature
importance approach analyzes all the factors at once to estimate the effects on system behavior.

Overall, Frame 2 has smaller magnitudes of the importance scores than for Frame 1. Moreover, Frame
1 has a large difference between the two top-ranked features and the remainder of the features, while
the score difference between the features in Frame 2 is smaller. In other words, the importance score of
Frame 2 decreases smoothly from the top to the bottom of the rankings. When a structural system fails
by a single member (Frame 1), the properties of that member has a critical impact on the entire system.
On the other hand, when various members lead to a system failure, such as progressive yielding (Frame 2),
the properties of multiple members have a significant impact on the entire system. A comparison of the
importance values between Frame 1 and Frame 2 indicates that the number of structuralmembers involved
in system failure influences the magnitude of importance as well as the number of features considered to
be important.

6 Performance evaluation
The test set, which accounts for 50% of the dataset, is employed to evaluate the models fitted on the
training set. The accuracy metrics include specificity and recall to measure the correct prediction of Class
0 (no failure) and Class 1 (failure), respectively. In addition, the Matthews correlation coefficient (MCC) is
used, which is a suitable metric for the imbalanced dataset.

The predictive performance of the machine learning models for Frame 1 is shown in Fig. 7. The specificity
curves for both logistic regression and decision tree algorithms (Fig. 7a and b) show that the specificity
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Figure 5: Importance ranking of the top 10 features of Frame 2 derived by data analysis methods (top row)
and model analysis methods (bottom row)
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score reaches the nearly perfect value of approximately 1.0, even with only a few features. In this study,
specificity represents the proportion of safe structures that are correctly predicted. The Frame 1 dataset is
severely imbalanced with the no-information rate of 99.94%, therefore the model performance measured
by specificity shows inflated results due to the biased classification towards the majority class. Recall is
computed to evaluate how good a model is at detecting a structural failure, which is the positive class.
As it is critical to identify system failure rather than safe structures in structural design practice, recall is a
more crucial measure than specificity in this study. Fig. 7c shows the recall curve obtained from the logistic
regression model. When the feature set contains the top three features of the model analysis techniques
andANOVA,which are sway-C2,Fy-C2, and sway-C3, the recall score rapidly increases up to 0.77. Spearman
and mRMR ranked the sway imperfection of C3 at fourth and therefore the score abruptly rises when the
feature set increases to four. The recall curve of the decision tree (Fig. 7d) shows the highest value when
only two or three features are selected. The outcome recall scores converge to a lower score of 0.72 after
reaching the peak point. Fig. 7e and f show the outcomeMCC scores for the logistic regression and decision
tree models, respectively. The MCC curves have a similar shape as the recall curves; the logistic regression
model performance improves as the feature set increases, and the decision tree model reaches the peak
point when the feature set is small. This indicates an overfitting issue which occurs when the model is
trained on a large feature set. Feature selection based on the feature importance score can improve the
overfitting by excluding the redundant features from training. The least important features, which are
ranked after the fifteenth, could be removed to obtain a better performance.

The model performance of Frame 2 measured by specificity is shown in Fig. 8a and b. The specificity gen-
erates overoptimistic results due to the high imbalanced ratio of 99.99%. When the yield strength of C6 is
ranked as the most important feature by ANOVA or Spearman, the decision tree model shows the nearly-
perfect score even though the dataset includes only one feature (Fig. 8b). The lowest score of specificity
is 0.92, indicating that both logistic regression and decision tree models can identify safe structures with
high accuracy. The recall curves of Frame 2 are shown in Fig. 8c and d. The logistic regression model
can correctly predict the failure only when the sway imperfection of C2 is included in the feature set. For
example, the recall curve of Spearman’s rank shows zeros until the feature set size is seven because the
feature ranking rated the sway imperfection of C2 at seventh. The recall curve of the decision tree model
(Fig. 8d) shows a large variation between the data analysis methods because they had completely different
feature rankings. However, each curve merges to about 0.32 as the number of features increases. The
MCC curve of the logistic regression model (Fig. 8e) shows a similar shape as the recall curve because the
specificity scores had a single value, which is close to 1, regardless of the feature set size. The MCC values
of the decision tree model merge to 0.15, which is the score of the entire feature set (Fig. 8f). When a
high-dimensional dataset is used, the class imbalance leads to additional challenges in misclassification of
the minority class [21]. As previously discussed in Section 4.3, Frame 2 consisted of a larger sample space
and a fewer number of failures than for Frame 1. Moreover, the feature orders of Frame 2 were inconsis-
tent between the feature importance techniques, as multiple features were significant to the prediction
of system failure. The higher imbalanced ratio and the complex failure mode of Frame 2 result in a low
performance measured by recall as well as the MCC. The extremely imbalanced classification of Frame 2
led to a lower performance for predicting structural failure because the machine learning classifiers had
only a fewminority class examples to oversample in the training set as well as to test the model prediction.
The model performance, which measures the prediction of minority class, can be improved by obtaining
more number of failures in a dataset or reducing the class imbalanced ratio.

