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Abstract

We provide a simple introduction to the estimation of ground-motion models via

Bayesian inference and the probabilistic programming language Stan. We show one ca

implement a simple ground-motion model in Stan, and how can run the program from the

computer environment R. We also show how one can access the results, and plot summaries

of estimated parameters. A large number of different Stan models for the development of

GMMs is available at https://github.com/pstafford/StanGMMTutorial.

1 Introduction

Empirical ground-motion models (GMMs) are an essential ingredient for probabilistic seismic

hazard analysis (PSHA). They are typically estimated from data via regression, often using

maximum-likelihood. Recently, Stafford (2019) provided an argument that GMMs should be

estimated via Bayesian inference, as it provides a toolchain for integrating new data into ex-

isting GMMs. Bayesian methods have been used for estimation of a GMM a couple of times

(e.g. Arroyo and Ordaz, 2010,a; Kowsari et al., 2019, 2020; Kuehn and Abrahamson, 2018;

Kuehn et al., 2019; Kuehn and Scherbaum, 2015, 2016; Ordaz et al., 1994; Rahpeyma et al.,

∗kuehn@ucla.edu
†p.stafford@imperial.ac.uk
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2018; Stafford, 2014, 2019; Wang and Takada, 2009), but have not found widespread adoption,

which might be due to the fact that Bayesian methods are sometimes viewed as complicated.

Here, we want to give a short tutorial how to implement Bayesian regression models in Stan

(Carpenter et al., 2017) for the estimation of GMPEs. Stan is a program that implements

Markov Chain Monte Carlo inference to estimate the posterior distribution (similar programs

are WinBUGS/OpenBUGS (Lunn et al., 2009, 2000) or JAGS (Plummer, 2003), though these

are using Gibbs sampling, as opposed to Hamiltonian Monte Carlo (HMC) like Stan). We do

not want to go into philosophical arguments about Bayesian statistics; we treat Bayesian infer-

ence as a practical tool that helps to combine prior knowledge and complex models. However,

we note that GMM development typically requires a lot of judgement and prior information,

so that the model behaves well and extrapolates well to large magnitudes and sparse distances

(data ranges which are typically sparse). Here, prior distributions are helpful to constrain the

model coefficients to reasonable values.

Our goal in this paper is very specific: to provide a collection of models, coded in Stan,

that are useful for various aspects of GMM development. This is not a tutorial or introduction

to Bayesian statistics. It is also not a tutorial to MCMC. We provide some information about

these topics; in particular, model assessment is important in the context of MCMC. However,

we recommend that the interested reader delves deeper into the topic. There are textbooks on

Bayesian statistics that include Stan code (e.g. Gelman et al., 2013; Kruschke, 2015; McElreath,

2020). For thoughts on a principled Bayesian workflow, see Gelman et al. (2020).

As stated before, in this work we focus on the implementation of GMMs in Stan. We provide

a large collection of models at https://github.com/pstafford/StanGMMTutorial. Example

Models include truncated regression models (Kuehn and Abrahamson, 2020; Kuehn et al.,

2020b), models with correlated target variables (Kuehn and Scherbaum, 2015), measurement

uncertainty models (Kuehn and Abrahamson, 2018; Stafford, 2014), partially nonergodic models

(Kuehn et al., 2020a; Kuehn and Scherbaum, 2016; Stafford, 2014), and models including spatial

correlation Huang and Galasso (2019); Jayaram and Baker (2009); Kuehn and Abrahamson

(2020); Stafford et al. (2019). We also show one can code models with heteroscedastic variances,

or implement Bayesian robust regression (Kuehn et al., 2020a).
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2 Bayesian Inference

Broadly speaking, the goal of statistical inference is to estimate the values of parameters of a

statistical model from data. Given a data set D =
[
X, ~Y

]
, where X is a matrix of predictor

variables and ~Y is a vector of target variables, we are interested to infer the parameters of a

model of the form

y = f(~x;~c) + ε (1)

where f(·) is a function that relates the target variable to the predictor variables, ~c are coef-

ficients of the function, and ε is an error term, typically assumed to be normally distributed

with mean zero and standard deviation σ. We will call all parameters of the model ~θ; in this

simple model, the parameters comprise the coefficients ~c and the standard deviation σ.

