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Abstract and Key Terms: 
Abstract 

Functional, comfortable prosthetic limbs depend on personalised sockets, currently designed using 
an iterative, expert-led process, which can be expensive and inconvenient. Computer aided design 
and manufacturing (CAD/CAM) offers enhanced repeatability, but far more use could be made from 
clinicians’ extensive digital design records. Knowledge-based socket design using smart templates 
could collate successful design features and tailor them to a new patient. Based on 67 residual limb 
scans and corresponding sockets, this paper develops a method of objectively analysing 
personalised design approaches by expert prosthetists, using machine learning: principal 
component analysis (PCA) to extract key categories in anatomic and surgical variation, and K-
Means Clustering to identify local ‘rectification’ design features. Rectification patterns representing 
Total Surface Bearing and Patella Tendon Bearing design philosophies are identified automatically 
by PCA, which reveals trends in socket design choice for different limb shapes that match clinical 
guidelines. Expert design practice is quantified by measuring the size of local rectifications identified 
by k-means clustering. Implementing smart templates based on these trends requires clinical 
assessment by prosthetists and does not substitute training. This study provides methods for 
population-based socket design analysis, and example data, which will support developments in 
CAD/CAM clinical practice and accuracy of biomechanics research. 
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Introduction 
Prosthetic socket design and fitting is crucial for providing comfortable, stable and functional prostheses that 
match the shape and biomechanical characteristics of the individual residual limb, distributing the pressure 
created by ambulatory loading in ways the limb can tolerate without tissue damage [1]. Residual limb shapes, 
sizes and tissue tolerances vary significantly across the population, so understanding the design objectives 
to best suit an individual is complex. Conventional approaches to socket fitting rely heavily on the skill of 
prosthetists, who work from limited objective data. There is a need for evidence to support their design 
choices so that they can optimise the fit for the individual, and at present this is a highly iterative process [2], 
[3]. Some iteration will always be required, to accommodate limb volume and shape changes especially in 
the first year after amputation, but this project’s goal is to reduce the iteration arising from trial and error. 

Current clinical practice in residual limb shape capture and prosthetic socket design.  

There is a range of approaches for capturing the shape of a residual limb and generating a corresponding 
socket design, with shape capture and design often overlapping [4]. Hands-on methods include capturing the 
limb shape by plaster casting, creating a positive mould, and performing a range of shape modifications 
known as rectification (carving material off the mould, or building material up), so that a vacuum-formed or 
composite socket has a desired pattern of limb-prosthesis interface load transfer. The two most common 
approaches at the transtibial level are known as Patellar Tendon Bearing (PTB) [5] and Total Surface Bearing 
(TSB) [6]. PTB aims to load preferentially the tolerant tissue sites in the residual limb (including the patella 
tendon and fleshy zones either side of the anterior tibia and over the calf muscles), and offload more 
vulnerable sites (including the anterior and distal tibia, the fibula head, and residual limb tip). TSB sockets 
with elastomeric liners are intended to achieve more uniform load transfer across the limb surface, and avoid 
pressure gradients.  

Alternatively, several ‘hands-off’ shape capture methods are available, which aim to create uniform load 
transfer directly in response to the residual limb tissues’ compliance under load. Hydrostatic Sockets (HS) 
are plaster cast over a silicone elastomer liner, non-weightbearing, with pressure applied through 
compressed air [7], [8]. Pressure casting can also be performed weightbearing; the PCAST approach collects 
a plaster cast while weightbearing, suspending the limb inside a cylinder of water [9], and the CIR system 
uses sand casting under vacuum [10], [11]. These methods are designed to reduce variation and reliance on 
manual dexterity, but may still require local shape modifications [4].  

The family of Computer-Aided Design and Manufacturing (CAD/CAM) technologies are growing in use, 
typically to create sockets by the PTB and TSB concepts through digital modification of a 3D shape scan file, 
before carving a foam mould for socket fabrication. CAD/CAM requires the same clinician experience and 
skill as plaster methods, and gives the prosthetist full control over the design whilst preserving a digital record 
of individual designs, and their practice as a whole. 

Towards more evidence-based prosthetic socket design 

Prosthetists have identified the need for support in evidence-based socket design to improve socket fit, and 
this remains part of the International Society for Prosthetics & Orthotics (ISPO) mission and ISPO 50 Charter 
[12]. Conventionally this employs user feedback, though this is subjective and may be unreliable in people 
with vascular disease, whose tissues may be insensate. Technologists have worked towards offering 
feedback from limb-socket interface stress sensors [1], [13] or predicting pressure, based on socket strain 
[14] and biomechanical simulations, commonly Finite Element Analysis (FEA) [15], [16]. Despite recognising 
the need for these technologies over two decades ago, and recommendations for their clinical adoption [17], 
[18] they have not yet reached common use and prosthetists still have the same request for technological 
support.  

Socket design and fitting feedback technologies may face barriers to clinical adoption if they are not designed 
for users with conventional prosthetist-orthotist training, or if they add cost, complexity or inconvenience to 
the existing clinical pathway. For example, FEA is unlikely to be adopted if it requires expensive software 
licenses, a high-performance computer, expensive volume imaging (typically magnetic resonance imaging 
(MRI)), and a trained biomechanical engineer to build each patient’s model [16]. Furthermore technologies 
are unlikely to face a warm reception from the clinical community if they are proposed to replace the need for 
skill and experience, or place any barrier between the clinician and their patient. 

