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1 Introduction

Empirical Ground-Motion Models (GMMs) are typically estimated by regression. While there is more to
GMM development than fitting model to data, regression is an indispensable tool to connect the model
coefficients to the data. One important aspect for regression in the context of GMM development is to
account for correlations between records from the same event/station (or region for partially nonergodic
models), which is typically done by estimating a random effect for these terms (Al-Atik et al. 2010). In the
computer language R (https://www.r-project.org/), a popular package to estimate random effects models is
lme4 (Bates et al. 2015), which provides efficient algorithms to estimate these kinds of models via (restricted)
maximum-likelihood (ML). lme4 has been used extensively in empirical GMM development (e.g. Weatherill,
Kotha, and Cotton 2020; Montalva, Bastías, and Rodriguez-Marek 2017; Bindi et al. 2018, 2019; Bajaj and
Anbazhagan 2018; Campbell and Bozorgnia 2019; Stafford 2014; Kotha et al. 2020; Sahakian et al. 2018;
Lanzano et al. 2019; Bora, Cotton, and Scherbaum 2019; Kotha, Cotton, and Bindi 2018; Bahrampouri,
Rodriguez-Marek, and Green 2021; Parker et al. 2020). Similar packages/functions exist for other computer
languages (such as nlmefit in Matlab (https://www.mathworks.com/), used in e.g Sedaghati and Pezeshk
(2017) and Farajpour, Pezeshk, and Zare (2019)). Generally, one can probably say that ML-estimation
remains the workhorse in empirical GMM development.
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Contrary to ML-estimation, Bayesian inference has sometimes been used in GMM development (e.g. Wang
and Takada 2009; Stafford 2019, 2014; Kuehn and Scherbaum 2015, 2016; Kuehn and Abrahamson 2018,
2020; Kuehn, Abrahamson, and Walling 2019; Rahpeyma et al. 2018; Kowsari et al. 2019, 2020; Ordaz,
Arciniega, and Singh 1994; Arroyo and Ordaz 2010a, 2010b). In the end, GMMs can be successfully estimated
using ML or Bayesian inference, and it can be a matter of convenience and familiarity which tool is chosen.
I want to note that GMM development requires a lot of judgment to make sure that the estimated GMM
is physically viable. Such judgment can be incorporated into a Bayesian model via the prior distributions
for the parameters. In addition, the posterior distribution provides an easy tool to probabilistically assess
the (within-model) epistemic uncertainty associated with model predictions. Stafford (2019) also noted that
GMMs estimated via Bayesian GMMs may be continuously updated with new data.

Bayesian inference has not been used as extensively as ML based methods to estimate empirical GMMs,
possibly because it is seen as more complicated, and people are not familiar with it. Here, I want to bridge
that gap, and show how GMMs can be fit using the R package R-INLA (https://www.r-inla.org/) (Rue
et al. 2017), where INLA stands for integrated nested Laplace approximation (Rue, Martino, and Chopin
2009). INLA can be used to fit linear mixed (and many more) models, similar to lme4. Most of the
aforementioned Bayesian models are estimated via Markov Chain Monte Carlo estimation. By contrast, INLA
is a deterministic Bayesian inference approximation approach. INLA is generally quite fast compared to
MCMC methods. It is possible to estimate nonergodic GMMs based on varying coefficient models (Landwehr
et al. 2016; Bussas et al. 2017; Franco-Villoria, Ventrucci, and Rue 2019), which is quite fast with INLA
(Kuehn 2021).

The goal of this tutorial is that an analyst who has fitted models with lme4 or a similar tool will be able to fit
similar models with INLA. The tutorial is not an introduction to Bayesian inference, or to the mathematical
background of INLA. This tutorial covers the basic aspects of R-INLA that are needed to estimate GMMs

• Estimate mixed effects models (coefficients, standard deviations, random effects)
• Access results from a fit
• Set prior distributions and control options for the model fit
• Predict new data
• Model comparison/selection

There is a lot more to estimating models with INLA that is not included in this tutorial. For more information
on computation with INLA in R, see e.g. Gómez-Rubio (2020) (https://becarioprecario.bitbucket.io/inla-
gitbook/index.html) or Krainski et al. (2019) (https://becarioprecario.bitbucket.io/spde-gitbook/index.html).
For mathematical background, see Rue, Martino, and Chopin (2009) and Rue et al. (2017). The discussion
forum at https://groups.google.com/g/r-inla-discussion-group is also a helpful resource. For an introduction
to Bayesian inference, see e.g. Kruschke (2015) or Gelman et al. (2013).

2 Getting Started

This tutorial uses the R-INLA package for regression. For installation instructions, see https://www.r-
inla.org/download-install. The tutorial requires the following R packages.
# load required packages
library(lme4)
library(ggplot2)
library(INLA)

First, we simulate some data. Here, we assume we have 50 events and 20 stations. Each event is recorded at
all 20 stations. Events are randomly assigned a magnitude between 4 and 8, and an event term, sampled
from a normal distribution with mean zero and standard deviation τ . Similarly, the VS30 and station terms
are randomly sampled for each station. Then, for each event/station pair, a distance is sampled, and the
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median PSA is calculated according to

y = c1 + c2M + c3(8 −M)2 + (c4 + c5M) ln [RRUP + h] + c6RRUP + c7 ln VS30

400 + δB + δS + δWS

## simulate data
tau <- 0.5;
phiSS <- 0.5;
phiS2S <- 0.4;

neq <- 50;
nstat <- 20;

### determine M, event term and observed magnitude
dataM <- matrix(nrow = neq,ncol=2);
set.seed(5618);
for(i in 1:neq) {

mag <- round(runif(1,4,8),2);
eta <- rnorm(1,0,tau);
dataM[i,] <- c(mag,eta);

}

### determine VS, station term and observed VS
dataV <- matrix(nrow = nstat,ncol=2);
set.seed(8472);
for(i in 1:nstat) {

vs <- round(runif(1,log(300),log(1000)),2);
lambda <- rnorm(1,0,phiS2S);
dataV[i,] <- c(vs - log(400),lambda);

}

nrec <- nstat;
data <- matrix(nrow=neq * nrec,ncol = 7);
data_x <- matrix(nrow = neq * nrec, ncol = 7)
data_y <- vector(length = neq * nrec)

h <- 6
coeffs <- c(10.925, -0.985, -0.245, -3.245, 0.32, -0.008, -0.5)

set.seed(98765);
k <- 1
for(i in 1:neq) {

idx <- 1:nstat;
mag <- dataM[i,1];
eqt <- dataM[i,2];
for(j in 1:nrec) {

dist <- round(runif(1,1,200),2);
epsilon <- rnorm(1,0,phiSS);

vs <- dataV[idx[j],1];

disteff <- dist + h;
data_x[k,] <- c(1, mag, (8 - mag)^2, log(disteff), mag * log(disteff), dist, vs);
pga <- coeffs %*% data_x[k,]
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pga2 <- pga + epsilon + eqt + dataV[idx[j],2];
data_y[k] <- pga2;
data[k,] <- c(mag,dist,vs,pga,pga2,i,idx[j]);
k <- k+1;