An important quantity in this regard is the likelihood function L(~θ), which is a function of

the parameters ~θ of the model. The value of the likelihood function for a given observation i is

defined as the value of the probability density of the observation, given parameters ~θ:

L(~θ|(yi, ~xi)) = p(Y = yi|~xi, ~θ) (2)

For a set of observations (a data set D = {(y1, ~x1), . . . , (yN , ~xN)}T ), one can calculate the

likelihood of the full data set

L(~θ|D) = p(~Y = ~y| ~X, ~θ) (3)

where ~X is a matrix containing the predictor variables for all observations. If the observations

are independent, the likelihood factorizes, and one can calculate the joint likelihood as

L(~θ|D) =
N∏
i=1

L(~θ|(yi, ~xi)) (4)

In a maximum-likelihood (ML) setting, the goal is to find the set of parameters ~θ that

maximizes the joint likelihood, given the data. Note that, given the definition of the likelihood

function in Equation (2), one actually maximizes the probability of seeing the data, given the

parameters. By contrast, in Bayesian inference the goal is to estimate the so-called posterior

distribution of the parameters, which is the conditional distribution of the parameters, given
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the observed data. The posterior distribution can be calculated by Bayes’ theorem as

p(~θ|D) ∝ p(D|~θ)p(~θ) (5)

where p(D|~θ) is the likelihood, and p(~θ) is called the prior distribution. The prior distribution

p(~θ) allows one to incorporate prior information about some parameters, or to constrain the

behavior of the model; this is important in GMM development, as data is generally sparse at

large magnitudes and short distances, so the data is not very informative. The prior distribu-

tion can also serve as some sort of regularization to avoid overfitting to the data. A simple

introduction to Bayesian inference can be found in e.g. Spiegelhalter and Rice (2009). There

are also many dedicated textbooks, like Kruschke (2015), Gelman et al. (2013) or McElreath

(2020).

The posterior distribution p(~θ|D) contains all relevant information about the parameters,

conditioned on the data and taking prior information into account. It is thus a good tool to

assess the (epistemic) uncertainties of a model. One can calculate summary statistics such as

mean/median or standard deviations of individual parameters, as well as correlations between

parameters. With the posterior distribution one can also calculate the posterior predictive

distribution1, which encapsulates the full uncertainty in a model prediction. It can be calculated

by integrating out the uncertainty of the model parameters.

Except for simple models, the posterior distribution p(~θ|D) cannot be calculated analyt-

ically, and one has to resort to approximations. One of the most popular tools to perform

Bayesian inference is Markov Chain Monte Carlo (MCMC) (Neal, 1993) sampling, in which

one constructs a Markov chain whose stationary distribution is the posterior distribution p(~θ|D).

Other approximation methods are variational inference (VI) (Blei et al., 2017), or integrated

nested Laplace approximation (INLA) (Rue et al., 2009). In the following, we focus on the pro-

gram Stan (Carpenter et al., 2017, https://mc-stan.org/). Stan implements both MCMC

and variational inference, but we will restrict ourselves to the sampling based methods. It is

also possible to perform maximum-a-posteriori (MAP) inference, i.e. find the set of parameters

that maximizes the log-posterior density.

There are a few reasons why we focus on Stan. We do not want to discourage people

1https://en.wikipedia.org/wiki/Posterior_predictive_distribution
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from using other methods; this work is an encouragement to try out Bayesian methods. We

use Stan because it allows us to fit models of (almost) arbitrary complexity. Some of these

more complex models are described at https://github.com/pstafford/StanGMMTutorial.

In addition, since Stan is based on HMC (Betancourt, 2017; Betancourt and Girolami, 2015;

Neal, 2011), there are multiple tools to assess the model fit that can be used to diagnose

problems with the model and/or model fit (Betancourt, 2016; Vehtari et al., 2020b).

Another advantage of using a program such as Stan is that it is actively developed and

has a broad user base. While it is possible to implement their own MCMC scheme (e.g.

Rahpeyma et al., 2018), the benefits of using an established software is that one can focus

on the modeling part, not the implementation; in addition, maintenance is less of an issue.

A dedicated implementation might be faster for a specific model, but Stan allows one great

flexibility to try out different models.

3 Bayesian Inference for Ground-Motion Models

In this section, we motivate the use of Bayesian inference and Stan for the development of

GMMs. A typical GMM has the form of a mixed effects model, to account for repeated

measurements of the same event, or at the same station. This gives rise to a model like the

following:

Yes = f(~xes;~c) + δBe + δSs + δWSes (6)

where f(~x,~c) is a function with coefficients ~c, which also depends on predictor variables ~x. e

and s are indices for the event and station. δBe and δSs are the event and station term for

event e and station s, respectively, and δWS is the remaining residual (tpyically called within-

event/within-station residual). The function f(~xes;~c) is a model for the median prediction for

a generic scenario quantified by ~xes.