Machine Learning 

Recently researchers have proposed the use of Machine Learning (ML) to bridge the gap between hands-on 
socket design and complex software-supported alternatives. Machine Learning is a subset of techniques 
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within Artificial Intelligence (AI), which involves the examination of datasets to find patterns. With ‘supervision’ 
to link these patterns to some known description or desired outcome, ML can be used for prediction or 
recommendation, and several applications have been considered for lower limb prosthetics.  

Sewell et al [14] used artificial neural networks (ANN) to predict socket-limb interface pressures from non-
invasive strain measurements in the socket. Here, ML is unobstructive to the patient and clinician and 
potentially provides informative data, but imposes a workload in training the ANN for each socket. Colombo 
et al [19] proposed conducting automatic rectification design using an ANN based on a residual limb 3D scan, 
the person’s weight and desired activity level, and simple tissue ‘tonicity’-deformation relations. The 
alternative approach considered by biomechanical modellers is optimisation, whereby the socket design is 
adjusted in order to meet an objective such as minimising limb-socket interface pressure, or soft tissue strain 
[20]–[22]. Optimisation may be computationally expensive and require modelling knowledge, and ANNs 
remain limited by their large requirement for training data, which may not be available in prosthetics, and 
because they are often effectively black boxes for all except simple problems.  

Instead, Expert Systems or Knowledge Based Systems are proposed to be suited to the prosthetic socket 
design problem, as they involve learning to mechanise tasks which humans already perform well. Li et al [23] 
proposed the Analytic Hierarchy Process decision approach to determine personalised socket design 
‘compensations’ based on multiple prosthetists’ experience-based recommendations, and the residual limb’s 
characteristics.  

Combining expert knowledge and physical measurements, Karamousadakis et al [24] used a fuzzy-logic 
Inference Engine (IE) to convert socket pressure and shear stress measurements and expert prosthetists’ 
design rules into rectifications for a transfemoral socket design. Using more intuitive methods and 
incorporating expert knowledge in design might mean these concepts are closer to the objectives mentioned 
above, but it remains non-trivial to integrate them with current clinical workflows, requiring minimal additional 
modelling or sensor complexity and expense. 

Understanding population and design variation in current prosthetics workflows 

The idea of learning from CAD/CAM prosthetic design practice was proposed in the 1990s. Lemaire and 
Johnson [25] presented a method for quantifying and comparing manual rectifications in the commercial 
CADVIEW CAD/CAM environment, and proposed using these data for education, improving clinical efficiency 
and consistency, and ensuring CAD/CAM is informed by best-practice manual approaches. Torres-Moreno 
et al created a library of 27 reference shapes for transfemoral socket design in a CAD system, considering 
combinations of three brim sizes, lengths and profiles (skinny/sparse, average/moderate and fat/bulky), which 
could be modified interactively [26]. Later, Lemaire et al [27] proposed using averaged modifications as a 
template for CAD/CAM rectifications, and demonstrated this approach produced sockets with equivalent 
function, comfort and overall satisfaction to manual methods. Recently Fatone et al have used a similar 
approach to produce templates for the transfemoral NW-FSIV socket [28]. Templates are not in common 
clinical use for CAD/CAM below-knee prosthetic socket design, though some clinicians use itemised 
workflows. Improvements in 3D scanning technology and computational power and methods, as well as the 
increased collaborative work between data scientists and clinicians may now enable these early concepts to 
be enhanced.  

More formal population-based methods such as Principal Component Analysis (PCA), employed for 
statistical shape modelling (SSM) can be used to reduce the dimensionality of anatomic variation, allowing 
identification of the principal, independent ‘modes’ of variation between individuals in a dataset. Population-
based modelling approaches have extensive history in orthopaedics and musculoskeletal biomechanics, 
enabling machine learning to enhance the personalisation of models [29]. Understanding the behaviour of 
interventions or medical devices in a representative population sample is compulsory in preclinical trials, and 
is practical, low risk and low cost in an in silico clinical trial, sometimes using virtual participants. This 
population-based approach addresses the range of possible outcomes and avoids the risk of using near-
average patient models that do not adequately represent the full range of results across a population [30]. 
This approach to capture variations in residual limb size and shape alone was used in supervised ML by 
Worsley et al [31] to automatically classify residual limb shapes by their profile, and by Steer et al [32] as a 
means of providing FEA predictions of limb-socket interface pressure in real time. 

Motivation  

We argue that it is inappropriate to fully automate the prosthetic socket design process, given the importance 
of clinical expertise to personalisation. However, we propose that there is benefit in pursuing evidence-based 
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approaches to save time and iteration towards an acceptable socket for each person, learning from experts 
at each stage (Fig.1). 

 

Figure 1. Proposed process overview for developing and using smart templates as part of expert-informed, evidence-based socket design. 
Instead of automating design at the expense of clinicians, the proposal includes the experts in each stage of development and clinical use. 