The six feature importance techniques showed similar performance of Frame 1 measured by the MCC.
The performance was improved after containing the three top-ranked features (Fig. 7e and f). In Frame 2,
however, the model analysis methods showed more accurate results than the data analysis methods. In
particular, the permutation and SHAP methods showed the best performance until the feature set size in-
creases to seven (Fig. 8f) because they rankedFy-C5 andFy-C2 at fifth and sixth, respectively, whereas the
impurity-based method ranked Fy-C2 at seventh, and Fy-C5 and Fy-C2 have a significant influence on the
system failure of Frame 2. In summary, based on the feature rankings and the model performance results
of both frames, SHAP and permutation methods are the best techniques for estimating the importance of
features.

7 Conclusion
This study examined the feature importance approach using datasets with a large number of uncertainties
and severely imbalanced classification. Two designs of a non-symmetric planar steel frame were investi-
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(a)    Logistic regression       (b)          Decision tree

(c)    Logistic regression       (d)          Decision tree

(e)    Logistic regression       (f)          Decision tree

Figure 7: Frame 1 specificity, recall, and MCC for logistic regression (left column) and decision tree (right
column)

gated with consideration of uncertainties in material yield strength, Young’s modulus, sway imperfection,
and residual stress. The dataset information consisted of thirty-three uncertainties based on the uncorre-
lated scenario and the ultimate load ratio obtained from the finite element analysis. A scarce number of
failures occurred, as is common in structural engineering design, thus the datasets were extremely class-
imbalanced with the two classes being safe and fail. Feature importance techniques including ANOVA,
mRMR, Spearman’s rank, impurity-based, permutation, and SHAP are trained on the high-dimensional and
severely class-imbalanced datasets to identify the important features. After rating the features according
to the importance score, the logistic regression and decision tree algorithms are trained to predict the
classes using the feature set containing the top-ranked features. The model performance evaluated by
specificity showed the nearly-perfect performance for both frames because most examples were assigned
to the majority class, safe structure. Frame 1, which failed by the buckling of a single column, showed
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(a)    Logistic regression       (b)          Decision tree

(c)    Logistic regression       (d)          Decision tree

(e)    Logistic regression       (f)          Decision tree

Figure 8: Frame 2 specificity, recall, and MCC for logistic regression (left column) and decision tree (right
column)

good performance for the prediction of failure even with the highly imbalanced classification. However,
for Frame 2which had a complex failuremode of progressive yielding in addition to an extremely low failure
probability, it was challenging to obtain the accurate prediction of the minority class. As class-imbalanced
data is inevitable in structural engineering, it is necessary to be cautious in assessing the predictive accu-
racy of structures with a complex failure mode and a failure probability approximately equal to zero. The
important features identified using the machine learning based feature importance approach were com-
pared with the results of a conventional reliability-based sensitivity study to identify factors which result
in a lower system reliability index. Overall, both methods identified the same factors which reflected the
system failure modes. This study demonstrated that the machine learning-based sensitivity analysis can
identify the influential features affecting system failure even when there are high-dimensional uncertain
parameters and a highly imbalanced dataset.
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