Due to the presence of event and station terms in Equation (6), the observations ~Yes are not

independent, and the joint likelihood is a multivariate normal distribution with covariance Σ,

with non-zero off-diagonal elements Σij if record i and j are from the same event or station. In

an ML model, the random effects δB and δS are considered errors in the constant coefficient,

and are integrated out of the likelihood; thus, they are not estimated, but rather predicted
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given the estimated values for the coefficients and Σ (see e.g. Equation (10) of Abrahamson

and Youngs (1992)). By contrast, in a Bayesian model δB and δS are considered parameters

of the model that are estimated. We believe that this is a more natural position for GMM

development, since one is interested in the difference of ground-motions at a particular site

from the average prediction. Hence, the effects δB and δS constitute physical parameters

about which inference is of interest in itself.

For a known event term δB and station term δS, the observations become independent, and

the likelihood factorizes:

p(~Y = ~y| ~X, ~θ) =
N∏
i=1

p(yi|~xi,~c, δBeq(i), δSstat(i), φSS) (7)

where ~X is a matrix of predictor variables, whose rows consist of the vectors of predictor

variables for each record. On the right hand side of Equation (7), we have partitioned the full

set of parameters ~θ of the model into the components; ~θ consists of the event and station terms,

the coefficients of the functional form ~c, and the standard deviation of the within-event/within-

station residuals φSS (the “noise” term). The subscripts eq and stat are indices that connect

the ith record to its event and station, respectively.

As stated in Equation (5), the posterior distribution is proportional to the product of prior

distribution and likelihood. For event terms and station terms, the prior distributions are

normal distributions with mean zero and standard deviation τ and φS2S, respectively. Since

these terms are typically assumed to be independent, the prior distribution for all event terms

can be written as p( ~δB) =
∏NE

i=1 p(δBi|0, τ) (similarly for station terms δS). Thus, we can write

the log posterior distribution as

ln p( ~θ|D) =
N∑
i=1

ln p(yi|δBeq(i), δSstat(i),~c, φSS)

+

NE∑
i=1

ln p(δBi|τ) +

NS∑
i=1

ln p(δS|φS2S)

+ ln p(~c) + ln p(τ) + ln p(φS2S) + ln p(φSS) (8)

where the first line is the likelihood, the second line comprises the prior distributions for event

and station terms, and the prior distributions for coefficients and standard deviations are on
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the third line.

As Equation (8) shows, calculating the value of the log posterior consists of summing differ-

ent log probability values. In Stan, this is how one would specify the model. In a Stan program,

the statement target += normal_lpdf(y | 0, 10); increments the log density with the value

of the expression on the right hand side; in this case, the logarithm of the value of the prob-

ability density function (pdf) of a normal distribution with mean zero and standard deviation

10, for a variable y. The construction of a Stan program consists of several statements of the

form target += such that they add up to the log density of the full posterior distribution.

The function normal_lpdf(...|..., ...) is a built-in function for the logarithm of the

PDF of a normal distribution (_lpdf stands for logarithm of pdf). Most commonly used dis-

tributions are implemented in Stan in the same way. One can also increment the log density with

the statement y ~ normal(0, 10);. This statement is equivalent to target += normal_lpdf(y | 0, 10);

except that the former leaves out constant additive terms. For inference, it is only necessary

to calculate the value of the log density up to an additive constant.

4 Stan Implementation of Simple GMM

In this section, we provide code for a Stan program of a simple GMM and discuss the imple-

mentation. We will use a model with the following functional form as an example

f(~x,~c) = c1 + c2 ∗M + c3 ∗ (8−M)2 + c4 ln(R + h) + c5M ln(R + h) + c6R + c7 ln
VS30
400

(9)

If the finite-fault term h is fixed, then the model becomes linear, and can be written as

f(~x,~c) = ~c · ~x (10)

with ~x =
[
1,M, (8−M)2, ln(R + h),M ln(R + h), R, ln VS30

400

]
. For the whole data set, the pre-

dictors can be placed into a matrix X of size N × K, where K is the number of (linear)

predictors (i.e. K = 7 in this example).