Whilst there are proven conventions in socket design, there is no consensus on the targets for limb-socket 
rectification sizes, or their spatial pattern. There is also no measure of the clinically observed variability in 
these parameters. PCA and image analysis methods may allow extraction of quantitative descriptions of the 
key trends in prosthetic socket design as well as residual limb shape, which might be used in supervised ML 
to propose initial template designs for a new fitting. 

Objective 

As a step towards enhancing prosthetic socket templates using expert clinician design data, this study set 
out to evaluate supervised machine learning methods trained on a population of residual limb 3D scans and 
their matched, clinician-produced prosthetic socket designs. This research investigated how population-
based models of the residual limb anatomic shape and the prosthetic socket design might be built, the key 
requirements for each, and whether separate shape and design models might provide higher resolution for 
machine learning than a combined shape and design model. The data was then inspected to characterise 
expert socket design following PTB and TSB approaches, and to identify any general trends in socket design 
for particular residual limb shapes. 

 

Methodology 

Study Design, Approval and Raw Data 

This study was approved by the University of Southampton’s institutional ethics and research governance 
office (ERGO, ID 53279), as a retrospective audit of clinical design practice. Inclusion criteria were age of 18 
years or above, and transtibial amputation. Sixty-seven participants were selected by random sampling from 
clinical service provision in the UK. The sample contained 20 females and 47 males, mean age 56.9 years 
(range 19.6-88.2 years) and mean 4.5 years since amputation (range 0.14-30.2 years). Participants had a 
range of activity levels (8 K1, 29 K2, 27 K3, 3 K4) and reasons for amputation (27 dysvascularity, 20 trauma, 
11 infection, 5 neoplasia, 2 neurological, 2 unknown). 55 had been fitted with a PTB socket, and 12 with a 
TSB, 40 to their left limb and 37 to their right. For each participant a pair of 3D surface mesh (.stl) files were 
provided, representing their residual limb scan and the corresponding mould shape for carving to produce a 
rectified socket. Researchers performing data processing were blinded to participant metadata. 

PCA for Statistical Shape and Design Models 

Scan pairs were processed using the ampscan open source shape analysis toolbox [33] as a development 
of a previously published method for non-paired data [34]: 

• Right sided shapes were mirrored. 

Application: Template-Based Socket Design in Clinic

Smart Templates might reduce clinician workload in 
coarse design, and allow expertise sharing...

... freeing them to focus their time on higher value-
added limb assessment, template personalisation, etc.

Interpreting: Supervised Machine Learning for Smart Templates

Identify trends in limb shape, socket design and 
measures of outcome

Experts provide interpretation to identify the meaning 
of these trends, and how to apply them

Learning: Socket Design Data Foundation

Digital record of clinical design and outcome history 
from groups, or a single clinician’s practice

Experts provide consensus upon the key factors in 
design for limb-socket interaction
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• The full set of socket shapes were aligned. A vertical superior-inferior translation was applied so that 
all shapes’ patella tendon rectification was located at z=0, and the shapes’ centroids at the patella 
tendon level were aligned in the medial-lateral and anterior-posterior axes (x=0, y=0). An internal-
external rotation was applied so that the posterior trimline lay parallel with the coronal plane. The 
sockets’ abduction-adduction and flexion-extension were not changed from the CAD file. 

• Each limb shape was aligned with its corresponding socket. Shapes were aligned first by their 
centroids, then by automatic iterative-closest-point (ICP) surface matching. Where the limb and socket 
scan shapes deviated considerably, manual alignment adjustments were made and checked by two 
experienced observers (LED, ASD) to ensure prioritised medial-lateral, anterior-posterior and 
abduction-adduction alignment at the knee, flexion-extension and internal-external rotation alignment 
at the anterior tibia. Superior-inferior alignment referenced the anterior tibia and patella. 

• An HC Laplacian smoothing algorithm was applied to remove noise while preserving volume, and the 
socket shapes were cut at an approximated trimline. 

• A ~30,000 node mesh was registered onto each of the limb and socket meshes, to allow direct 
comparison in location of corresponding vertices. 

• A field of surface vertex normal deviations representing the rectification design was calculated 
between each limb-socket pair, and plotted according to an accessible colour map (Fig.2) common to 
the prosthetics community [25]. 

 

(Figure 2). Example limb shapes plotted with rectification design field from aligned, registered sockets, of PTB (top) and TSB (bottom) design 
approaches. Rectifications are labelled as PT (patella tendon), TC (tibial crest), DAT (distal anterior tibia), DT (distal tip), LP (lateral 

paratibial), MP (medial paratibial), FH (fibula head), MSC (medial supracondylar), LSC (lateral supracondylar), and PF (popliteal fossa). The 
images also label the trim line (TL). The shape above the trim line, removed in socket production, is irrelevant to socket-limb load transfer 

so is masked in yellow 

• A statistical limb shape model (SLM) using the limb scans as a training dataset was produced by 
principal component analysis (PCA) using the scikit-learn toolbox1. The mesh files were each 

represented as a column vector:  

𝒙 = [𝑥1, 𝑦1, 𝑧1, … , 𝑥𝑚, 𝑦𝑚, 𝑧𝑚]𝑇 (1) 