}
}

3 Fitting the Model with lmer

First, we fit a linear model using lmer, from the R package lme4 (Bates et al. 2015), to the data. The
package lme4 is the successor to the package nlme and together these packages have been used quite
extensively for the purposes of calibrating ground-motion models in the past. These packages use more
traditional maximum-likelihood based techniques with efficient numerical strategies to fit models. To make our
GMM linear, we have to fix the parameter h (often referred to as pseudo-depth of near-fault-saturation-term).
In this example, we fix it to h = 6, which is the value used to generate the data.
eqid = data[,6]
statid = data[,7]
M <- data_x[,2]
M2 <- data_x[,3]
lnR <- data_x[,4]
MlnR <- data_x[,5]
R <- data_x[,6]
lnVS <- data_x[,7]
Y <- data_y

fit_lmer <- lmer(Y ~ 1 + M + M2 + lnR + MlnR + R + lnVS + (1 | eqid) + (1 | statid))
coeffs_lmer <- fixef(fit_lmer)
summary(fit_lmer)

## Linear mixed model fit by REML ['lmerMod']
## Formula: Y ~ 1 + M + M2 + lnR + MlnR + R + lnVS + (1 | eqid) + (1 | statid)
##
## REML criterion at convergence: 1714.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3116 -0.5857 0.0251 0.6254 2.9282
##
## Random effects:
## Groups Name Variance Std.Dev.
## eqid (Intercept) 0.16305 0.4038
## statid (Intercept) 0.09118 0.3020
## Residual 0.26218 0.5120
## Number of obs: 1000, groups: eqid, 50; statid, 20
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 11.1938460 1.7117234 6.540
## M -0.9959825 0.2375447 -4.193
## M2 -0.2997963 0.0545729 -5.494
## lnR -3.0961045 0.1505916 -20.560
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## MlnR 0.2926556 0.0213087 13.734
## R -0.0075606 0.0008187 -9.235
## lnVS -0.5708701 0.1913181 -2.984
##
## Correlation of Fixed Effects:
## (Intr) M M2 lnR MlnR R
## M -0.989
## M2 -0.903 0.886
## lnR -0.362 0.355 -0.014
## MlnR 0.346 -0.393 0.011 -0.909
## R 0.115 -0.015 0.013 -0.444 0.061
## lnVS -0.041 -0.002 0.000 -0.006 0.006 0.001

We can see that we can recover the input parameters quite well.

4 Fitting the Model with INLA

Next, we fit the same model using INLA. Overall, the call is quite similar to lmer. We provide a formula
with fixed effects and random effects, where the target variable is on the left hand side of ~, and the fixed
and random effects are on the right hand side. Random effects are included as f(ID, model) in the formula,
where ID is an index (such as event or station index) connecting the observation to the random effect. Many
different random effects models are implemented. Since event and station terms are independent, we use the
"iid" model. Information about a random effects model can be accessed with inla.doc("iid") for the “iid”
random effect, or inla.doc("besag") for a Besag spatial model. Chapter 3 of Gómez-Rubio (2020) contains
more information about random effects models in INLA, as well as tables of implemented models. We also
have to provide a data frame that includes all the variables in the model.
data_regression <- data.frame(M,M2,lnR,MlnR,R,lnVS,Y,eqid,statid)

fit_inla <- inla(Y ~ 1 + M + M2 + lnR + MlnR + R + lnVS +
f(eqid, model= "iid") + f(statid, model = "iid"),

data = data_regression
)

summary(fit_inla)

##
## Call:
## c("inla(formula = Y ~ 1 + M + M2 + lnR + MlnR + R + lnVS + f(eqid, ", "
## model = \"iid\") + f(statid, model = \"iid\"), data = data_regression)"
## )
## Time used:
## Pre = 7.53, Running = 0.749, Post = 0.408, Total = 8.69
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) 11.195 1.699 7.849 11.194 14.538 11.193 0
## M -0.996 0.236 -1.461 -0.996 -0.532 -0.996 0
## M2 -0.300 0.054 -0.406 -0.300 -0.193 -0.300 0
## lnR -3.096 0.151 -3.392 -3.096 -2.801 -3.096 0
## MlnR 0.293 0.021 0.251 0.293 0.335 0.293 0
## R -0.008 0.001 -0.009 -0.008 -0.006 -0.008 0
## lnVS -0.571 0.186 -0.939 -0.571 -0.203 -0.571 0
##
## Random effects:
## Name Model
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## eqid IID model
## statid IID model
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant
## Precision for the Gaussian observations 3.82 0.177 3.48 3.82
## Precision for eqid 6.48 1.431 4.08 6.34
## Precision for statid 12.62 4.267 5.85 12.12
## 0.975quant mode
## Precision for the Gaussian observations 4.18 3.81
## Precision for eqid 9.68 6.08
## Precision for statid 22.40 11.10
##
## Expected number of effective parameters(stdev): 67.15(0.854)
## Number of equivalent replicates : 14.89
##
## Marginal log-Likelihood: -910.62

The summary of the INLA fit gives an overall overview of the fit. We can access individual elements, such as
summaries of the fixed effects or the hyperparameters as well. Note that for INLA works internally with (log)
precisions, not standard deviations. Precision is one over variance, so we convert the estimates (note: the
mean give by the output is the mean of the posterior distribution of the precision parameter. Calculating
1/sqrt() with the mean is not the same as the mean of the posterior distribution of the standard deviation,
since the mean is an expectation. Median and quantiles can be converted. For a quick assessment of the
values, it is good enough). The summary output consists of estimates of the mean, standard deviation, and
quantiles of the parameters. The list of quantiles can be changed.
knitr::kable(fit_inla$summary.fixed, digits=3,

caption = "Summary of fixed effects from INLA fit")

Table 1: Summary of fixed effects from INLA fit

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 11.195 1.699 7.849 11.194 14.538 11.193 0
M -0.996 0.236 -1.461 -0.996 -0.532 -0.996 0
M2 -0.300 0.054 -0.406 -0.300 -0.193 -0.300 0
lnR -3.096 0.151 -3.392 -3.096 -2.801 -3.096 0
MlnR 0.293 0.021 0.251 0.293 0.335 0.293 0
R -0.008 0.001 -0.009 -0.008 -0.006 -0.008 0
lnVS -0.571 0.186 -0.939 -0.571 -0.203 -0.571 0

knitr::kable(fit_inla$summary.hyperpar, digits=3,
caption = "Summary of hyperparameters from INLA fit")

Table 2: Summary of hyperparameters from INLA fit

mean sd 0.025quant 0.5quant 0.975quant mode
Precision for the Gaussian observations 3.821 0.177 3.482 3.817 4.180 3.812
Precision for eqid 6.477 1.431 4.076 6.341 9.679 6.085
Precision for statid 12.616 4.267 5.853 12.125 22.404 11.099
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# Calculate standard deviations from precisions
1/sqrt(fit_inla$summary.hyperpar$mean)

## [1] 0.5115969 0.3929313 0.2815354

4.1 Setting Prior Distributions

In the fit above, we have used inla with default options. Next, we change some options. We explicitly specify
the likelihood as normal with family="gaussian" (this is the default, but other likelihoods such as Poisson
are possible). We also set prior distributions for the parameters. The default prior for the intercept is a normal
distribution with mean and precision equal to zero, while for the other fixed effects it is a normal distribution
with mean zero and precision 0.001. The default prior for the log precision in the iid model is a log-Gamma
distribution with shape parameter 1 and rate parameter 0.00005. The precisions are internally represented
on the log-scale (since they need to be positive), so we need to specify the prior for these parameters on
the log-scale. Here, we use a log-Gamma distribution for the log-precision, which corresponds to a Gamma
distribution for the precision (and thus an inverse Gamma distribution for the variance). We use shape
parameter 2 and rate parameter 0.5, which implies a prior mean of 4 for the precision.