The Stan code for the model of Equation (9) is shown below:

data {
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int<lower=1> N; // number of records

int<lower=1> N_eq; // number of earthquakes

int<lower=1> N_stat; // number of stations

int<lower=1> K; // number of predictors

matrix[N, K] X; // matrix of predictors

vector[N] Y; // target variables

int<lower=1, upper=N_eq> idx_eq[N]; // event index for each record

int<lower=1, upper=N_stat> idx_stat[N]; // station index for each record

}

parameters {

vector[K] c; // coefficients

real<lower=0> phi_SS; // standard deviation for within-event residuals

real<lower=0> phi_S2S; // standard deviation of between-event residuals

real<lower=0> tau; // standard deviation of site-to-site residuals

vector[N_eq] deltaB; // event terms

vector[N_stat] deltaS; // station terms

}

model {

// prior distributions

c ~ normal(0,10);

phi_SS ~ normal(0,0.5);

tau ~ normal(0,0.5);

phi_S2S ~ normal(0,0.5);
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deltaB ~ normal(0,tau);

deltaS ~ normal(0,phi_S2S);

// likelihood

Y ~ normal(c * X + deltaB[idx_eq] + deltaS[idx_stat], phi_SS);

}

The basic structure of the program consists of three blocks, the data {...} block, the

parameters {...} block, and the model {...} block. In the data {...} block, the input

parameters are defined. In the case of the GMM, these are the number of data, evens, stations,

and linear predictors, the predictor matrix X, the target variable Y , and indices linking records

to events and stations. Variables in Stan are typed, meaning that there is a difference between a

real and an integer. An integer variable is defined as int N;, while a real is defined as real a;.

The target variable is read in as vector[N] Y;, where notation [] denotes the size of the vector

(similar for matrices). Indexing a vector starts with 1 (i.e., the first element in a vector has index

1). The indices for events and stations are declared as arrays of integers, int idx_stat[N];.

Note that arrays are declared differently than vectors; the size of the array is declared after the

variable name. Constraints on variables are denoted by <lower=L, upper=U> a;, which means

that the variable a must be larger than L and smaller than U . If a constraint is declared in the

data block, Stan will check the values, and throw an error if the constraint is not met. Here,

we declared constraints for the indices (they cannot be smaller than 1 or larger than the total

number of events/stations), and the number of data/events/stations, since we assume that we

will have at least one data point in the data.

In the parameters {...} block, the parameters to be estimated are declared. As stated

before, these are the coefficients, the standard deviations, and the event and station terms. The

parameters are declared similar as in the data block. Since the standard deviations are positive

quantities, there must be a constraint <lower=0> in their declaration.

The model model {...} block contains the probability model, which contains mainly the

statements incrementing the log posterior. We have first declared the prior distributions for

the coefficients and standard deviations, then for the event and station terms, and finally the

likelihood. Note that the order of the statements is not important. Many functions in Stan are
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vectorized, which means that they can be applied to vectors. The vectorization is a shorthand

and more efficient than an explicit loop. Hence the statement c ~ normal(0,10); is equivalent

to

for(i in 1:K) {

c[i] ~ normal(0, 10);

}

Similarly, the prior distributions for event/station terms, as well as the likelihood are vectorized.

Next, we show an example how one could define the design matrix X inside a Stan program.

Here, we read in the predictor variables M, R, and VS30 in the data {...} block, and then de-

fine the matrix X in the transformed data {...} block. The individual columns are assigned

the linear predictors. Since most of the functions in Stan are vectorized, one can often assign

the whole column at once. In the declaration of the linear prdictor accounting for magnitude

dependent geometrical spreading, the term .* is used to indicate elementwise multiplication

of two vectors. The rest of the model is unchanged.

data {

...

vector[N_eq] M;

vector[N] R;

vector[N_stat] VS;

...

}

transformed data {

int K = 7;

real h = 6;

matrix[N,K] X;

X[:,1] = rep_vector(1, N);

X[:,2] = M[eq];

X[:,3] = square(8 - M[eq]);
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X[:,4] = log(sqrt(square(R) + square(h)));

X[:,5] = M[eq] .* log(sqrt(square(R) + square(h)));

X[:,6] = R;

X[:,7] = log(VS[stat] / 400);

}

parameters {

...

}

model {

...