 
1 https://scikit-learn.org 
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where 𝑚 represents the number of nodes in the baseline mesh and 𝑥, 𝑦 and 𝑧 are the vertex 
coordinates. A vector describing the mean limb shape was calculated by: 

�̅� =
1

𝑛
∑ 𝒙𝑖

𝑛

𝑖=1

 (2) 

where 𝑛 represents the number of limbs in the training dataset. PCA by mean-centred Singular Value 
Decomposition allowed each limb shape to be described by: 

𝒙 = �̅� + ∑ 𝝋𝑗𝒅𝑗

𝑐

𝑗=1

 (3) 

where 𝝋𝑗 are eigenvectors corresponding to the 𝑐 Principal Components (PC) or ‘modes’ of the 

population’s shape variation, and 𝒅𝑗 is a vector of weighting coefficients associated with the 

eigenvectors to describe each shape’s deviation from the mean. 

• A statistical design model (SDM) was produced in the same way, but using a column vector containing 
the socket-limb rectification values 𝑟 at each vertex:  

𝒙 = [𝑟1, … , 𝑟𝑚]𝑇 (4) 

• Finally, a statistical limb shape and design model (SLDM) was produced in the same way, using a 
column vector of the limb shape and socket-limb rectification values:  

𝒙 = [𝑥1, 𝑦1, 𝑧1, 𝑟1, … , 𝑥𝑚, 𝑦𝑚, 𝑧𝑚, 𝑟𝑚]𝑇 (5) 

• The 95% range of population variation in limb shape was estimated by plotting synthetic shapes with 
weighting coefficients at 𝑑𝑗 = ±2𝜎 either side of the mean for each mode in turn, where 𝜎 represents 

the standard deviation of variation. Extremes of (non-parametric) socket design variation were plotted 
using the 2.5th and 97.5th percentile mode scores. Variations were interpreted by expert observers 
(DH, EP). 

K-Means Cluster Analysis of Localised Rectifications 

A second methodology was developed to semi-automatically identify particular rectification features using a 
custom image recognition and classification tool, trained to identify PT, FH, MP, LP and DT rectifications. 
This involved: 

• Segmentation: fields of rectification curvature, and combined rectification and curvature from the 67 
training datasets (Fig.3a) were mapped onto 224 x 224-pixel 2D images (Fig.3b). K-means clustering 
was applied across all the images to generate up to 90 binarised pixel regions per image (Fig.3c).  

• Feature Extraction: The shape of each region was quantified using Histogram of Oriented Gradients 
(HOG) to compute the edge detection gradient, followed by PCA to reduce the problem 
dimensionality, with the first 25 components retained (>95% of explained variance). In parallel, the 
location of each region was quantified by dividing the original region into a 7 x 7 grid, with the number 
of pixels for each region in each grid square calculated. Finally, the total pixel count was included. 
This resulted in a total of 754 features for each region which were then used for classification.  

• Classification: the features were fed into a second k-means clustering algorithm, which groups the 
regions generated from the image segmentation. To ensure all groups represented the same features, 
erroneous clustering was identified through comparison to the average of each cluster. Outliers were 
identified based upon pixel overlap with the average cluster. Any outlier regions were then moved to 
the cluster where they were closest to the average. The clustered groups were then visually inspected 
and related to rectifications of interest, for example, a group which contains the patella tendon bars 
across all input sockets (Fig.3d). The classified cluster images were then mapped back onto the 
corresponding 3D shape (Fig.3e).  
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(a) (b) (c) (d) (e) 

Figure 3. K-Means Clustering Method for identifying and measuring local rectifications. The socket curvature and rectification maps are 
taken as inputs (a) and mapped onto 244 x 244 pixel 2D arrays (b). K-means clustering is used to identify regions of pixels representing 

design features (c). These are clustered, and desired features are classified using their shape and location, labelled (d), and finally mapped 
back onto the 3D socket shape (e). 

Data Analysis 

The validity of the three PCA models (limb shape model, socket design model, and combined model) was 
evaluated and compared. Compactness was assessed by finding the number of modes required to describe 
95% of the training population’s variance. Generality was assessed by Leave-One-Out (LOO) testing to 
identify the required training dataset size. Each training population shape was left out of the statistical model 
generation and then reconstructed using its weighting coefficients from the complete model, and its root mean 
squared error (RMSE) of reconstruction was calculated. A threshold RMSE of 1mm was defined, based on 
consistency measures of manual rectifications [35], plaster casting and 3D scanning in limb shape capture 
for socket design [36]. 

