
Model Order Reduction for Real-Time Hybrid Simulation:
Comparing Polynomial Chaos Expansion and Neural

Network methods

N. Tsokanasa,, T. Simpsona, R. Pastorinob, E. Chatzia, B. Stojadinovića

aETH Zurich, IBK, D-BAUG, Stefano-Franscini Platz 5, 8093 Zurich, Switzerland.
bSiemens Industry Software NV, Interleuvenlaan 68, 3001 Leuven, Belgium.

Abstract

Hybrid simulation is a method used to investigate the dynamic response of a system
subjected to a realistic loading scenario by combining numerical and physical substruc-
tures. To ensure high fidelity of the simulation results, it is often necessary to conduct
hybrid simulation in real-time. One of the challenges arising in real-time hybrid sim-
ulation originates from high-dimensional nonlinear numerical substructures and, in
particular, from the computational cost linked to the computation of their dynamic re-
sponses with sufficient accuracy. It is often the case that the simulation time-step must
be decreased to capture the dynamic behavior of numerical substructures, thus resulting
in longer computation. When such computation takes longer than the actual simulation
time, time delays are introduced and the simulation timescale becomes distorted. In
such a case, the only viable solution for doing hybrid simulation in real-time is to reduce
the order of such complex numerical substructures.

In this study, a model order reduction framework is proposed for real-time hybrid
simulation, based on polynomial chaos expansion and feedforward neural networks.
A parametric case study encompassing a virtual hybrid model is used to validate
the framework. Selected numerical substructures are substituted with their respective
reduced-order models. To determine the robustness of the framework, parameter sets
are defined to cover the design space of interest. A comparison between the full- and
reduced-order hybrid model response is delivered. The attained results demonstrate the
performance of the proposed framework.

Keywords: real-time hybrid simulation, model order reduction, polynomial chaos
expansion, feedforward neural networks, dynamic response.

1. Introduction

Hybrid simulation (HS) is a method used to investigate the dynamic response of
a system subjected to a realistic loading scenario [1]. Across different engineering

DRAFT

disciplines, HS is also known as hardware-in-the-loop (HiL) [2] or system-in-the-loop.
It is one of the methods used for Model-based Development [3]. The system-under-
consideration consists of multiple individual sub-components, out of which one or
more are selected to be tested physically, and are called the physical substructures
(PS), while the remaining components, called the numerical substructures (NS), are
simulated numerically. The coupled PS and NS constitute the so-called hybrid model.
In more detail, the hybrid model dynamic response is evaluated online, based on a step-
by-step numerical solution of the governing equations of motion of the hybrid model,
combined with experimental responses obtained from the PS. The coupling of NS and
PS is achieved by an arrangement of transfer systems, such as servo-controlled motors
and actuators. These transfer systems are responsible for synchronizing the dynamic
boundary conditions of the substructures at their interfaces throughout the entire HS.
The advantage of HS lies in the fact that it can be used to examine the inner workings of
a system’s sub-component, beyond its linear regime, without testing the entire full-scale
system. As a consequence, realistic results from the tested component are obtained at a
much lower experimentation cost. The report by Schellenberg and Mahin [4] provides
a comprehensive review of HS methods and algorithms.

Frequently, HS is performed on a distorted timescale, e.g. by slowing down the
rate of PS testing to accommodate the power or speed of the transfer system in use.
These HSs correspond to the so-called pseudodynamic tests [5]. However, in order to
increase the fidelity and trust in HS outcomes, HS should be conducted as close to real-
time as possible. This is especially important for loading-rate-sensitive substructures.
Even though real-time hybrid simulation (RTHS) has many advantages, it comes with
numerous challenges. The first challenge originates from the inherent dynamics of the
transfer system exciting the PS, as it introduces time delays in the overall HS that alter the
dynamic response of the tested hybrid model. This problem is addressed by designing
control systems to adequately compensate for these delays. Several control strategies
for RTHS have been proposed and are available in the literature. Some of the recently
developed novel approaches can be found in [6, 7, 8, 9]. Nonetheless, challenges in
RTHS do not arise only from the transfer system of the PS but also from the NS side,
such as from the computational power needed to compute the NS responses. In order
to capture the dynamic behavior of interest of a high-dimensional nonlinear numerical
model, it is often necessary to use small time-steps for the numerical solver. However,
the smaller the time-step of the simulation, the larger the computational power needed
to compute it. In RTHS, when the required computation time becomes longer than the
actual simulation time, time delays are introduced to the hybrid model risking not only
to decrease the fidelity of the HS results but also to drive the overall HS into instability.
Therefore, in such cases, the only viable solution is to reduce the order of the NS to be
able to conduct the HS in real-time.

Several model order reduction (MOR) techniques can be found in the literature.
Proper orthogonal decomposition (POD) [10, 11, 12], also known as principal compo-
nent analysis (PCA), and its discrete version, namely the singular value decomposition
(SVD), are mostly combined with the method of snapshots [13, 14] and have been
extensively used for extraction of mode shapes from high-dimensional systems, among
other techniques. A technique similar to POD, also using the method of snapshots
but following a data-based instead of a model-based approach, is the dynamic mode

2

DRAFT

decomposition (DMD) [15]. In particular, the main difference between POD and DMD
is that the former relies upon a time-averaged spatial correlation matrix while the latter
represents the temporal dynamics with high-degree polynomials [16]. An advancement
of POD was also proposed based on the use of separated representations, the so-called
proper generalized decomposition (PGD) [17]. More recently, the component-mode
synthesis (CMS) approach [18, 19] has been used for non classically damped linear
systems [20] as well as in HS as a method to reduce the order of the comprising NS
and PS [21]. Furthermore, a quadratic manifold [22] and a non-intrusive [23] approach
were proposed for MOR of nonlinear structural systems. MOR techniques have also
been used for Bayesian finite element model updating [24] and for reliability-based
design problems [25].