}

4.1 Running the Stan Model

There are many different ways to execute the Stan model, depending on the working envi-

ronment. Stan can be run from the command line, or from computing environments like

R, Python, Julia, Matlab, Mathematica via dedicated packages (see https://mc-stan.org/

users/interfaces/). For R (R Core Team, 2020), one can use the package Rstan (Stan De-

velopment Team, 2020), or cmdstanR (Gabry and Cesnovar, 2020), which is a wrapper for the

command line version. Similarly, for Python there exist the packages PyStan (Riddell et al.,

2021) or cmdstanpy (Stan Development Team, 2021a). Rstan and Pystan are more deeply

integrated into R and Python. We will show how to run the model from R using cmdstanR. The

reason for cmdstanR is that it can use the latest version of Stan, with the latest improvements.

By contrast, Rstan lags behind in the versions of Stan used, but offers more advanced features

of analysis in R.

In this section, we provide example code to run and assess a simple GMM using Stan. The

full example is found at https://github.com/pstafford/StanGMMTutorial/blob/master/

gmm_stan_tutorial.html. Code to run the model using cmdStanR is shown below.

data_list <- list(N = length(data_y),
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N_eq = neq,

N_stat = nstat,

K = 7,

X = data_x,

Y = data_y,

idx_eq = eqid,

idx_stat = statid

)

# sample

file <- file.path('path/to/stan-file/', 'gmm.stan')

mod <- cmdstan_model(file)

fit <- mod$sample(

data = data_list,

seed = 123,

chains = 4,

iter_sampling = 1000,

iter_warmup = 1000,

refresh = 500

)

The Stan code is stored in a file called gmm.stan, and the command mod <- cmdstan_model(file)

compiles the file. Then, with mod$sample() the MCMC sampler is called. In this case, we

have specified a seed value for reproducibility. The number of chains is set to 4, with 1000

warm-up samples to be discarded, and 1000 samples post warm-up that can be used for in-

ference. Every 500 iterations progress is printed. For an exhaustive list of arguments, see

https://mc-stan.org/cmdstanr/reference/model-method-sample.html.

The outcome of the model fit is stored as a CmdStanMCMC object. The posterior package

(Bürkner et al., 2021) provides parctical tools to wok with the outcomes of Bayesian models,

such as the draws format. The bayesplot package (Gabry et al., 2019) provides many plotting
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Figure 1: Traceplots of the posterior distributions of the standard deviation parameters.

functions to assess the fits. For example, one can make a traceplot of the different chains for

the standard deviation parameters using the following command

posterior <- fit$draws()

mcmc_trace(posterior, regex_pars = c("phi_SS", "tau", "phi_S2S"),

facet_args = list(nrow = 2)) +

xaxis_title(size = 30, family = "sans") +

yaxis_title(size = 30, family = "sans")

which produces a plot like in Figure 1.

Histograms of the posterior distribution can be plotted with the function mcmc_hist().

An example is shown in Figure 2, which shows the posterior distributions of the coefficients
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c1, . . . , c7. This plot is created via

mcmc_hist(posterior, regex_pars = c("c"))

The plots from bayesplot are ggplot objects, and can be customized using functions from

the ggplot2 package (Wickham, 2016). In Figure 3, we show the histograms of the posterior

distributions of the standard deviation parameters, together with the true values and the values

estimated by lmer, using the following code

df_lmer_sd <- as.data.frame(VarCorr(fit_lmer))

sd_names <- c('tau', 'phi_S2S', 'phi_SS')

size_text <- 20

size_title <- 30

i <- 1 # plot histogram for tau

mcmc_dens(posterior, pars = sd_names[i]) +

vline_at(c(sd_list[i], df_lmer_sd$sdcor[i]), size = c(1,0.75), linetype = c(1,2)) +

xaxis_text(size = size_text, family = "sans") +

yaxis_text(size = size_text, family = "sans") +

xaxis_title(size = size_title, family = "sans") +

yaxis_title(size = size_title, family = "sans") +

grid_lines(color = "gray60")

At https://github.com/pstafford/StanGMMTutorial, we provide some additional plots as-

sessing the posterior distribution, such as pair plots and interval plots. For more possible

options and examples, see https://mc-stan.org/bayesplot/index.html. We can also save

the fitted object with

filename <- 'fit_gmm_stan.RDS'

fit$save_object(file = filename)

At https://github.com/pstafford/StanGMMTutorial, we provide more on how one can re-

trieve subsets of the parameters from the estimated posterior (in the form of a draws object),

which can then be used for further analysis.
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Figure 2: Posterior histograms of the coefficients.
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4.2 Other Models

At https://github.com/pstafford/StanGMMTutorial, we have compiled a large list of Stan

models that showcase the rich variety of models that can be fit using Stan. We also pro-

vide the code to generate the data, run the model, and generate the Figures in this article.