The prior distributions for the fixed effects are specified as named lists for the mean and precision. Here, we
specify a different prior for the linear R term, and use the same values for the other coefficients. These are
just examples, and in a real application it makes sense to specify prior distributions based on the problem at
hand. We also tell inla to calculate CPO (Pettit 1990) and WAIC (Watanabe 2013), which can be used for
model comparison. We also change the quantiles that are computed for the summary. A description of the
control options can be accessed with e.g. ?control.fixed.
# prior distributions
prior_prec_tau <- list(prec = list(prior = "loggamma", param = c(2, 0.5)))
prior_prec_phiS2S <- list(prec = list(prior = "loggamma", param = c(2, 0.5)))
prior_prec_phiSS <- list(prec = list(prior = "loggamma", param = c(2, 0.5)))

prior.fixed <- list(mean.intercept = 0, prec.intercept = 0.01,
mean = (list(R=-0.01, default=0)),
prec = (list(R=10000, default = 0.01)))

form <- Y ~ 1 + M + M2 + lnR + MlnR + R + lnVS +
f(eqid, model= "iid", hyper = prior_prec_tau) +
f(statid, model = "iid", hyper = prior_prec_phiS2S)

fit_inla1 <- inla(form,
data = data_regression,
family="gaussian",
control.fixed = prior.fixed,
control.family = list(hyper = list(prec = prior_prec_phiSS)),
control.compute = list(cpo = TRUE, waic = TRUE),
quantiles = c(0.05, 0.5, 0.95)
)

summary(fit_inla1)

##
## Call:
## c("inla(formula = form, family = \"gaussian\", data = data_regression,
## ", " quantiles = c(0.05, 0.5, 0.95), control.compute = list(cpo = TRUE,
## ", " waic = TRUE), control.family = list(hyper = list(prec =
## prior_prec_phiSS)), ", " control.fixed = prior.fixed)")
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## Time used:
## Pre = 6.05, Running = 1.63, Post = 0.498, Total = 8.18
## Fixed effects:
## mean sd 0.05quant 0.5quant 0.95quant mode kld
## (Intercept) 10.842 1.738 7.976 10.846 13.694 10.855 0
## M -0.948 0.241 -1.344 -0.949 -0.551 -0.950 0
## M2 -0.290 0.056 -0.381 -0.290 -0.198 -0.290 0
## lnR -3.083 0.150 -3.330 -3.083 -2.836 -3.083 0
## MlnR 0.291 0.021 0.256 0.291 0.326 0.291 0
## R -0.008 0.001 -0.009 -0.008 -0.006 -0.008 0
## lnVS -0.569 0.226 -0.940 -0.569 -0.197 -0.569 0
##
## Random effects:
## Name Model
## eqid IID model
## statid IID model
##
## Model hyperparameters:
## mean sd 0.05quant 0.5quant 0.95quant
## Precision for the Gaussian observations 3.82 0.177 3.54 3.82 4.12
## Precision for eqid 5.88 1.249 4.03 5.76 8.11
## Precision for statid 8.20 2.550 4.62 7.89 12.85
## mode
## Precision for the Gaussian observations 3.81
## Precision for eqid 5.56
## Precision for statid 7.29
##
## Expected number of effective parameters(stdev): 67.85(0.718)
## Number of equivalent replicates : 14.74
##
## Watanabe-Akaike information criterion (WAIC) ...: 1571.44
## Effective number of parameters .................: 67.22
##
## Marginal log-Likelihood: -887.66
## CPO and PIT are computed
##
## Posterior marginals for the linear predictor and
## the fitted values are computed

We see that there are some minor changes in the coefficients using the model with explicitly set prior
distributions, but nothing major. This depends on the prior distributions (more informative prior distributions
will probably lead to larger changes).

There are many different prior distributions implemented in INLA. A list of priors can be accessed with
names(inla.models()$prior), and documentation on a prior can be accessed with inla.doc("priorname").
For more information on prior distributions in INLA, see Chapter 5 of Gómez-Rubio (2020).

4.2 Accessing Results

inla by default calculates the marginal distributions for all parameters. These can be assessed with
fit_inla1$marginals.fixed for the fixed effects, and fit_inla1$marginals.hyperpar for the random
effects. The marginal distributions are also calculated as the parameter is internally represented, i.e. for
φSS , φS2S , and τ , they are log precisions. They can be transformed with function inla.tmarginal. Below,
we extract the posterior distribution for the magnitude scaling coefficient, and plot it with the true value.
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Similar, we take the marginal distribution for the log precision of the event terms, and transform it to the
standard deviation scale. If a parameter is transformed, one should use the internal representation. To get
help on functions that can perform operations on the marginal distributions, see help("inla.marginal").
ggplot(as.data.frame(fit_inla1$marginals.fixed$M), aes(x,y)) +

geom_line() + geom_vline(xintercept = coeffs[2], colour = "red") +
labs(x = "c_2", y = "posterior") +
theme(

axis.title = element_text(size = 20),
axis.text = element_text(size = 14),
plot.title = element_text(size = 30)

)

posterior_tau <- as.data.frame(inla.tmarginal(function(x) sqrt(exp(-x)),
fit_inla1$internal.marginals.hyperpar[[2]]))

ggplot() +
geom_line(posterior_tau, mapping = aes(x,y)) + geom_vline(xintercept = tau, colour = "red") +
labs(x = "tau", y = "posterior") +
theme(

axis.title = element_text(size = 20),
axis.text = element_text(size = 14),
plot.title = element_text(size = 30)

)
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Figure 1: Left: Posterior distribution of coefficient c_2, and true value (red vertical line); Right: Posterior
distribution of tau, and true value (red vertical line).

We can also access the random effects for events and stations. They can be similarly accessed from the fitted
inla object as the fixed effects and hyperparameters. Below, we plot the event terms δB (random effects
associated with event id) against magnitude, and against the true values. We also plot uncertainty estimates.
By default, the marginal distributions of the random effects are also calculated, and can be accessed via
fit_inla$marginals.random.
deltaB <- fit_inla1$summary.random$eqid

df_plot <- cbind(dataM, deltaB)
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names(df_plot)[c(1,2)] <- c("M", "deltaB_sim")
names(df_plot)[c(6,7,8)] <- c("q05","q50","q95")

ggplot(df_plot, aes(x = M, y = q50)) +
geom_point() +
ylim(-1.2,1.2) +
geom_pointrange(aes(ymin = q05, ymax = q95)) +
labs(x = "M", y = "deltaB ") +
theme(

axis.title = element_text(size = 20),
axis.text = element_text(size = 14),
plot.title = element_text(size = 30)

)

ggplot(df_plot, aes(x = deltaB_sim, y = q50)) +
geom_point() + geom_abline(intercept = 0, slope = 1, colour = "red") +
ylim(-1.2,1.2) +
geom_pointrange(aes(ymin = q05, ymax = q95)) +
labs(x = "deltaB_true", y = "deltaB_est") +
theme(

axis.title = element_text(size = 20),
axis.text = element_text(size = 14),
plot.title = element_text(size = 30)

)
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Figure 2: Left: Estimated event terms and associated uncertainty (90% credible interval) against magnitude;
Right: Estimated event terms versus simulated event terms.