In this study, a MOR framework originating from a data-driven regression is pro-
posed to reduce the order of high-dimensional nonlinear NS in HS. Two different
methodologies for MOR are addressed; a polynomial chaos expansion (PCE) and a
feedforward neural network (FFNN). In both cases we treat the NS, whose order we
want to reduce, as a black box, meaning that no prior knowledge of its full-order model
(FOM) dynamics is required. Instead, we map the outputs of the respective NS to its
inputs by simpler-to-evaluate functions than those of the original FOM. The goal of the
MOR framework is to adequately capture the dynamic behavior of high-dimensional NS
at a much lower computational cost and in shorter computation time, and thus enable
real-time HS. A parametric case study encompassing a virtual hybrid model is em-
ployed to validate the proposed MOR framework. Selected NS are replaced with their
respective FFNN- and PCE-based reduced-order models, while specific parameters of
the hybrid model are varied to investigate the framework’s robustness to different hy-
brid model configurations. The corresponding reduced-order hybrid model responses
are compared to the ones from the FOM. Results demonstrate the effectiveness of the
proposed MOR framework.

The paper is organized as follows. Section 2 introduces the MOR framework
describing the PCE and FFNN. Section 3 presents the case study with the virtual hybrid
model used to validate the framework. Section 4 discusses the obtained results and
Section 5 presents the overall conclusions of this study.

2. Polynomial chaos expansion and neural networks as model order reduction
techniques

Considering an input vector X and a computational model Y = M(X), data-
driven regression algorithms formulate a map M : X 7→ Y based on an obtained
sample set of input pointsX =

{
x(1), . . . ,x(N)}T and of the respective output values,

i.e., model evaluations, Y =
{
y(1), . . . ,y(N)}T . The set ofX,Y realizations corre-

sponds to the so-called experimental design (ED). Regression techniques encompass
linear regression, kernel methods, neural networks and graphical models among others.
An overview of these techniques can be found in [26, 27]. As mentioned above, the
proposed MOR framework of this study explores use of PCE and FFNN to this end,
with these methods elaborated in what follows.

3

DRAFT

2.1. Polynomial chaos expansion
PCE is a well-known uncertainty quantification spectral method used to substitute

the dynamics of an expensive-to-compute numerical model with an inexpensive-to-
compute surrogate (a.k.a. metamodel), representing the outputs of the model by a
polynomial function of its inputs [28, 29]. It is proven to be a powerful surrogate
technique used in a wide variety of engineering contexts to replicate the dynamic
response of complex high-dimensional models [30, 31, 32, 33]. Hence, it can be seen
as a promising technique for MOR of NS in HS. Furthermore, to the best of the authors’
knowledge, such use of PCE within the HS context is new.

In more detail, given a random input vector X ∈ RM with statistically inde-
pendent components expressed by the joint probability density function (PDF) fX
and a finite variance computational model Y = M(X), with Y ∈ R such that
E[Y 2] =

∫
DX
M2(x)fX(x) dx <∞, the PCE ofM(X) follows:

Y =M(X) ≈MPCE(X) =
∑
α∈NM

yαΨα(X). (1)

The PCE function is built on the Ψα(X) multivariate orthonormal polynomial basis
with respect to the input vector fX . The degree of the Ψα polynomials components
is identified by the α = (α1, . . . , αM),α ∈ NM multi-index for each of the input
variables, while yα corresponds to the polynomial coefficients.

2.1.1. Polynomial basis
The multivariate polynomials are constructed as a tensor product of their univariate

orthonormal polynomials φ(i)
k (xi) such that Ψα(X) =

∏M
i=1 φ

(i)
αi (xi). The latter meet

the
〈
φ

(i)
j (xi), φ(i)

k (xi)
〉

=
∫
DXi

φ
(i)
j (xi)φ(i)

k (xi)fXi(xi) dxi = δjk orthonormality
criteria, where i corresponds to the input variable, j and k to the polynomial degree,
fXi(xi) to the ith-input marginal PDF and δjk to the Kronecker symbol. The selection
of the univariate orthonormal polynomial families depends on the marginal PDF of
each input variable to which they are orthogonal, e.g., if an input variable follows
the uniform/ Gaussian distribution then the Legendre/ Hermite orthogonal polynomial
family is used respectively for this specific input variable [29, 34].

2.1.2. Truncation schemes
Once the univariate polynomials families are selected for each input variable, the

next step is the construction of the PCE following Eq. (1). However, because the terms
of the sum in Eq. (1) are infinite, it is often truncated to a finite number of terms for
practical reasons. Hence the truncated basis is defined as A ⊂ NM and the PCE of
M(X) admits:

MPCE(X) =
∑
α∈A

yαΨα(X). (2)

The performance of PCE is closely connected with the chosen truncation scheme.
Underfitting or overfitting is possible when too many terms are discarded or introduced,
respectively [32]. In the standard basis truncation scheme [29] the maximum degree

4

DRAFT

p ∈ N+ is defined, such that the degree of each polynomial is capped by this value.
Therefore, the standard basis truncation scheme consist of

(
M+p
p

)
elements and follows:

AM,p =
{
α ∈ NM : |α| ≤ p

}
, (3)

whereM corresponds to the number of input variables ofM(X) and |α| =
∑M
i=1 αi

to the total degree of all polynomials in Ψα. Alternate truncation schemes have been
developed namely, the maximum interaction and hyperbolic truncation [35], and are
used based on the scope of each application. In this study the standard basis truncation
scheme of Eq. (3) is employed.

2.1.3. PCE coefficient calculation
Once the truncation scheme is determined, the next step is the calculation of coef-

ficients yα in Eq. (2). Various methods have been developed to do this [34]. In the
proposed framework, the least-squares minimization technique [36] is used. This is an
non-intrusive technique, meaning that the coefficients are obtained after post-processing
the ED points. More specifically, Eq. (2) is reformed as:

MPCE(X) =
P−1∑
j=0

yjΨj(X) + εP = yTΨ(X) + εP , (4)

where Ψ(X) = {Ψ0(X), . . . ,ΨP−1(X)}T are the multivariate orthonormal poly-
nomials, y = {y0, . . . , yP−1}T the PCE coefficients, εP the truncation error, and
P =

(
M+p
p

)
. Then, the PCE coefficients are obtained by:

ŷ = arg minE
[(
yTΨ(X)−M(X)

)2
]
. (5)

The solution of Eq. (5) is attained by Ordinary Least-Squares (OLS) and follows:

ŷ =
(
ATA

)−1
ATY , (6)

where the experimental matrix is Aij = Ψj(x(i)) with i = 1, . . . , N and j =
0, . . . , P − 1.