Gross and detailed shape and rectification measures were analysed for the training dataset. The limb lengths 
were measured from patella tendon to distal tip, and perimeters at the patella tendon and at half and three-
quarters of the length. Profile ratios were created between the half- and three-quarter perimeters and the 
patella tendon perimeter. The abduction-adduction angle was calculated by finding the principal axis of the 
mesh below the patella tendon. Volume and area reductions were calculated by comparing limb and socket 
shapes. Finally, the distributions of rectification sizes were extracted using the K-Means Clustering method. 
These measures were inspected for the whole training population and for the PTB and TSB socket groups. 
A Kolmogorov-Smirnov test was used to assess whether data were normally distributed. Differences between 
measures for the PTB and TSB groups were assessed for statistical significance using an unpaired Student’s 
t-test (for parametric measures) and a Mann-Whitney U test (for non-parametric measures). Two-tailed tests 
were used for limb shape measures, where hypotheses assumed the populations were equal. One-tailed 
tests were used for rectification measures, where hypotheses assumed the PTB designs would have larger 
rectifications.  
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Results 
Statistical models were built using PCA for the limb shape (SLM), socket design (SDM) and combined limb 
shape and socket design (SLDM). Plots of cumulative variance across each model’s modes (Fig.4a-c) show 
that 95% of the population variation was captured by 3, 19 and 4 modes for the limb shape, socket design 
and combined models, respectively. When randomly selected training datasets were reconstructed using 
different training population sizes (Fig.4d-f), leave-one-out (LOO) testing revealed that around 40 training 
limb and/or socket shapes are required for shape reconstructions from the SLM and SLDM models to have 
less than 1.0 mm mean error. The same accuracy was achieved for the SDM using only 10 training socket 
shapes. 

The SLM was able to discriminate between the main independent modes of limb shape variation (Fig.5). 
Variation presented as the limb’s overall size (mode 1 containing 85% of population variation), with larger 
limb circumference and width corresponding with longer length; and the limb’s soft tissue bulk (mode 2, 8.3% 
of variation). Mode 3 (2.5% of variation) described abduction-adduction angle at the knee. Mode 4 (1.1% of 
variation) represented calf muscle bulk, most apparent in the sagittal view, and mode 5 (0.6% of variation) 
contained the limb’s bulbous-conical profiles in the sagittal and coronal planes. Mode 2 demonstrates that 
larger circumference limbs were more likely to be bulbous shaped and smaller circumference limbs a more 
cylindrical or conical, and Modes 4 and 5 indicate how the profile can also vary independent of limb size or 
soft tissue bulk. 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 4. Cumulative mode variance graphs (a-c) and leave-one-out (LOO) error graphs (d-e) for statistical limb shape model (SLM, a&d), 
statistical socket design model (SDM, b&e) and statistical limb shape and socket design model (SLDM, c&f) cases. 
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Figure 5. First five mode variations for the Statistical Shape Model (SSM), showing ±2 standard deviation shapes either side of the mean. 
Shape variation observations (Obs) are labelled. 

The SDM was able to discriminate between the main independent trends in prosthetic socket design variation 
(Fig.6). The first mode (containing 35% of population variation) showed an apparent trend between the 
commonly grouped rectifications of the PTB and TSB socket design philosophies. At one extreme of Mode 
1, PTB-dominant design features were observed with notable rectifications at the patella tendon bar, lateral 
and medial areas either side of the anterior tibial crest (all visible on the anterior view), and relief over the 
fibula head (visible on the lateral view). Posteriorly, nearly matching limb-socket fit was observed. At the other 
extreme of Mode 1, TSB-dominant design features were observed. The socket was a similar shape to the 
limb, with slight press-fit/interference around the limb periphery and few local rectifications except at the 
patella tendon bar, and substantial distal tip off-loading. The next three modes appeared to show these local 
socket rectifications in combination with various extents of the PTB-TSB grouped features. Mode 2 (25% of 
variation) presented variation between PTB and TSB designs but with the distal tip off-loading aligned with 
the PTB design. Mode 3 (8.5% of variation) showed the fibula head off-loading feature presenting more 
strongly in the TSB design, than in the PTB with which it is normally associated. Mode 4 (5.1% of variation) 
showed variation in the patella tendon bar rectifications. Finally, mode 5 (3.9% of variation) showed little 
variation in the pattern or magnitudes of rectification, but showed their locations varying in internal-external 
rotation. In summary, PCA performed upon socket rectification data did not generate an SDM which 
discriminated between individual rectifications, instead identifying variance in combined rectification groups. 

The SLDM (Fig.7) showed very similar limb shapes and variance to the pure statistical limb shape model 
(Fig.5), which dominated the modes. However, this model revealed trends in socket design which correspond 
with the shape variation. A more PTB-like design was observed for larger, longer limb shapes (mode 1), for 
more bulbous limb shapes (modes 2 and 5), and for limbs with less defined calf tissue (mode 4). More TSB-
like sockets corresponded with limbs that were smaller (mode 1), more slender or cylindrical (modes 2 and 
5) and with more defined calf tissue (mode 4). Mode 3 contained abduction-adduction angle variation at the 
knee, and showed little socket design variation except a slightly more marked fibula head buildup in abducted 
limbs. 
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Figure 6. First five mode variations for the Statistical Design Model (SDM), showing the 2.5th and 97.5th percentile shapes. Rectification map 
units: mm. Design variation Observations are labelled. 
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Figure 7. First five mode variations for the Statistical Limb Shape and Socket Design Model (SLDM), showing mean ±2 standard deviation 
shapes. Rectification map units: mm. 

 

The main shape and design correspondences identified in the PCA statistical models are summarised in 
Table 1. The training population was observed to be normally-distributed in the generated limb shape and 
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combined limb shape and socket design models, but the statistical socket design model was not normally 
distributed (Fig.A1).  