Fitted values can be accessed with fit_inla1$summary.fitted.values, which is useful for calculation of
within-event residuals. Here we plot the density of the residuals, but one can just as easily plot them against
distance, or another predictor variable.
y_pred <- fit_inla1$summary.fitted.values
resid <- data_y - y_pred$mean

ggplot(as.data.frame(resid), aes(x = resid)) +
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geom_density() + geom_vline(xintercept = mean(resid), colour = "red") +
geom_vline(xintercept = sd(resid), colour = "red", linetype="dashed") +
geom_vline(xintercept = -sd(resid), colour = "red", linetype="dashed") +
theme(

axis.title = element_text(size = 20),
axis.text = element_text(size = 14),
plot.title = element_text(size = 30)

)
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Figure 3: Distribution of within-event residuals.

4.3 Fitting Random Effects with the “Z” Model

So far, we have fitted random effects for event and stations using the iid model. Such a model ca also be fit
using the z model, which requires a matrix of the random effects. In general, the formulation of a random
effect is

~Y = X~β + Z~u+ ~ε

where X is the design matx, ~β is the vector of coeffciets (fixed effects), Z is the design matrix for the random
effects, and ~u are the random effects. For an iid random effect (e.g. event terms), Z is an N ×Neq matrix,
where entry Zij = 1 if the ith records is from the jth event, and zero otherwise. This model is implemented
in INLA. It requires the Z matrix to be passed in the f() model. Below, we calculate the Z marix for event
and station terms, and fit the model. We have to set new indices
Z_eq <- as(model.matrix(~ 0 + factor(eqid), data = data_regression), "Matrix")
Z_stat <- as(model.matrix(~ 0 + factor(statid), data = data_regression), "Matrix")

data_regression$idx_eq <- 1:length(data_regression$Y)
data_regression$idx_stat <- 1:length(data_regression$Y)

form_z <- Y ~ 1 + M + M2 + lnR + MlnR + R + lnVS +
f(idx_eq, model= "z", Z = Z_eq, hyper = prior_prec_tau) +
f(idx_stat, model = "z", Z = Z_stat, hyper = prior_prec_phiS2S)

fit_inla1_z <- inla(form_z,
data = data_regression,
family="gaussian",
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control.fixed = prior.fixed,
control.family = list(hyper = list(prec = prior_prec_phiSS)),
quantiles = c(0.05, 0.5, 0.95)
)

## Warning in inla.model.properties.generic(inla.trim.family(model), mm[names(mm) == : Model 'z' in section 'latent' is marked as 'experimental'; changes may appear at any time.
## Use this model with extra care!!! Further warnings are disabled.
summary(fit_inla1_z)

##
## Call:
## c("inla(formula = form_z, family = \"gaussian\", data =
## data_regression, ", " quantiles = c(0.05, 0.5, 0.95), control.family =
## list(hyper = list(prec = prior_prec_phiSS)), ", " control.fixed =
## prior.fixed)")
## Time used:
## Pre = 6.16, Running = 2.79, Post = 0.45, Total = 9.4
## Fixed effects:
## mean sd 0.05quant 0.5quant 0.95quant mode kld
## (Intercept) 10.842 1.739 7.973 10.846 13.696 10.854 0
## M -0.948 0.241 -1.344 -0.949 -0.550 -0.950 0
## M2 -0.290 0.056 -0.381 -0.290 -0.198 -0.290 0
## lnR -3.083 0.150 -3.330 -3.083 -2.836 -3.083 0
## MlnR 0.291 0.021 0.256 0.291 0.326 0.291 0
## R -0.008 0.001 -0.009 -0.008 -0.006 -0.008 0
## lnVS -0.569 0.226 -0.940 -0.569 -0.197 -0.569 0
##
## Random effects:
## Name Model
## idx_eq Z model
## idx_stat Z model
##
## Model hyperparameters:
## mean sd 0.05quant 0.5quant 0.95quant
## Precision for the Gaussian observations 3.82 0.177 3.54 3.82 4.12
## Precision for idx_eq 5.88 1.252 4.04 5.76 8.12
## Precision for idx_stat 8.20 2.548 4.62 7.89 12.85
## mode
## Precision for the Gaussian observations 3.81
## Precision for idx_eq 5.54
## Precision for idx_stat 7.29
##
## Expected number of effective parameters(stdev): 67.87(0.718)
## Number of equivalent replicates : 14.73
##
## Marginal log-Likelihood: -887.70

For this simple example, the z model takes slightly longer than the iid model, and gives (almost) identical
results (as expected). The z model can be used with a more complicated design matrix for the random effects.
For example, a cell-specific atenuation model (Dawood and Rodriguez-Marek 2013; Kuehn, Abrahamson, and
Walling 2019) can be modeled with the z model (Kuehn 2021). In this case, the Z matrix is the matrix that
contains the fractions of path length in each cell.

12



4.4 Prediction

One can make predictions of the fitted model by taking a point estimate of the estimated coefficients (such
as mean or median) and calculate predictions according to the functional form. We can also use inla to
make predictions. If the response variable is NA, then it is treated as an unknown parameter during the fit,
and its posterior distribution is calculated. Below, we create a new data frame with different magnitude
values for which we want to make predictions. The Y values are assigned NA, and we combine the regression
data with the prediction data, and fit the model. Now, the posterior distributions can be accessed from the
fitted.values objects in the inla fit. There are summaries available (mean, standard deviation, quantiles
of the posterior), which we use below. With control.predictor = list(compute = TRUE) we tell INLA
to compute marginal posterior distributions for the predictions of each data point, which can be accessed
with $marginals.fitted.values.

For the values for which we want to calculate predictions, we set the value of the event and station id to a
new value; otherwise, the prediction would include the event/station term for the corresponding id. This
means that the calculated posterior distribution for the predictions includes uncertainty in the value of the
event and station term for the prediction (i.e. the predictive uncertainty includes τ , φS2S , and uncertainty
due to uncertainty in coefficients). We can tell INLA to not consider uncertainty due to the random effects
by setting the corresponding id to NA.

We calculate predictions both ways, and plot the predictions and uncertainty bands below. The second version
(random effects set to NA) is associated with much lower uncertainty, since it only considers uncertainty in
the fixed effects coefficients. As an alternative, we also calculate predictions using the mean coefficients from
the previous fit. These are almost identical to the median predictions we plot here.

A quick sidenote on terminology: In the inla call below, we calculate the posterior distribution associated
with the median ground-motion prediction for a particular scenario. This posterior distribution has its own
mean, standard deviation, median, and quantiles, so the term median prediction can be ambiguous in this
context.
# make data frame with scenarios for prediction
# set Y to NA, and event/station ids to a new id
rrup <- 30
data_pred <- data.frame(M = seq(4,8,0.1),

M2 = (8 - seq(4,8,0.1))^2,
lnR = log(rrup + h),
MlnR = seq(4,8,0.1) * log(30 + h),
R = rrup,
lnVS = log(400/400),
Y = NA,
eqid = neq+1,
statid = nstat+1,
idx_eq = NA,
idx_stat = NA

)

data_regression2 <- rbind(data_regression, data_pred)
fit_inla1_pred <- inla(form,

data = data_regression2,
family="gaussian",
control.fixed = prior.fixed,
control.family = list(hyper = list(prec = prior_prec_phiSS)),
control.compute = list(cpo = TRUE, waic = TRUE),
quantiles = c(0.05, 0.5, 0.95),
control.predictor = list(compute = TRUE)