2.2. Feedforward neural network
Neural networks are an extremely versatile group of methods used both for regres-

sion and classification problems. The most straightforward and widely used variety
of neural networks are the fully connected FFNN. Such a FFNN consists of layers of
"neurons", where the value of the neurons in each layer is calculated as a matrix multi-
plication between a weight matrix and the vector of neuron values at the previous layer,
followed by the application of an element-wise nonlinear "activation" function. FFNNs
have proven highly capable at approximating a broad range of functions and can be
shown to be, in the limit of infinite neurons, universal approximators [37, 38]. As such,
they are an obvious candidate for metamodelling, and have been widely demonstrated
in many such contexts [39, 40, 41]. Much of the popularity of FFNNs is due to their
scalability to very large and high dimensional datasets, and, especially in the scope

5

DRAFT

of deep learning methods, power for dealing with highly nonlinear relations [42, 43].
This also makes the FFNNs a very attractive option for metamodelling in a hybrid
testing context, in which they have been demonstrated in limited number of cases to
date [44, 45].

2.2.1. Network Architecture
Much of the power of neural networks comes from the ease with which their

architectures can be adapted to deal with systems of different sizes and complexity [46].
The basic architecture of a 3 layer FFNN is demonstrated in Figure 1. Such a network
consists of the input layer, where the neurons take the values of the input vector X .
The number of neurons in this layer is naturally equal to the dimensionality of the input
vector. The final layer of the network is the output layer, at which the neuron values
are the elements of the output vector Y . The number of neurons in the output layer
is equal to the dimensionality of the output of the network. Between these two layers
lies a hidden layer which can have an arbitrary number of neurons, the selection of
which greatly affects the performance of the network. The hidden layer neurons are
characterized by the activation values, which are represented in the vector A. It is
possible and often desirable to use multiple hidden layers between the input and the
output layers, creating a so-called deep neural network. Deep neural networks are even
more powerful for representing highly complex functions [47], however, only a single
hidden layer is used in this work since such a FFNN is deemed adequate.

The single-hidden-layer FFNN diagram in Figure 1 is mathematically described in
Eqs. (7) and (8). Eq. (7) represents the calculation of the activation values in the hidden
layer of the FFNN, the input vectorX is matrixmultiplied by the weight matrixW 1 and
the bias vector b1 is added. The activation vectorA is then calculated by the element-
wise application of the activation function g1. In Eq. (8), the output vector of the FFNN
is calculated in a similar fashion, via matrix multiplication of the activation vector A
with a second weight matrix W 2, to which a second bias vector b2 is added before
the element-wise application of a second activation function g2. In these equations,
both weight matricesW 1 andW 2, and both bias vectors, b1 and b2, are populated by
parameters which are learned during the training of the FFNN. The activation functions
g1 and g2, on the other hand, are hyperparameters and must be chosen by the network
designer. Common candidates for these activation functions include the tanh, RELU
and linear activation functions, each with different associated properties [48].

A = g1(W 1X + b1) (7)

Y = g2(W 2A+ b2) (8)

2.2.2. Network Training
When using a FFNN to create a metamodel, the first step involves generating a

dataset with which to train, validate and test the network. Such a dataset consists
of input and output vector pairs (points) for the system being metamodelled. For
training a neural network, this dataset is then usually further broken down into training,
validation and testing datasets. The training dataset contains those input-output pairs
used for optimizing the learned parameters of the system in the weight matrices and

6

DRAFT

Input Layer Hidden Layer Output Layer

X

A

Y

Figure 1. Architecture of a 3 layer FFNN

bias vectors. The validation dataset is a set of held-back input-output pairs which are
used to compare FFNNs created with differing hyperparameters, such as hidden layer
size or activation functions. This yields FFNNs with better performance on the training
dataset. The use of a separate validation dataset informs on the ability of the trained
FFNN to generalize, i.g., demonstrate whether the FFNN performance is maintained for
input-output pairs outside of the training dataset, as well as indicate whether the FFNN
is "overfitting" to the training points [46]. The testing dataset finally, comprises those
points on which the final performance of the trained network of the chosen architecture
is tested.

In this work, the neural network was created and trained using the Matlab deep
learning toolbox [49]. Since, in the context of metamodelling, the problem is one
of regression, i.e., predicting a continuous output variable, the loss function of the
network to be minimized was selected as the mean squared error value, as demonstrated
in Eq. (9). In this equation, the loss value J is calculated as the mean value of the
squared error between the true output value Yi for the training point i and the predicted
output value from the network Ŷi for all N training data points. The network weights
were trained using the Bayesian regularization algorithm. The latter is more resistant
to overfitting and tends to train networks with greater generalization [50]. A validation
dataset was used to select the final architecture of the network as that which gave the
best validation performance. The final network architecture selected for this problem
was a 3 layer network with a single hidden layer. The activation functions for the hidden
and output layers are tanh and linear functions, respectively.

J = 1
N

N∑
i=1

(Yi − Ŷi)2 (9)

3. Case study

Given that the focus of this work is a MOR framework for RTHS, the case study
employs a virtual hybrid model to conduct virtual RTHSs (vRTHSs). All of the
components of the virtual hybrid model are implemented numerically. Thus, virtual
PSs (vPSs) are used in place of physical specimens. In this regard, without loss of

7

DRAFT

Figure 2. Hybrid model block diagram.

generality and for the sake of clarity, transfer systems that would be required between
NS and PS in a physical HS are omitted from this case study.

The virtual hybrid model used in this case study represents a prototype motorcycle.
This model consists of one vPS, the electronically-controlled continuously variable
transmission (eCVT) of the motorcycle, and four NS: i) the engine dynamics model, ii)
the motorcycle body dynamics model including the tires and the road, iii) the rear wheel
braking systems, and iv) the front wheel braking system. The interconnections between
NS and the vPS are illustrated in Figure 2. All substructures of the hybrid model are
developed in the Simcenter Amesim software and are briefly introduced below. For
a more detailed description of the aforementioned models, as well as the underlying
equations governing each substructure, the reader is encouraged to consult [51].