Table 1. Descriptions and proportional variance in shape and/or design described by the first five modes in each model. 

Mode No. 

Mode Variance and Description for each Statistical Model: 

Limb Shape (SLM) Socket Design (SDM) 
Limb Shape and Socket 

Design (SSDM) 

1 
(85%) Size and Length: 

Long/Large to Small/Short 
(35%) PTB to TSB with 

Distal Tip space 
(83%) Large & PTB to 

Small & TSB 

2 
(8.3%) Bulky to Slender 

soft tissue 
(25%) PTB with Distal 

Tip space to TSB 
(8.2%) Bulky & PTB to 

Slender & TSB 

3 
(2.5%) Angle of knee, 
Abducted to Adducted 

(8.5%) PTB to TSB with 
Fibula Head rectns. 

(2.5%) Abducted to 
Adducted knee 

4 
(1.1%) Sagittal profile, 

conical to bulbous 

(5.1%) PTB to TSB with 
patella tendon and 
anterior tibia rectns. 

(1.1%) Profile: 
conical PTB to bulbous 

TSB 

5 
(0.6%) Coronal profile, 

conical to bulbous 
(3.9%) Internal-External 

Rotation of Tibia 

(0.7%) Profile: 
bulbous PTB to conical 

TSB 

 

The K-Means Cluster analysis permitted statistical analysis of the training sockets’ individual rectification 
sizes (Fig.8). Against a human observer, the method classified rectifications with 97.3% accuracy overall, 
including 100% for PT and DE (Table 2). After correcting the few incorrectly classified rectifications, the 
method identified that all sockets had a rectification at the patella tendon. At least one paratibial rectification 
was identified all sockets except one from each group. Fibula head rectifications featured in 49/55 PTB 
sockets but only 6/12 TSB sockets. The limb shape and socket design distributions were extracted (Table 3). 
No statistically significant limb shape measures were observed between the individuals who received PTB 
and TSB sockets (p>0.05). Inspecting the socket volume and cross-sectional area reduction measures, TSB 
sockets were smaller compared to the limb than PTB sockets, although this did not reach statistical 
significance (0.23≤p≤0.36). The local PT, MP and LP rectifications were normally distributed (Fig.8a,c&d). 
No difference was found between the PT rectification size for each group (p=0.40). The paratibial 
rectifications were larger for the PTB designs, but this was marginally significant for the lateral side (p=0.05). 
The fibula head and distal end rectifications (Fig.8b&e) were skewed owing to many sockets with small or no 
rectification at these sites. Larger DE rectifications were seen for the TSB sockets, a compensation for their 
greater press-fit as the near-incompressible posterior soft tissues must be accommodated elsewhere. The 
difference between PTB and TSB groups was not significant (p=0.21). PTB sockets had significantly more 
pronounced FH rectifications than TSB sockets (p=0.03).  

Table 2. Prevalence of each rectification, and accuracy of classification by K-Means Clustering. 

Rectification PT FH MP LP DE 

Prevalence, % 100 82 94 97 91 

Classification, 
% 

100 93 99 96 100 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 8. Histograms of local rectification sizes across the training population for (a) patella tendon, (b) fibula head, (c) medial and (d) lateral 
paratibial, and (e) distal end design features as mapped on the (f) 3D socket shape. -ve denotes buildup, +ve denotes carve. 
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Table 3. Training dataset shape and socket design measures. 

Measure 
Whole Group 

(n=67) 
PTB Group 

(n=55) 
TSB Group 

(n=12) 

Residual Limb Anatomy: normally distributed: mean (s.d.) 

Limb length, mm 156 (29) 157 (29) 153 (31) 
Perimeter at patella tendon, mm 383 (40) 383 (42) 385 (34) 
Perimeter at ½ limb length, mm 366 (51) 358 (55) 355 (30) 
Perimeter at ¾ limb length, mm 327 (48) 329 (52) 315 (24) 
Profile ratio at ½ limb length1 0.95 (0.06) 0.96 (0.06) 0.92 (0.05) 
Profile ratio at ¾ limb length1 0.85 (0.07) 0.86 (0.07) 0.82 (0.04) 
Abduction / adduction angle, ° 0.7 (1.9) 0.7 (2.0) 0.5 (1.6) 

    
Gross Socket Sizing: normally distributed: mean (s.d.) 

Overall volume reduction, % -1.9 (4.3) -1.6 (4.4) -3.1 (3.7) 
Area reduction at patella tendon, % -4.1 (5.7) -3.8 (5.6) -5.6 (5.8) 
Area reduction at ½ limb length, % -6.0 (4.5) -5.7 (4.2) -7.7 (5.4) 
Area reduction at ¾ limb length, % -1.9 (5.8) -1.6 (5.8) -3.7 (5.5) 

    
Local Socket Rectifications: non-normally distributed: median (10th - 90th percentile range) 

Patella tendon rect. depth, mm 6.6 (4.1 – 8.9) 6.6 (4.1 – 8.9) 6.5 (3.7 –8.6) 
Fibula head rect. height, mm -0.9 (-4.2 – 0.5) -1.5 (-4.4 – 0.5) 0.0 (-3.0 – 1.8)* 
Medial paratibial rect. depth, mm 4.3 (0.8 – 6.9) 4.5 (1.2 – 6.8) 3.8 (0.0 – 7.2) 
Lateral paratibial rect. depth, mm 4.9 (1.5 – 7.7) 4.9 (2.8 – 7.8) 3.5 (-0.2 – 8.6)* 
Distal end rect. height, mm -4.1 (-15.0 – 0.0) -4.1 (-14.1 – 0.0) -5.1 (-20.5 – -0.6) 

1 Profile ratio of 1 is cylindrical, below 1 is conical, above 1 is bulbous. * indicates a statistically significant difference between PTB and TSB 
groups at the p<0.05 level. 