)
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#
data_pred_b <- data_pred
data_pred_b$eqid <- NA
data_pred_b$statid <- NA
data_regression2_b <- rbind(data_regression, data_pred_b)
fit_inla1_pred_b <- inla(form,

data = data_regression2_b,
family="gaussian",
control.fixed = prior.fixed,
control.family = list(hyper = list(prec = prior_prec_phiSS)),
control.compute = list(cpo = TRUE, waic = TRUE),
quantiles = c(0.05, 0.5, 0.95),
control.predictor = list(compute = TRUE)

)

# access predictions
n_dat <- length(data_regression[,1])
n_pred <- length(data_pred[,1])
pred <- fit_inla1_pred$summary.fitted.values[(n_dat + 1):(n_dat + n_pred),]
pred_b <- fit_inla1_pred_b$summary.fitted.values[(n_dat + 1):(n_dat + n_pred),]

# predict using mean coefficients from first fit
coeffs_inla <- fit_inla1$summary.fixed$mean
data_pred2 <- data.frame(ic = 1,

M = seq(4,8,0.1),
M2 = (8 - seq(4,8,0.1))^2,
lnR = log(rrup + h),
MlnR = seq(4,8,0.1) * log(30 + h),
R = rrup,
lnVS = log(400/400)

)
pred2 <- as.matrix(data_pred2) %*% coeffs_inla

df_plot <- cbind(pred, data_pred, pred2)
names(df_plot)[c(3,4,5)] <- c("q05","q50","q95")

df_plot_b <- cbind(pred_b, data_pred_b)
names(df_plot_b)[c(3,4,5)] <- c("q05","q50","q95")

ggplot() +
geom_line(df_plot, mapping = aes(x = M, y = q50)) +
geom_line(df_plot, mapping = aes(x = M, y = q05), linetype="dashed") +
geom_line(df_plot, mapping = aes(x = M, y = q95), linetype="dashed") +
geom_line(df_plot_b, mapping = aes(x = M, y = q05), linetype="dotted") +
geom_line(df_plot_b, mapping = aes(x = M, y = q95), linetype="dotted") +
geom_line(df_plot, mapping = aes(x = M, y = pred2), color = "red", linetype="dashed") +
labs(x = "M", y = "y_pred") +
theme(

axis.title = element_text(size = 20),
axis.text = element_text(size = 14),
plot.title = element_text(size = 30)

)
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Figure 4: Prediction from the INLA fits. Solid black line shows the median of the posterior distribution
associated with predictions. The dashed black lines show the 5%/95% quantiles of the posterior distribution
when calculated including random effects uncertainty, while the dotted black lines show the 5%/95% quantiles
of the posterior distribution without accounting for random effects. The dotted red line shows th prediction
calculated using the mean coefficient values form the previous fit.

4.5 Model Selection

Some model selection criteria are implemented in inla. Below, an example is shown using WAIC. We fit a
second model, but leave out the magnitude dependent geometrical spreading term. The second model has a
much larger WAIC model, which indicates a worse fit.
form2 <- Y ~ 1 + M + M2 + lnR + R + lnVS +

f(eqid, model= "iid", hyper = prior_prec_tau) +
f(statid, model = "iid", hyper = prior_prec_phiS2S)

fit_inla2 <- inla(form2,
data = data_regression,
family="gaussian",
control.fixed = prior.fixed,
control.family = list(hyper = list(prec = prior_prec_phiSS)),
control.compute = list(cpo = TRUE, waic = TRUE),
quantiles = c(0.05, 0.5, 0.95)
)

c(fit_inla1$waic$waic,fit_inla2$waic$waic)

## [1] 1571.443 1753.249

For GMMs, we typically want to make predictions for new events. Hence, one should test predictions if entire
events are left out of the data, and do a cross-validation that way. An example is shown below. Here, we
partition the events into five folds, and loop over folds. For each iteration, we leave out the data from the
test events - this is made easy by replacing their Y values with NA, and then fit the model. We can then
calculate residuals with respect to the estimated predictions on the left out data. In this case, we use the
mean estimated predictions.

We also calculate the log-likelihood of the test data. This is more complicated, since we want to average over
the posterior distribution. To do that, we sample from the posterior distributions (in this case n_sample =
1000 times), and calculate the likelihood of the observed data point, given the prediction for each sample. To
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calculate the likelihood, we need the prediction, which is stored in sample[i]]$latent (for the ith sample),
and a value of the standard deviation; the sampled hyperparameters are stored in sample[[i]]$hyperpar
(in this case, we need the standard deviation of the Gaussian observations, which corresponds to φSS , which is
the first hyperparameter). To sample from the joint posterior density, we have to include control.compute
= list(config = TRUE) in the call to inla. The calculation of the log-likelihood in the CV run is taken
from a posting by Jonathan Steinhart in the INLA discussion group.
library(matrixStats) # for logSumExp

set.seed(1701)
idx_rand <- sample(1:neq)

n_fold <- 5
batch = floor(neq/n_fold)
rest = neq - batch * n_fold
rest_const = rest
n_sample <- 1000

n_mod <- 2
cv_results <- matrix(nrow = n_mod, ncol = n_fold)
lpd_results <- matrix(nrow = n_mod, ncol = n_fold)
resid_mod <- matrix(nrow = n_dat, ncol = n_mod)
loglik_mod <- matrix(nrow = n_dat, ncol = n_mod)

for(b in 1:n_fold) {
print(paste0('fold ', b))
if (rest >0){

batch_t = batch + 1
beginning = batch_t*(b-1)+1
end = b*batch_t
rest = rest - 1

} else {
beginning = rest_const + batch*(b-1) + 1
end = rest_const + batch*b

}
idx_test_eq <- idx_rand[beginning:end]
idx_test <- which(data_regression$eq %in% idx_test_eq)

y <- data_regression$Y
y[idx_test] <- NA

data_reg_p <- data_regression
data_reg_p$Y <- y

### full model
mod_idx <- 1
print(paste0('working on model ', mod_idx))
fit_inla_p <- inla(form,

data = data_reg_p,
family="gaussian",
control.fixed = prior.fixed,
control.family = list(hyper = list(prec = prior_prec_phiSS)),
control.compute = list(config = TRUE),
control.predictor = list(compute = TRUE)
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)

pred <- fit_inla_p$summary.fitted.values[idx_test,]$mean
y_res <- data_regression$Y[idx_test] - pred
cv_results[mod_idx, b] <- sqrt(mean(y_res^2))
resid_mod[idx_test, mod_idx] <- y_res

## sample
sample <- inla.posterior.sample(n_sample, fit_inla_p)
y_sim <- matrix(ncol = length(idx_test), nrow = n_sample)
tau_sim <- vector(length = n_sample)
for(i in 1:n_sample) {

y_sim[i,] <- sample[[i]]$latent[idx_test]
tau_sim[i] <- sample[[i]]$hyperpar[1]

}
#subtract true values from each row of y_sim
residuals <- sweep(y_sim, 2, data_regression$Y[idx_test])
#log likelihood of the residual of each draw
log_dens <- dnorm(residuals, sd=sqrt(1/tau_sim), log=TRUE)
#take mean across draws (rows) for each point, giving pointwise likelihoods;
#using log_sum_exp in case of underflow
lpd <- apply(log_dens, 2, function (col) {logSumExp(col) - log(length(col))})
loglik_mod[idx_test, mod_idx] <- lpd
lpd_results[mod_idx, b] <- sum(lpd)

print(paste0('mean = ',mean(y_res), ' sd = ',sd(y_res)))

rm(fit_inla_p)