In particular, the eCVT vPS consist of a multi-input-multi-output (MIMO) model
with two sets of inputs/outputs. The first set is connected to the engine dynamics
model NS and the second to the motorcycle body dynamics NS. The latter connection
corresponds to the transmission output shaft of the motorcycle. The engine dynamics
model NS aims to simulate the behavior of the motorcycle combustion engine. It is a
multi-input-single-output (MISO) model, the inputs being the angular velocity of the
engine crankshaft ωen and the throttle level thr, and the output being the torque of the
engine crankshaft τen. The parameters of this model are the engine moment of inertia
and coefficient of viscous friction. The motorcycle body NS addresses the inner body
dynamics of the motorcycle along with the dynamics of the suspension and the tires
as well as the road profile and the environmental driving conditions. The parameters
of this model include the motorcycle mass, as well as damping and stiffness of the
front and rear tires and suspensions. The motorcycle body NS is a MIMO model with
3 sets of inputs/outputs. The first set is connected to the eCVT vPS with the input
and the output being the torque τvd and the angular velocity ωvd of the transmission
output shaft, respectively. The second and third sets are connected to the rear and front
wheel braking system NS, respectively. Both braking systems are represented as MISO
models. The inputs of the rear wheel braking system NS are the angular velocity of the
rear wheel ωrw and the applied force in the brake pedal Fbrrw , while the output is the

8

DRAFT

generated braking torque in the rear wheel τrw. Similarly, the inputs for the front wheel
braking system NS are the angular velocity of the front wheel ωfw and the applied force
on the front brake lever Fbrfw

, while the output is the braking torque in the front wheel
τfw.

3.1. Motorcycle testing scenario
The performance of the motorcycle prototype is examined by testing its virtual

hybrid model under predefined driving, road and wind scenarios. These tests are, in
fact, virtual real-time hybrid simulations. A Simcenter real-time simulation platform is
used for data exchange between substructures and for running the vRTHSs.

The case study involves a 45 sec long motorcycle driving scenario on a road with
a defined profile and in defined wind conditions. The driving scenario is described
by the variation of the throttle thr and the braking forces Fbrrw

= Fbrfw
(front and

rear wheel braking forces are assumed to be equal) described by Eq. (10) and Eq. (11),
respectively, and shown in Figure 3. Note that the braking forces are measured in
Newton and the maximum applied throttle is 0.5, corresponding to a half-open throttle.
The road profile, i.e. height variation of the road, is defined by the sinusoidal function
h(x) in Eq. (12), where x denotes the current position of the motorcycle in meters. The
ambient wind velocity is assumed to be zero.

Each case study motorcycle driving test involves "driving" the motorcycle virtual
hybridmodel following the predefined driving scenario along the given road in the given
wind conditions. The position of the motorcycle is computed by solving its equation
of motion. In this case study, the RK4 (fourth-order Runge–Kutta) method with a
fixed time-step of 0.1 msec was used to numerically solve this equation of motion.
In addition to the position of the motorcycle, a number of indicative performance
parameters are computed and monitored. These include global response parameters,
such as the motorcycle velocity v, as well as the input and output parameters of the
NSs, i.e. the angular velocities and torques shown in Figure 2.

thr(t) =


0.125t , 5 ≤ t < 9
0.5 , 9 ≤ t ≤ 13
−0.125t , 13 < t ≤ 17
0 , elsewhere

(10)

Fbrrw
(t) =


10t , 20 ≤ t < 25
50 , 25 ≤ t ≤ 32
−10t , 32 < t ≤ 37
0 , elsewhere

(11)

h(x) =
{

0 , 0 ≤ x ≤ 2
0.02

(
cos
(2πx

3
)
− 1
)

, elsewhere
(12)

9

DRAFT

0 10 20 30 40

0

0.1

0.2

0.3

0.4

0.5

0

10

20

30

40

50

Figure 3. Case study driving scenario.

3.2. Reduced-order numerical substructures
To demonstrate the proposed MOR framework, two of the four NS in the virtual

hybrid model of the motorcycle, specifically the rear and front wheel braking systems,
were replaced with their respective reduced-order models, applying the PCE and FFNN
techniques addressed in Section 2. The braking systems were selected because they
include the brake hydraulic systems and friction pads. Adequately emulating the
dynamic behavior of such systems using numerical models requires small integration
time-steps, making them ideal candidates for MOR. The reduced-order models of the
two braking system NSs will be referred to as reduced-order NS (RO-NS) hereafter.

To train the front and rear brake system PCE and FFNN RO-NSs, two sets of 200
points were generated for the input variables listed in Table 1, assuming the inputs
are statistically independent, using the Latin hypercube sampling (LHS) method [52].
For each of the 200 generated points, full-order models (FOMs) of the front and rear
braking systems were used to (accurately but expensively) compute the resulting front
and rear brake torques τrw and τfw, respectively. The obtained experimental designs
(EDs) for the front and the rear braking systems are:

Xfw =
{
Fbrfw

, ωfw
}T

Y fw = {τfw}
(13)

Xrw = {Fbrrw
, ωrw}T

Y rw = {τrw}
(14)

Two types of RO-NSs were developed for each braking system, one featuring a
single PCE and the other being a FFNN. The same ED was used to train, validate and
test the PCE and the FFNN RO-NSs for each braking system, as discussed in Section 2.

3.3. Virtual hybrid models
Four different virtual hybrid models of the motorcycle were constructed in the case

study, differing in the selection of braking system NSs. The base-line virtual hybrid

10

DRAFT

Input Distribution Mean value Standard deviation Units
Fbrfw Uniform 25 14.43 N
ωfw Uniform 245 141.45 rpm
Fbrrw Uniform 25 14.43 N
ωrw Uniform 235 135.68 rpm

Table 1. Marginal PDFs and their characteristics per input variable of the front and rear brake system
RO-NSs. Used to construct the EDs of Eq. (14) and Eq. (13).

model features the FOM NSs of both the front and the rear braking systems. The
remaining three virtual hybrid models have RO-NSs. In the PCE virtual hybrid model,
both braking systems are represented using PCE RO-NSs. Analogously, the FFNN
virtual hybrid model uses FFNN RO-NSs. Finally, the mixed virtual hybrid model of
the motorcycle uses the FFNN RO-NS for the front brakes and the PCE RO-NSs for the
rear brakes.