 

Discussion 

This study applied supervised machine learning methods to evaluate trends in the shape of residual limbs 
and corresponding expert-designed prosthetic sockets. It investigated how population-based models might 
be built, and whether separate shape and design models might provide higher resolution for machine learning 
than a combined shape and design model. Global limb shape trends were captured and separated clearly 
using principal component analysis of surface shape. The same method distinguished the main overall trends 
in prosthetic socket design (i.e. PTB and TSB), but it was less successful in separating the variations in 
discrete local rectifications. For this purpose a K-Means Clustering model was trained to identify specific 
rectifications so that they could be compared quantitatively. Correspondences in anatomy and socket design 
variation were inspected to identify whether there were trends in the socket design approach for particular 
residual limb shapes in the training dataset. 

Observations: 

The Statistical Limb Model (Fig.5) showed detailed distinction between different shape profiles, with different 
modes capturing independent variations in gross tissue bulk (Mode 2) and the conical-cylindrical-bulbous 
profile in sagittal (Mode 4) and coronal (Mode 5) planes. The modes showing coronal plane bulbousness 
varying to a cylindrical profile (Mode 2, and particularly Mode 5 which shows medial and lateral ‘ears’) might 
indicate short-term swelling and oedema which subsides in the months following surgery, whereas the 
bulbous to conical shape variance seen in the sagittal plane (Mode 4) might be associated more with activity 
level and atrophic effects. These theories were tested in a secondary analysis of correlation between the 
SLM mode scores and time-since-amputation (Table A1). No correlation was seen for Modes 1, 3 and 4 
(r<0.1, p>0.4) but weak correlations were observed for the bulbousness-shape Modes 2 and 5 (r=0.23 and 
0.28, respectively), which reached significance for Mode 5 (p=0.065 and 0.026, respectively). 

The socket design model’s modes did not clearly distinguish between separate local rectifications (Fig.6). 
The first mode clearly showed the established trends in PTB and TSB socket designs, in fine detail. For 
example, a difference can be seen in the straight patella tendon ‘bar’ rectification in the PTB design, 
compared to the TSB’s more curved, anatomy-following modification at this site (compare to Fig.2).[6] 
However, subsequent SDM modes contained variation in local rectifications combined with these overall 
design variation trends, so this method did not allow direct assessment of individual rectification sizes and 
shapes. The SLDM however showed some general trends between limb shape and socket design which are 
consistent with clinical practice. Clinical, functional and user preference for TSB and PTB sockets is complex, 
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and highly influenced by the liners and accessories they are worn with,[37], [38] though there is some 
evidence to support the choice of socket when considering residuum shape and tissue composition. TSB 
sockets are reported to be preferred for “stumps without oedema and pain”, which are more common in early 
rehabilitation.[39] PTB sockets are used for earlier rehabilitation where the strategic proximal loading and 
distal offloading protects the vulnerable soft tissue reconstruction.[40] TSB sockets are preferred for 
individuals with mature residual limbs of stable volume, without excessive soft tissue, and which are not 
excessively long,[41] although they may be more difficult to fit to highly conical shaped limbs.[6] Bulbous 
limbs are understood to require PTB sockets, as it would be difficult to don a TSB socket over a bulbous 
distal shape and achieve the desired uniform load transfer. These clinical use principles are consistent with 
the correlations observed in this study’s SLDM, where socket designs had more PTB-like features in longer, 
larger, more bulbous limb shapes (Fig.7). 

More detailed analysis of personalised local rectifications was possible using the K-Means Clustering 
approach. Inspection of rectifications across the training population revealed that many of the same 
rectification features were used for both PTB and TSB socket designs. No differences in patellar tendon or 
distal tip rectifications were observed, though PTB sockets had larger paratibial and fibular head rectifications. 
TSB sockets were more tightly fitted to the limb than PTB sockets (-3.1% vs. -1.6% by volume, on average). 
Only the FH rectification and LP differences reached statistical significance, and the clinical significance of 
these fine variations in socket design are unknown. However, it is noteworthy that this method showed how 
expert prosthetists produce sockets across a continuum of design, instead of in discrete groups as the PTB 
and TSB approaches were originally presented. Prosthetic socket design may have evolved to employ the 
most biomechanically useful features of PTB and TSB approaches, tailored to individual patients. The present 
study shows how design is tailored to general limb shape trends (Fig.7), and further work is required to 
understand how detailed design is tailored to individuals. 