### model 2
mod_idx <- 2
print(paste0('working on model ', mod_idx))
fit_inla_p <- inla(form2,

data = data_reg_p,
family="gaussian",
control.fixed = prior.fixed,
control.family = list(hyper = list(prec = prior_prec_phiSS)),
control.compute = list(config = TRUE),
control.predictor = list(compute = TRUE)

)

pred <- fit_inla_p$summary.fitted.values[idx_test,]$mean
y_res <- data_regression$Y[idx_test] - pred
cv_results[mod_idx, b] <- sqrt(mean(y_res^2))
resid_mod[idx_test, mod_idx] <- y_res

## sample
sample <- inla.posterior.sample(n_sample, fit_inla_p)
y_sim <- matrix(ncol = length(idx_test), nrow = n_sample)
tau_sim <- vector(length = n_sample)
for(i in 1:n_sample) {

y_sim[i,] <- sample[[i]]$latent[idx_test]
tau_sim[i] <- sample[[i]]$hyperpar[1]
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}

#subtract true values from each row of y_sim
residuals <- sweep(y_sim, 2, data_regression$Y[idx_test])
#log likelihood of the residual of each draw
log_dens <- dnorm(residuals, sd=sqrt(1/tau_sim), log=TRUE)
#take mean across draws (rows) for each point, giving pointwise likelihoods;
#using log_sum_exp in case of underflow
lpd <- apply(log_dens, 2, function (col) {logSumExp(col) - log(length(col))})
loglik_mod[idx_test, mod_idx] <- lpd
lpd_results[mod_idx, b] <- sum(lpd)

print(paste0('mean = ',mean(y_res), ' sd = ',sd(y_res)))

rm(fit_inla_p)
}

## [1] "fold 1"
## [1] "working on model 1"
## [1] "mean = -0.213660238089603 sd = 0.689416132335129"
## [1] "working on model 2"
## [1] "mean = -0.163904289126732 sd = 0.692053107586531"
## [1] "fold 2"
## [1] "working on model 1"
## [1] "mean = -0.118009698384821 sd = 0.627851784743304"
## [1] "working on model 2"
## [1] "mean = -0.124214564484414 sd = 0.692538246173571"
## [1] "fold 3"
## [1] "working on model 1"
## [1] "mean = 0.264159216562142 sd = 0.681641280645511"
## [1] "working on model 2"
## [1] "mean = 0.220407245914732 sd = 0.735219392171675"
## [1] "fold 4"
## [1] "working on model 1"
## [1] "mean = 0.158938302472608 sd = 0.71212035137425"
## [1] "working on model 2"
## [1] "mean = 0.16306271704501 sd = 0.73766638537458"
## [1] "fold 5"
## [1] "working on model 1"
## [1] "mean = -0.039821631605413 sd = 0.574865426359894"
## [1] "working on model 2"
## [1] "mean = -0.0428390063883277 sd = 0.613834887868578"
row.names(cv_results) <- c("Model 1", "Model 2")
row.names(lpd_results) <- row.names(cv_results)

knitr::kable(cv_results, col.names = c("fold 1", "fold 2", "fold 3", "fold 4", "fold 5"),
caption = "Root mean square error (RMSE) for individual folds from cross-validation.")

Table 3: Root mean square error (RMSE) for individual folds from
cross-validation.

fold 1 fold 2 fold 3 fold 4 fold 5
Model 1 0.7201172 0.6373015 0.7294462 0.7279019 0.5748075
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fold 1 fold 2 fold 3 fold 4 fold 5
Model 2 0.7095121 0.7018835 0.7657834 0.7536713 0.6137951

knitr::kable(lpd_results, col.names = c("fold 1", "fold 2", "fold 3", "fold 4", "fold 5"),
caption = "Log-likelihood for individual folds from cross-validation.")

Table 4: Log-likelihood for individual folds from cross-validation.

fold 1 fold 2 fold 3 fold 4 fold 5
Model 1 -220.4946 -194.1535 -224.1182 -220.4120 -180.2282
Model 2 -216.5561 -212.9191 -231.5036 -228.7375 -192.3830

res <- t(rbind(sqrt(colMeans(resid_mod[,]^2)),
colSums(loglik_mod)))

row.names(res) <- row.names(cv_results)
knitr::kable(res, col.names = c("RMSE", "LL"),

caption = "RMSE and total loglikelihood on test set from cross-validation.")

Table 5: RMSE and total loglikelihood on test set from cross-
validation.

RMSE LL
Model 1 0.6807435 -1039.407
Model 2 0.7109482 -1082.099

We can see that the first (the true) model has lower prediction error and higher likelihood on the test set.
Hence, both WAIC and cross-validation agree that the first model should be preferred over the second model.

4.6 Partially Nonergodic Model

Here, we show how one one can include multiple random effects in the model, e.g. for regional adjustment
terms. We simulate a new data set with 10 regions, where the constant, linear R term, and linear site
amplification varies by region.
neq <- 25;
nstat <- 20;

nreg <- 10

sigma_c1 <- 0.2
sigma_c6 <- 0.003
sigma_c7 <- 0.3

set.seed(666);
c1_reg <- rnorm(nreg, mean = 0, sd = sigma_c1)
c6_reg <- rnorm(nreg, mean = 0, sd = sigma_c6)
c7_reg <- rnorm(nreg, mean = 0, sd = sigma_c7)

### determine M, event term and observed magnitude
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dataM <- matrix(nrow = neq * nreg,ncol=2);
set.seed(8472);
for(i in 1:(neq * nreg)) {

mag <- round(runif(1,4,8),2);
eta <- rnorm(1,0,tau);
dataM[i,] <- c(mag,eta);

}

### determine VS, station term and observed VS
dataV <- matrix(nrow = nstat * nreg,ncol=2);
set.seed(8472);
for(i in 1:(nstat * nreg)) {

vs <- round(runif(1,log(300),log(1000)),2);
lambda <- rnorm(1,0,phiS2S);
dataV[i,] <- c(vs - log(400),lambda);

}

nrec <- nstat;
data <- matrix(nrow=neq * nrec * nreg,ncol = 8);
data_x <- matrix(nrow = neq * nrec * nreg, ncol = 7)
data_y <- vector(length = neq * nrec * nreg)

h <- 6
coeffs <- c(10.925, -0.985, -0.245, -3.245, 0.32, -0.008, -0.5)

set.seed(98765);
k <- 1
for(r in 1:nreg) {

coeffs_used <- coeffs
coeffs_used[1] <- coeffs_used[1] + c1_reg[r]
coeffs_used[6] <- coeffs_used[6] + c6_reg[r]
coeffs_used[7] <- coeffs_used[7] + c7_reg[r]
for(i in 1:neq) {

idx <- (r - 1) * nstat + 1:nstat;
mag <- dataM[(r - 1) * neq + i,1];
eqt <- dataM[(r - 1) * neq + i,2];
for(j in 1:nrec) {

dist <- round(runif(1,1,200),2);
epsilon <- rnorm(1,0,phiSS);

vs <- dataV[idx[j],1];

disteff <- dist + h;
data_x[k,] <- c(1, mag, (8 - mag)^2, log(disteff), mag * log(disteff), dist, vs);
pga <- coeffs_used %*% data_x[k,]
pga2 <- pga + epsilon + eqt + dataV[idx[j],2];
data_y[k] <- pga2;
data[k,] <- c(mag,dist,vs,pga,pga2,(r - 1) * neq + i,idx[j], r);
k <- k+1;

}
}

}
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Below is the inla call to fit the model. We now have three additional random effects, which are all assumed
to be independent, so we use the "iid" model for each of them. For the regional terms associated with the
anelastic attenuation and the site scaling (scaling with linear R and lnVS30), the covariates are added in the
f() term after the index. We have to give the region indices a different name, because they occur in multiple
f() models. We use a PC prior (Simpson et al. 2017) for the precisions of the regional random effects. The
PC-prior treats the random effect as a more complex extension of the simpler base model (without regional
random effects), and penalizes the more complex model (i.e. a regional random effect should only be estimated
if there is a strong signal in the data). The hyperparameters of the PC-prior are two values u and α such
that P (σ > u) = α, which means we set a value of the standard deviation u, and the associated probability α
with we believe that σ will be larger than u.