The performance of the thus generated motorcycle virtual hybrid models was tested
statistically. To this end, the 11 parameters of the motorcycle model, listed in Table 2,
were assigned uniform distributions with parameters identified from [53, 54, 55] to
represent realistic variations of these mechanical motorcycle properties. A total of
30 different samples of the 11 motorcycle parameters were generated using the LHS
method, essentially resulting in 30 different motorcycle prototypes. These prototypes
were modeled using four virtual hybrid models described above. Using the driving
scenario described above, a total of 120 motorcycle model response time histories were
computed in this case study.

The variability of motorcycle prototype response in the selected driving scenario,
computed using the (accurate but expensive) FOMvirtual hybridmodel, is demonstrated
in Figures 4. The 30 time histories of two indicative virtual hybrid model response
variables, the front wheel brake torque τfw and the motorcycle velocity v = ẋ, are
compared to their mean value. Evidently, the 30 generated motorcycle prototypes
adequately represent the underlying probability space defined by the parameters of
Table 2. All results presented hereafter correspond to the mean values of 30 virtual
hybrid model response simulations.

Additionally, the time history responses of Figures 4 can be intuitively interpreted.
Figure 4a depicts the time history of the front wheel brake torque τfw, generated by
the employed driving scenario. As can be appreciated from Figure 3 and Eq. (11),
the motorcycle brakes are activated between the 20th and 37th second of the simulation
and therefore the braking torque is non-zero only inside this time interval. Figure 4b
illustrates the evolution of themotorcycle’s velocity response v using the aforementioned
driving scenario. According to Figure 3 and Eq. (10), for the first five seconds of
the simulation, no throttle is applied to the motorcycle and hence its velocity is zero.
Between the 5th and 17th second of the simulation, the driving scenario involves stepping
on the throttle and therefore the motorcycle starts to accelerate. As a result, its velocity
is increasing. Following Eq. (11), as mentioned before, after the 20th second, the driving
scenario involves pressing on the brakes and thus the motorcycle’s velocity begins to
decrease and it is brought to almost a full stop in the 45 seconds of the simulation.

11

DRAFT

Parameter Description Distribution Mean
value

Standard
deviation Units

Krt

Vertical stiffness
rear tire Uniform 58570 11714 N/m

Zrt

Vertical damping
rear tire Uniform 11650 3495 Ns/m

Kft

Vertical stiffness
front tire Uniform 25000 5000 N/m

Zft

Vertical damping
front tire Uniform 2134 640.2 Ns/m

Krs

Stiffness
rear suspension Uniform 125000 25000 N/m

Zrs

Damping
rear suspension Uniform 10000 3000 Ns/m

Kfs

Stiffness
front suspension Uniform 19000 3800 N/m

Zfs

Damping
front suspension Uniform 1250 375 Ns/m

M
Motorcycle mass Uniform 300 6 Kg

J
Engine moment

of inertia Uniform 0.0115 0.0023 Kgm2

µ
Engine coefficient
of viscous friction Uniform 0.001 0.00005 Nm/(rev/min)

Table 2. Varying parameters of the hybrid model and their characteristics.

0 10 20 30 40

0

5

10

15

20

25

30

(a) Front wheel braking torque.

0 10 20 30 40

0

5

10

15

20

25

30

35

(b) Motorcycle velocity.

Figure 4. Thirty FOM virtual hybrid model responses time histories and their respective mean values for the
front wheel braking torque (a) and the motorcycle velocity (b).

12

DRAFT

4. Results and discussion

The performance of the motorcycle prototype was evaluated in tests involving a 45
sec long driving scenario. Real-time hybrid simulations lasted approximately 42 sec
when the FOM virtual hybrid model was used, while they took approximately 19 sec,
20 sec and 21 sec for the FFNN, PCE and mixed (FFNN&PCE) virtual hybrid models,
respectively. Thus, by reducing the order of two braking system NSs, the computation
time was halved. This is notable because the computation time of the FOM virtual
hybrid model is close to the duration of the driving scenario: it is conceivable that if the
driving scenario was more complex, the FOM virtual hybrid model would not complete
its calculations in real-time, risking time delays and distortion of the HS timescale.
Therefore, reducing the order of the critical NSs using the techniques discussed in
Section 2 is justified.

To further assess the performance of theMOR framework, the normalized rootmean
square error (NRMSE) is used to compare the selected hybrid model dynamic response
parameters. Note that the compared responses were computed from the four sets of
30 driving scenario simulations using four virtual hybrid models of the motorcycle
prototype described above.

First, theRO-NSs of the front and rear braking systems are compared to the full-order
model (FOM) prototype. Recall that the same EDs (Eqs. (13) and (14)), comprising 200
input-output data points generated by the FOM of the front and rear braking systems,
were used to train the RO-NSs. To assess the RO-NSs performance, the quantities that
characterize the braking systems, namely the rear τrw and front wheel braking torque
τfw, are compared to the same outputs of the FOM NS. Table 3 displays the NRMSE
between FOM NS and RO-NSs for τrw and τfw. The NRMSE is small, less than 3%
for the real wheel torque and less than 7% for the front wheel, without a clear advantage
of the FFNN or the PCE RO-NSs. The NRMSE error difference likely originates with
the motorcycle dynamics. Figures 5a-b present the mean time history response of the
braking torques obtained from the FOM, FFNN and PCE virtual hybrid models. The
comparison indicates that the responses from the reduced-order virtual hybrid models
are similar and only slightly different from the response of the FOM virtual hybrid
model.