 

Limitations 

Statistical shape models are, at best, as limited as the data used to create them. It is risky to extrapolate their 
use outside the training population. This model will not necessarily describe other populations, from different 
ecogeographic groupings or ethnicities, with their respective effects on physical characteristics, form of injury 
or disease, and surgical approach. For example, amputations may be performed at different heights and with 
different soft tissue reconstructions depending on the reason for amputation (e.g. landmine trauma vs. road 
accident trauma vs. vascular disease), and there will be between-group differences in bony anatomy and soft 
tissue composition. Furthermore the socket population was biased towards PTB designs, with only 12 TSB 
sockets in the training dataset. The present method would be strengthened with more training data, but the 
training population was deemed acceptable for the present study as it was randomly sampled, and the TSB 
concept relatively closely matches the limb shape, so it might be described adequately with fewer models 
than the more variable PTB concept. Ultimately the socket design model was verified to within 1mm with only 
10 socket shapes.  

A further study limitation in scope is retrospective assessment of limb shape and socket design only, without 
a direct consideration of the residuum’s bony anatomy, soft tissue wounds or underlying pathology which 
might influence socket design, such as bone spurs, heterotopic ossification, neuromata, bursae, adhered 
scars. In CAD/CAM clinical practice these are identified in limb assessment prior to socket design but not 
necessarily tracked in the CAD record. There have been proposals for how bony anatomy might be predicted 
from limb surface topology, using surface curvature [42] or an ANN [43]. However, the soft tissue pathological 
phenomena mentioned above would probably not be identifiable, so the use of any such data to inform new 
socket design would rely on template adaptation to the individual by a prosthetist, part of their value-added 
work. 

Implications and use 

As described earlier, the authors argue that it is inappropriate to try to fully automate the prosthetic socket 
design process. Instead this project builds upon proposals made early in CAD/CAM prosthetics [25], [27], to 
learn from past experience for smart templating. With quantitative descriptions of the key trends in residual 
limb shape, a person’s limb can be compared to a population dataset, and similar prior socket designs could 
be looked up. Supervised ML will allow trends in socket design to be scored by appropriate clinical outcome 
measures of comfort or function, providing templates which can be integrated in current CAD/CAM workflows. 
This process requires expert human input throughout, from development to clinical use, to provide the key 
value of patient-centred design (Fig.1). According to the Pareto 80:20 principle [44] this expert-led proposal 
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could protect the prosthetists’ time to provide their skill where it is most valuable, in adapting the template to 
their patient. As such, the presented methods could support evidence-based approaches to save time and 
iteration towards an acceptable socket, and sharing best practice with colleagues and trainees. Ahead of 
such templates, this study provides quantitative measures of clinically-used socket rectifications and press-
fit (Table 3), reveals a design continuum between more PTB-like and more TSB-like sockets, and 
demonstrates how prosthetists select these features for different limb shapes (Fig.7).  

Beyond direct clinical application, characterisation of residual limb size and shape variability is useful to 
ensure that biomechanical analysis models are representative of a broad population of prosthesis users. 
Without access to such data, Silver-Thorn [45], [46] developed a generic FEA model of the transtibial 
amputated limb that was resized for the individual to estimate interface stresses with various socket designs, 
but used standard geometric shapes rather than accurate geometries, and did not account for limb shape 
variations. The same shape PCA method presented here has been used with finite element mesh morphing 
to produce an FE limb model scaled from an MRI scan onto a population of surface scans, enabling far more 
general FE predictions than a single model allows [32]. Where many FE studies have used single- or highly 
simplified, volume-scaled socket designs,[16] the presented shape analysis method and quantitative 
rectification data (Table 3) would enable modellers to work with more clinically representative sockets. 

Conclusions: 
This study provides methods for population-based socket design analysis which will support developments 
in CAD/CAM clinical practice and accuracy of biomechanics research. These methods may help to reduce 
clinic time and iterations required to fit a comfortable socket. Bearing in mind the mentioned limitations, we 
advise care in interpreting and using the present study’s findings. These design trends are observations from 
a single group of patients and clinicians, and they do not imply any causal link between design and outcome. 
As such the present study’s results do not represent recommendations for clinical practice and will not apply 
to all patients and clinical situations. The proposal of any socket design guideline or template should be 
validated in a blinded, controlled clinical study comparing from-template and from-scratch sockets. The 
authors reiterate our position that prosthetic socket design should not be fully automated, but that the process 
may be improved using smart socket templates, fitted by a highly trained prosthetist. 
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Appendix: 

 

Figure A1. Histograms of training dataset mode scores for the SLM, SDM and SLDM. Greatest deviation from normal distributions is 
observed for the statistical design model. 

 

Table A1: Correlations between statistical limb model mode scores and participant metadata: 

 Correlations between SLM modes and participant metadata 

Mode 

1 2 3 4 5 

Gross 
Size: 

Large to 
Small 

Soft 
Tissue: 

Bulky to 
Slender 

Knee 
angle: 

Adducted 
to 

Abducted 

Sag. 
profile: 

conical to 
bulbous 

Cor. 
profile: 

conical to 
bulbous 

Time Since 
Amputation 

r 0.10 0.23 0.02 0.05 0.28 

p 0.433 0.065 0.865 0.702 0.026* 

* denotes statistically significant correlations (p<0.05). 
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