In the fit below, the regional random effects are independent. Correlated random effects can be modeled with
f(id, "iid2d") (for two random effects) or f(id, "iid3d") (for three random effects) models (up to f(id,
"iid5d")). Information on how to use these random effects models can be obtained via inla.doc("iid3d").
eqid = data[,6]
statid = data[,7]
regid = data[,8]
M <- data_x[,2]
M2 <- data_x[,3]
lnR <- data_x[,4]
MlnR <- data_x[,5]
R <- data_x[,6]
lnVS <- data_x[,7]
Y <- data_y

data_regression <- data.frame(M,M2,lnR,MlnR,R,lnVS,Y,eqid,statid,regid,
regid_vs = regid, regid_r = regid)

form_reg <- Y ~ 1 + M + M2 + lnR + MlnR + R + lnVS +
f(eqid, model= "iid", hyper = prior_prec_tau) +
f(statid, model = "iid", hyper = prior_prec_phiS2S) +
f(regid, model = "iid",

hyper = list(prec = list(prior = 'pc.prec', param = c(0.5, 0.01)))) +
f(regid_vs, lnVS, model = "iid",

hyper = list(prec = list(prior = 'pc.prec', param = c(0.4, 0.01)))) +
f(regid_r, R, model = "iid",

hyper = list(prec = list(prior = 'pc.prec', param = c(0.01, 0.01))))

fit_inla_reg <- inla(form_reg,
data = data_regression,
family="gaussian",
control.fixed = prior.fixed,
control.family = list(hyper = list(prec = prior_prec_phiSS)),
)

summary(fit_inla_reg)

##
## Call:
## c("inla(formula = form_reg, family = \"gaussian\", data =
## data_regression, ", " control.family = list(hyper = list(prec =
## prior_prec_phiSS)), ", " control.fixed = prior.fixed)")
## Time used:
## Pre = 10.5, Running = 14.8, Post = 0.588, Total = 25.8
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## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) 11.206 0.855 9.527 11.206 12.883 11.207 0
## M -1.017 0.118 -1.250 -1.017 -0.785 -1.017 0
## M2 -0.249 0.027 -0.303 -0.249 -0.196 -0.249 0
## lnR -3.310 0.063 -3.434 -3.310 -3.186 -3.310 0
## MlnR 0.326 0.009 0.308 0.326 0.344 0.326 0
## R -0.007 0.001 -0.010 -0.007 -0.005 -0.007 0
## lnVS -0.690 0.107 -0.901 -0.690 -0.478 -0.690 0
##
## Random effects:
## Name Model
## eqid IID model
## statid IID model
## regid IID model
## regid_vs IID model
## regid_r IID model
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant
## Precision for the Gaussian observations 3.86 8.10e-02 3.70 3.86
## Precision for eqid 4.01 4.10e-01 3.26 3.99
## Precision for statid 5.57 6.45e-01 4.42 5.53
## Precision for regid 18.98 1.17e+01 5.42 16.12
## Precision for regid_vs 1101.34 1.41e+04 11.76 127.27
## Precision for regid_r 86747.49 3.15e+04 39299.37 82160.99
## 0.975quant mode
## Precision for the Gaussian observations 4.02e+00 3.85
## Precision for eqid 4.88e+00 3.95
## Precision for statid 6.95e+00 5.45
## Precision for regid 4.93e+01 11.75
## Precision for regid_vs 6.99e+03 24.02
## Precision for regid_r 1.61e+05 73263.25
##
## Expected number of effective parameters(stdev): 429.74(1.43)
## Number of equivalent replicates : 11.63
##
## Marginal log-Likelihood: -4458.70

5 Real Data Example

Here, we provide a real data example. We use the Italian PGA data that was used in Caramenti et al. (2020)
and Lanzano et al. (2021) (https://github.com/lucaramenti/ms-gwr), which is a subset of the data from the
ITA18 model Lanzano et al. (2019). Caramenti et al. (2020) estimated a nonergodic model using the Italian,
so they discarded some of the global events that were used in Lanzano et al. (2019). The model of Lanzano
et al. (2019) has a linear functional form and is estimated with lme4, so it provides a good comparison. The
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functional form is

log10 PGA = a+ b1(MW −Mh) 1(Mw≤Mh) + b2(MW −Mh) 1(Mw>Mh)

+ [c2 + c1(MW −Mh)] log10

√
R2

JB + h2 + c3

√
R2

JB + h2

+ k

[
log10

VS30

800 1(VS30≤1500) + 1500
800 1(VS30>1500)

]
+ f1FSS + f2FR

+ δB + δS2S

where 1(Mw≤Mh) is an indicator function that evaluates to one if the condition is true, and zero otherwise.
FSS and FR are indicators for strike-slip and reverse-faulting event, respectively.

First, we read the data set and create the linear covariates.
dataset = readRDS(file.path("DATA","italian_data_pga.RData"))

# create linear predictors
mh = 5.5
mref = 5.324
h = 6.924
rm(mag)
attach(dataset)
b1 = (mag-mh)*(mag<=mh)
b2 = (mag-mh)*(mag>mh)
c1 = (mag-mref)*log10(sqrt(JB_complete^2+h^2))
c2 = log10(sqrt(JB_complete^2+h^2))
c3 = sqrt(JB_complete^2+h^2)
f1 = as.numeric(fm_type_code == "SS")
f2 = as.numeric(fm_type_code == "TF")
k = log10(vs30/800)*(vs30<=1500)+log10(1500/800)*(vs30>1500)
y = log10(rotD50_pga)
detach(dataset)

data <- read.csv(file.path("DATA",'italian_data_pga_id.csv'))
n_rec <- length(y)
eq <- data$EQID
stat <- data$STATID
n_eq <- max(eq)
n_stat <- max(stat)

data_italy <- data.frame(Y = y,
M1 = b1,
M2 = b2,
MlnR = c1,
lnR = c2,
R = c3,
Fss = f1,
Frv = f2,
lnVS = k,
eq = eq,
stat = stat

)

Now, we fit the model using inla. We use the same priors and control options as before. We then compare
the estimated coefficients with the values from Lanzano et al. (2019). For the hyperparameters (the standard
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deviations φSS , τ , and φS2S), we calculate the posterior mean from the transformed marginal distribution
using function inla.emarginal.
form_italy <- Y ~ M1 + M2 + lnR + MlnR + R + Fss + Frv + lnVS +

f(eq, model = "iid", hyper = prior_prec_tau) +
f(stat, model = "iid",hyper = prior_prec_phiS2S)

fit_inla_italy <- inla(form_italy,
data = data_italy,
family="gaussian",
control.fixed = prior.fixed,
control.family = list(hyper = list(prec = prior_prec_phiSS)),
control.compute = list(cpo = TRUE, waic = TRUE),
quantiles = c(0.05, 0.5, 0.95)
)

# fixed effects with added coefficients from ITA18
coeffs_ita18 <- c(3.4210, 0.1940, -0.0220, -1.4056, 0.2871, -0.0029, 0.0860, 0.0105, -0.3946)
fit_inla_italy$summary.fixed$ITA18 <- coeffs_ita18
knitr::kable(fit_inla_italy$summary.fixed, digits=3,

caption = "Summary of fixed effects from INLA fit to the Italian data, together with ITA18 coefficients.")