Second, the response of the four virtual hybrid models is compared by examining
the NRMSEs and the time histories of the indicative model response quantities, namely
the angular velocities and torques that couple the substructures of the hybrid models
(ωrw, ωfw, ωen, ωvd, τen and τvd) and the motorcycle velocity v. The variables that
couple the substructures of the hybrid models were investigated since deviations from
their nominal values, would risk the HS outcomes and could drive the HS loop into
instability. In addition, for non-virtual RTHS that include real test benches and PS,
large deviations could damage the corresponding physical specimen and laboratory
equipment. On the contrary, the motorcycle velocity v is chosen to be examined as
it corresponds to a global response quantity that informs about the overall dynamic
behavior of the motorcycle during the driving scenario. Table 4 provides an overview
of the NRMSE and Figures 6, 7 show the response quantity time histories for the four
virtual hybrid models. Evidently, the difference between the virtual hybrid models is
small: the response time history graphs virtually overlap, while the NRMSEs are all

13

DRAFT

Rear and front wheel
braking torque

NRMSE
FOM - FFNN

NRMSE
FOM - PCE

τrw 2.75 2.04
τfw 6.1 6.54

Table 3. NRMSE of rear and front wheel braking torque between FOM NS and RO-NSs. The values are in
percent and correspond to the mean values of the 30 HS evaluations.

0 10 20 30 40

0

5

10

15

20

25

30

25 30 35

20

22

24

26

(a) Front wheel braking torque.

0 10 20 30 40

0

5

10

15

20

25 30 35

15

16

17

(b) Rear wheel braking torque.

Figure 5. Front and rear wheel braking torque for the cases of FOM, FFNN-based and PCE-based MOR.
Mean values of the 30 HS evaluations.

smaller than 2%. Therefore, both the PCE and the FFNNMOR techniques described in
Section 2 produce valid and efficient reduced-order models for RTHS. It is also notable
that a combination of RO-NSs developed using different MOR approaches also works,
giving a much-needed ability to combine reduced-order models in practice.

Finally, given that the performance of PCE-based and FFNN-based reduced-order
models is practically the same, model designers need to make their modeling choice
based on additional consideration. High-dimensional models, with long input and
output vectors, are more suitable for FFNN-based MOR, since PCEs may require
utilization of sparse schemes and thus incur additional errors. On the other hand,
PCE-based MOR offers a distinct advantage in that the PCE coefficients can be used to
compute the statistics of the relevant model response quantities, as well as assess their
sensitivity to model input quantities via the Sobol’ indices approach, at no additional
cost [56, 57]. The latter is not a feature of neural networks. Notably, the software for
developing both FFNN and PCE reduced-order models exists in the form of Matlab
toolboxes [49, 33], making practical implementation of these to MOR approaches
relatively easy.

5. Conclusions

In this study, several model order reduction techniques are bench-marked for real-
time hybrid simulation. The use of model order reduction techniques in hybrid simu-

14

DRAFT

Hybrid model
responses

NRMSE
FOM - FFNN

NRMSE
FOM - PCE

NRMSE
FOM - FFNN&PCE

ωrw 1.39 1.64 1.43
ωfw 1.38 1.63 1.42
ωen 0.13 0.17 0.16
ωvd 1.39 1.64 1.43
τen 1.43 1.85 1.68
τvd 0.09 0.09 0.07
v 1.47 1.74 1.51

Table 4. NRMSE for the mean values of the selected virtual hybrid model response quantities. The values
are in percent.

0 10 20 30 40

-4000

-3000

-2000

-1000

0

11.05 11.054

-3640

-3630

-3620

(a) Engine crankshaft angular velocity.

0 10 20 30 40

-600

-400

-200

0

200

36 38 40

-100

-80

-60

(b) Transmission output shaft angular velocity.

0 10 20 30 40

-20

0

20

40

60

80

30.4 30.5 30.6

-2

0

2

(c) Engine crankshaft torque.

0 10 20 30 40

-10

0

10

20

30

40

50

60

70

20.82 20.84 20.86

-2

0

2

(d) Transmission output shaft torque.

Figure 6. Selected hybrid model responses evaluated in each testing scenario. Mean values of the 30 HS
evaluations. Zoomed axes are added to highlight the difference between the shown response time histories.

15

DRAFT

0 10 20 30 40

0

50

100

150

200

250

300

29 30 31

120

130

140

(a) Front wheel angular velocity.

0 10 20 30 40

0

50

100

150

200

250

300

29 30 31

100

120

140

(b) Rear wheel angular velocity.

0 10 20 30 40

0

5

10

15

20

25

30

35

38 40 42

2

3

4

(c) Motorcycle velocity.

Figure 7. Selected hybrid model responses evaluated in each testing scenario. Mean values of the 30 HS
evaluations. Zoomed axes are added to highlight the difference between the shown response time histories.

16

DRAFT

lation is especially important for hybrid models encompassing high-dimensional non-
linear numerical substructures, risking distorting the timescale of hybrid simulation by
introducing time delays due to the extended computational power needed. The selected
model order reduction techniques are based on data-driven regression techniques and
particularly on polynomial chaos expansion and feedforward neural networks. A para-
metric case study consisting of a virtual hybrid model is used to validate the framework.
Feedforward neural networks and polynomial chaos expansion surrogates are trained
to replicate the dynamic response of selected numerical substructures. Substitution of
their respective full-order components forms the reduced-order hybrid model. Specific
parameters of the hybrid model are varied and multiple hybrid simulation evaluations
are conducted to determine the robustness of the model order reduction framework.
Comparisons with the full-order hybrid model responses are made to assess whether
the reduced-order hybrid models can accurately replicate the initial dynamic responses
while the corresponding errors are proven to be negligibly small. Results confirm the
validity, benefits and performance of the proposed model order reduction framework.
In particular, for the case study presented in this work, model order reduction techniques
allowed for a ≈ 52% reduction of the computational cost, for a maximum of 6.54%
loss on absolute accuracy versus full-order model. Model order reduction techniques
are therefore capable of producing hybrid models for more reliable real-time hybrid
simulations without a significant loss of accuracy. The use of model order reduction
techniques pushes the boundaries of hybrid simulation further by enabling the use of
more complex and computationally involved numerical substructures. Future work
will focus on quantifying how much model order reduction techniques contribute to
improving real-time hybrid simulation with physical substructures.

6. Data Availability Statement

All data and code that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments

This project has received funding from the EuropeanUnion’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No.
764547. The sole responsibility of this publication lieswith the author(s). TheEuropean
Union is not responsible for any use that may be made of the information contained
herein.

References

[1] C. E. Silva, D. Gomez, A. Maghareh, S. J. Dyke, B. F. Spencer, Benchmark
control problem for real-time hybrid simulation, Mechanical Systems and Signal
Processing 135 (2020) 106381.

17

DRAFT

[2] W.Ren,M. Steurer, T. L.Baldwin, Improve the Stability and theAccuracy of Power
Hardware-in-the-Loop Simulation by SelectingAppropriate InterfaceAlgorithms,
IEEE Transactions on Industry Applications 44 (4) (2008) 1286–1294, conference
Name: IEEE Transactions on Industry Applications.

[3] F. L. M. dos Santos, R. Pastorino, B. Peeters, C. Faria, W. Desmet, L. C. San-
doval Góes, H. Van Der Auweraer, Model Based System Testing: Bringing Test-
ing and Simulation Close Together, in: A. Wicks, C. Niezrecki (Eds.), Structural
Health Monitoring, Damage Detection & Mechatronics, Volume 7, Conference
Proceedings of the Society for Experimental Mechanics Series, Springer Interna-
tional Publishing, Cham, 2016, pp. 91–97.

[4] A. H. Schellenberg, S. A. Mahin, G. L. Fenves, Advanced Implementation of
Hybrid Simulation, Tech. Rep. PEER 2009/104, Pacific Earthquake Engineering
Research Center, University of California, Berkeley (2009).

[5] C. R. Thewalt, S. A. Mahin, Hybrid solution techniques for generalized pseudody-
namic testing, Tech. Rep. UCB/EERC-87/09, Earthquake Engineering Research
Center (1987).

[6] N. Tsokanas, D. Wagg, B. Stojadinović, Robust Model Predictive Control for
Dynamics Compensation in Real-Time Hybrid Simulation, Frontiers in Built
Environment 6 (2020).

[7] T. Simpson, V. K. Dertimanis, E. N. Chatzi, Towards Data-Driven Real-Time
Hybrid Simulation: Adaptive Modeling of Control Plants, Frontiers in Built
Environment 6 (2020).

[8] A. Maghareh, S. J. Dyke, C. E. Silva, A Self-tuning Robust Control System
for nonlinear real-time hybrid simulation, Earthquake Engineering & Structural
Dynamics 49 (7) (2020) 695–715.

[9] X. Ning, Z. Wang, C. Wang, B. Wu, Adaptive Feedforward and Feedback Com-
pensation Method for Real-time Hybrid Simulation Based on a Discrete Physical
Testing System Model, Journal of Earthquake Engineering (2020).

[10] A. Chatterjee, An introduction to the proper orthogonal decomposition, 2000.

[11] K. Kunisch, S. Volkwein, Galerkin Proper Orthogonal Decomposition Methods
for a General Equation in Fluid Dynamics, SIAM Journal on Numerical Analysis
40 (2) (2002) 492–515.

[12] W.H.A. Schilders, H.A. van derVorst, J. Rommes (Eds.),ModelOrderReduction:
Theory, Research Aspects and Applications, Vol. 13 of Mathematics in Industry,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[13] S. Herzog, The large scale structure in the near-wall region of turbulent pipe flow,
Ph.D. thesis, Diss, Cornell University, Ithaca, NY (1986).

18

DRAFT

[14] J. P. Bonnet, D. R. Cole, J. Delville, M. N. Glauser, L. S. Ukeiley, Stochastic
estimation and proper orthogonal decomposition: Complementary techniques for
identifying structure, Experiments in Fluids 17 (5) (1994) 307–314.

[15] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data,
Journal of Fluid Mechanics 656 (2010) 5–28.

[16] P. J. Schmid, K. E. Meyer, O. Pust, Dynamic Mode Decomposition and Proper
Orthogonal Decomposition of flow in a lid-driven cylindrical cavity, in: 8th
International Symposium on Particle Image Velocimetry, Melbourne, Victoria,
Australia, 2009.

[17] F. Chinesta, P. Ladeveze, E. Cueto, A Short Review on Model Order Reduc-
tion Based on Proper Generalized Decomposition, Archives of Computational
Methods in Engineering 18 (4) (2011) 395.

[18] R. H. MacNeal, A hybrid method of component mode synthesis, Computers &
Structures 1 (4) (1971) 581–601.

[19] R. R. Craig, A. Kurdila, R. R. Craig, Fundamentals of structural dynamics, 2nd
Edition, John Wiley, Hoboken, N.J, 2006.

[20] F. M. Gruber, D. J. Rixen, Dual Craig-Bampton component mode synthesis
method for model order reduction of nonclassically damped linear systems, Me-
chanical Systems and Signal Processing 111 (2018) 678–698.

[21] G. Miraglia, M. Petrovic, G. Abbiati, N. Mojsilovic, B. Stojadinovic, A model-
order reduction framework for hybrid simulation based on component-mode syn-
thesis, Earthquake Engineering & Structural Dynamics 49 (8) (2020) 737–753.

[22] S. Jain, P. Tiso, J. B. Rutzmoser, D. J. Rixen, A quadratic manifold for model order
reduction of nonlinear structural dynamics, Computers & Structures 188 (2017)
80–94.

[23] M. Karamooz Mahdiabadi, P. Tiso, A. Brandt, D. J. Rixen, A non-intrusive
model-order reduction of geometrically nonlinear structural dynamics usingmodal
derivatives, Mechanical Systems and Signal Processing 147 (2021) 107126.

[24] H. A. Jensen, E. Millas, D. Kusanovic, C. Papadimitriou, Model-reduction tech-
niques for Bayesian finite element model updating using dynamic response data,
Computer Methods in Applied Mechanics and Engineering 279 (2014) 301–324.

[25] H. A. Jensen, A.Muñoz, C. Papadimitriou, E. Millas, Model-reduction techniques
for reliability-based design problems of complex structural systems, Reliability
Engineering & System Safety 149 (2016) 204–217.

[26] C. Bishop, Pattern Recognition and Machine Learning, Information Science and
Statistics, Springer-Verlag, New York, 2006.

19

DRAFT

[27] I. H. Witten, E. Frank, M. A. Hall, C. J. Pal, Data Mining: Practical Machine
Learning Tools and Techniques, 4th Edition, Morgan Kaufmann, Amsterdam,
2016.