Table 6: Summary of fixed effects from INLA fit to the Italian data,
together with ITA18 coefficients.

mean sd 0.05quant 0.5quant 0.95quant mode kld ITA18
(Intercept) 3.412 0.053 3.324 3.412 3.500 3.412 0 3.421
M1 0.205 0.044 0.133 0.205 0.277 0.205 0 0.194
M2 0.001 0.085 -0.139 0.001 0.141 0.001 0 -0.022
lnR -1.399 0.030 -1.449 -1.399 -1.350 -1.399 0 -1.406
MlnR 0.289 0.014 0.266 0.289 0.312 0.289 0 0.287
R -0.003 0.000 -0.003 -0.003 -0.003 -0.003 0 -0.003
Fss 0.118 0.043 0.048 0.118 0.188 0.118 0 0.086
Frv 0.001 0.040 -0.064 0.001 0.067 0.001 0 0.011
lnVS -0.424 0.045 -0.498 -0.424 -0.349 -0.424 0 -0.395

# hyperparameters
knitr::kable(fit_inla_italy$summary.hyperpar, digits=3,

caption = "Summary of hyperparameters from INLA fit to the Italian data.")

Table 7: Summary of hyperparameters from INLA fit to the Italian
data.

mean sd 0.05quant 0.5quant 0.95quant mode
Precision for the Gaussian observations 24.063 0.554 23.157 24.058 24.984 24.050
Precision for eq 33.734 4.628 26.579 33.471 41.804 33.000
Precision for stat 18.012 1.080 16.286 17.979 19.848 17.912

# calculate expected value of standard deviations from posterior marginals of log precisions
tmp <- matrix(c(inla.emarginal(function(x) sqrt(exp(-x)),

fit_inla_italy$internal.marginals.hyperpar$`Log precision for the Gaussian observations`),
inla.emarginal(function(x) sqrt(exp(-x)),
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fit_inla_italy$internal.marginals.hyperpar$`Log precision for eq`),
inla.emarginal(function(x) sqrt(exp(-x)),

fit_inla_italy$internal.marginals.hyperpar$`Log precision for stat`),
0.220582, 0.155988, 0.200099), ncol = 3, byrow = TRUE)

row.names(tmp) <- c("INLA","ITA18")
knitr::kable(tmp, col.names = c("phi_SS","tau","phi_S2S"), row.names = TRUE,

caption = "Estimated standard deviations from INLA fit to the Italian data,
together with ITA18 values.")

Table 8: Estimated standard deviations from INLA fit to the Italian
data, together with ITA18 values.

phi_SS tau phi_S2S
INLA 0.2038959 0.1733872 0.2359427
ITA18 0.2205820 0.1559880 0.2000990

The estimated values are similar to the ones from Lanzano et al. (2019), which is not surprising. The standard
deviations from INLA are a bit higher, which is probably due to the fact that the number of data is slightly
different.

We now plot event and station terms against magnitude and VS30; these are unbiased, as expected.
df_plot <- data.frame(M = unique(cbind(eq,dataset$mag))[,2],

deltaB = fit_inla_italy$summary.random$eq$mean)
ggplot(df_plot, aes(x = M, y = deltaB)) +

geom_point() +
ylim(-0.75, 0.75) +
#labs(title = "Event Terms") +
theme(

axis.title = element_text(size = 20),
axis.text = element_text(size = 14),
plot.title = element_text(size = 30)

)

df_plot <- data.frame(VS = unique(cbind(stat,dataset$vs30))[,2],
deltaS = fit_inla_italy$summary.random$stat$mean)

ggplot(df_plot, aes(x = VS, y = deltaS)) +
geom_point() +
ylim(-0.75, 0.75) +
#labs(title = "Station Terms") +
scale_x_continuous(trans='log10') +
theme(

axis.title = element_text(size = 20),
axis.text = element_text(size = 14),
plot.title = element_text(size = 30)

)

Lanzano et al. (2019) found that the style-of-faulting coefficients for reverse faulting is not statistically
significant at the 0.05 level for PGA. Hence, we fit a second model, but leave out this term, and compare the
models via WAIC.
form_italy2 <- Y ~ M1 + M2 + lnR + MlnR + R + Fss + lnVS +

f(eq, model = "iid", hyper = prior_prec_tau) +
f(stat, model = "iid",hyper = prior_prec_phiS2S)
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Figure 5: Left: event terms against magnitude for Italian data; Right: station terms agains Vs30 for Italian
data.

fit_inla_italy2 <- inla(form_italy2,
data = data_italy,
family="gaussian",
control.fixed = prior.fixed,
control.family = list(hyper = list(prec = prior_prec_phiSS)),
control.compute = list(cpo = TRUE, waic = TRUE),
quantiles = c(0.05, 0.5, 0.95)
)

c(fit_inla_italy$waic$waic, fit_inla_italy2$waic$waic)

## [1] -785.0776 -785.9724

The two models have almost identical WAIC (the second one has a slightly lower value, meaning it is preferred,
thought the difference is small), indicating that the inclusion of f1 does not improve the model. As indicated
by Lanzano et al. (2019), it might still be beneficial to include it, since the effect would be expected to be
there (albeit being small), but might not be picked up in the data set at hand.

6 Summary

This tutorial covered the basic steps one has to do to use R-INLA to fit GMMs. This includes estimation of
random effects, setting prior distributions, and accessing results. I view INLA as a tool that can be useful in
the estimation of GMM; in particular, I believe that the Bayesian paradigm of combining prior information
with data has advantageous implications for GMM development. Nevertheless, this is not a philosophical
treatise on the relative merits of Bayesian vs. frequentist inference, and as shown in the examples, results
obtained by ML estimation using lmer can be quite similar to INLA results. This applies both in terms of
model coefficients, as well as in model selection, as shown by the Italian example and the style-of-faulting
coefficient. In the end, one should use the tool that one has confidence in, it is good to have options. I hope
to have piqued interest in INLA, but as stated before, there are a lot more things to INLA than are covered
here, and the interested reader is encouraged to seek out some of the references and resources to get a deeper
understanding of model estimation with INLA.
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One of the reasons to introduce regression with INLA to the GMM development community is that INLA
provides fast and efficient methods to estimate spatial models, based on the stochastic partial differential
equations (SPDE) approach (Lindgren, Rue, and Lindström 2011; Bakka et al. 2018). This allows one to
efficiently estimate varying coefficient models (VCMs) (Franco-Villoria, Ventrucci, and Rue 2019). VCMs
have been used by Landwehr et al. (2016) to estimate a nonergodic GMM for California, and in Kuehn (2021)
I showed how one can estimate a nonergodic GMM based on a VCM efficiently with INLA. Spatial models
and (fully) nonergodic GMMs are not covered here, but will be in a future report.
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