[28] R.Ghanem, P.D. Spanos, Polynomial Chaos in Stochastic Finite Elements, Journal
of Applied Mechanics 57 (1) (1990) 197–202.

[29] D. Xiu, G. E. Karniadakis, The Wiener–Askey Polynomial Chaos for Stochastic
Differential Equations, SIAM Journal on Scientific Computing 24 (2) (2002)
619–644.

[30] G. Abbiati, S. Marelli, N. Tsokanas, B. Sudret, B. Stojadinović, A global sensi-
tivity analysis framework for hybrid simulation, Mechanical Systems and Signal
Processing 146 (2021).

[31] M. D. Spiridonakos, E. N. Chatzi, Metamodeling of dynamic nonlinear structural
systems through polynomial chaos NARX models, Computers & Structures 157
(2015) 99–113.

[32] E. Torre, S. Marelli, P. Embrechts, B. Sudret, Data-driven polynomial chaos
expansion for machine learning regression, Journal of Computational Physics 388
(2019) 601–623.

[33] S. Marelli, B. Sudret, UQLab: A Framework for Uncertainty Quantification in
Matlab, in: Proc. 2nd Int. Conf. on Vulnerability, Risk Analysis and Management
(ICVRAM2014), Liverpool, United Kingdom, 2014, pp. 2554–2563.

[34] S. Marelli, B. Sudret, UQLab user manual – Polynomial chaos expansions, Tech.
Rep. # UQLab-V1.3-104, Chair of Risk, Safety and Uncertainty Quantification,
ETH Zurich, Switzerland (2019).

[35] G. Blatman, B. Sudret, Adaptive sparse polynomial chaos expansion based on least
angle regression, Journal of Computational Physics 230 (6) (2011) 2345–2367.

[36] M. Berveiller, B. Sudret, M. Lemaire, Stochastic finite element: a non intrusive
approach by regression, European Journal of Computational Mechanics 15 (1-3)
(2006) 81–92.

[37] K. Hornik, M. Stinchcombe, W. Halbert, Multilayer feedforward networks are
universal approximators, Neural Networks 2 (5) (1989) 359–366.

[38] M. Stinchcombe, H. White, Approximating and learning unknown mappings
using multilayer feedforward networks with bounded weights, in: 1990 ĲCNN
International Joint Conference on Neural Networks, Vol. 3, 1990, pp. 7–16.

[39] R. van der Merwe, T. K. Leen, Z. Lu, S. Frolov, A. M. Baptista, Fast neural net-
work surrogates for very high dimensional physics-based models in computational
oceanography, Neural Networks 20 (4) (2007) 462–478.

20

DRAFT

[40] B. Cao, M. Obel, S. Freitag, P. Mark, G. Meschke, Artificial neural network
surrogate modelling for real-time predictions and control of building damage
during mechanised tunnelling, Advances in Engineering Software 149 (2020)
102869.

[41] T. Wu, K. Ahsan, Modeling hysteretic nonlinear behavior of bridge aerodynamics
via cellular automata nested neural network, Journal of Wind Engineering and
Industrial Aerodynamics 99 (4) (2011) 378–388.

[42] R. K. Tripathy, I. Bilionis, Deep uq: Learning deep neural network surrogate
models for high dimensional uncertainty quantification, Journal of Computational
Physics 375 (2018) 565–588.

[43] R. Snaiki, T. Wu, Knowledge-enhanced deep learning for simulation of tropi-
cal cyclone boundary-layer winds, Journal of Wind Engineering and Industrial
Aerodynamics 194 (2019).

[44] W. Mucha, Application of artificial neural networks in hybrid simulation, Applied
Sciences 9 (21) (2019).

[45] E. E. Bas, M. A. Moustafa, Real-Time Hybrid Simulation with Deep Learning
Computational Substructures: System Validation Using Linear Specimens, Ma-
chine Learning and Knowledge Extraction 2 (4) (2020) 469–489.

[46] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.

[47] Y. Bengio, Y. Lecun, Scaling learning algorithms towards AI, MIT Press, 2007.

[48] Y. Wang, Y. Li, Y. Song, X. Rong, The influence of the activation function in
a convolution neural network model of facial expression recognition, Applied
Sciences 10 (5) (2020).

[49] Matlab optimization toolbox, the MathWorks, Natick, MA, USA (2019).

[50] F. Burden, D. Winkler, Bayesian Regularization of Neural Networks, Humana
Press, Totowa, NJ, 2009, pp. 23–42.

[51] S. M. Pinheiro, Motorcycle modeling for eCVT-in-the-loop real-time hybrid test-
ing, Master’s thesis, University of Porto, Porto, Portugal (2020).

[52] M. D. Mckay, R. J. Beckman, W. J. Conover, A Comparison of Three Methods for
Selecting Values of Input Variables in the Analysis of Output From a Computer
Code, Technometrics 42 (1) (2000) 55–61.

[53] T. Kimishima, T. Nakamura, T. Suzuki, The Effects onMotorcycle Behavior of the
Moment of Inertia of the Crankshaft, SAE Transactions 106 (1997) 1993–2003.

[54] M. Tanelli, Modelling, simulation and control of two-wheeled vehicles, John
Wiley & Sons, 2014.

21

DRAFT

[55] R. Sharp, S. Evangelou, D. Limebeer, Advances in the Modelling of Motorcycle
Dynamics, Multibody System Dynamics 12 (3) (2004) 251–283.

[56] B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Relia-
bility Engineering & System Safety 93 (7) (2008) 964–979.

[57] L. L. Gratiet, S. Marelli, B. Sudret, Metamodel-based sensitivity analysis: Poly-
nomial chaos expansions and Gaussian processes, arXiv:1606.04273 (2015) 1–37.

22

DRAFT

	Introduction
	Polynomial chaos expansion and neural networks as model order reduction techniques
	Polynomial chaos expansion
	Polynomial basis
	Truncation schemes
	PCE coefficient calculation

	Feedforward neural network
	Network Architecture
	Network Training

	Case study
	Motorcycle testing scenario
	Reduced-order numerical substructures
	Virtual hybrid models

	Results and discussion
	Conclusions
	Data Availability Statement