Models that can be fit easily with Stan include truncated regression models (Kuehn et al.,

2020b), models with correlated target variables (Kuehn and Scherbaum, 2015), measurement

uncertainty models (Kuehn and Abrahamson, 2018; Stafford, 2014), and models including

spatial correlation Huang and Galasso (2019); Jayaram and Baker (2009); Kuehn and Abra-

hamson (2020); Stafford et al. (2019). Examples of these kinds of models can be found at

https://github.com/pstafford/StanGMMTutorial, together with more information about

implementation. In addition to these models, Kuehn (2021) provides code to estimate non-

ergodic GMMs based on varying coefficient models (Bussas et al., 2017; Gelfand et al., 2003;

Landwehr et al., 2016).

5 Prior Distributions

In our example, we have not put much emphasis on the prior distributions for the parameters.

This is in part because we simulated enough data and the functional form is simple, so that the

parameters are well constrained by the simulated data. In the development of GMMs, however,

prior distributions can become important, as often data is sparse for some data ranges (e.g.

at large magnitudes or very close to the fault), and in this case one needs to constrain the

model behavior to avoid unphysical behavior. In GMMs estimated with maximum likelihood,

some coefficients are fixed if they cannot be reliably estimated from data; however, this ignores

possible uncertainty in the fixed parameter. In terms of a Bayesian model, one can think of a

fixed parameter as a parameter with a very narrow prior distribution.

It is difficult to give general advice about setting prior distributions that work in every

case, but we believe that this is a par of the model that should no be neglected. Some general

advice on prior distributions can be found at https://github.com/stan-dev/stan/wiki/

Prior-Choice-Recommendations.

To set informative prior distributions, one can use for example models that were developed
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for a different region (but a similar tectonic environment), making the assumption that ground-

motion scaling for the same tectonic envionment is broadly similar. This approach has been

taken in e.g. Kuehn and Scherbaum (2016) and Kowsari et al. (2020), where it was shown that

the use of informative prior distributions stabilized the regression results for regions with sparse

data.

Another approach would be to use simulations to inform the prior distributions. Simulations

have been used to constrain model parts that are not well informed by data, such as hanging

wall effects in the NGA West-2 models (Abrahamson et al., 2014; Boore et al., 2014; Campbell

and Bozorgnia, 2014; Chiou and Youngs, 2014), based on Donahue and Abrahamson (2014).

Similarly, the nonlinear site amplification in these models is based on simulations as well (Kamai

et al., 2014; Walling et al., 2008).

A similar approach was taken to constrain the large magnitude scaling in the NGA Subduc-

tion model of Kuehn et al. (2020a), which is based on the models of Gregor et al. (2002) and

Atkinson and Macias (2009). This is not well constrained by data, given that there are very few

large magnitude events in the NGA Subduction database (Bozorgnia and Stewart, 2020), and

thus it needs to be constrained based on external information. The near-fault term in the NGA

subduction model of (Parker et al., 2020) is also based on simulations, though their model is

not developed via Bayesian inference. Ordaz et al. (1994) derive prior distributions for a GMM

applicable in Mexico City from seismological theory, and discuss in detail how they arrive at

the values for the expectation and range of their prior distributions.

In our experience, prior distributions are important for the standard deviations of par-

tially nonergodic adjustment terms. Typically, a partially nonergodic model comprises few

regions, so the standard deviations of the adjustment terms are not well constrained. In this

case, it makes sense to use a prior distribution that discourages large values of the standard

deviation, so that only a strong regional signal in the data leads to significant deviations of

the regional parameters from the global average model. Kuehn et al. (2020a) compared Half-

Cauchy and exponential prior distributions for ther regional standard deviations. They found

that the Cauchy distributions, which has heavy tails, can lead to spurious regional devia-

tions for some coefficients, and concluded that the exponential distribution is a better choice.

In https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations, sometimes
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also a Half-normal or a Half-Student-T distribution with low degrees of freedom is recommended

for standard deviations of hierarchical models.

The notion discussed in the previous paragraph is informed by Simpson et al. (2017), who

develop the penalized complexity (PC) prior approach, which sees a hierarchical model (such

as a regional random effects model) as a complex extension of a simpler base model. The more

complex model is penalized (shrunk towards the base model) unless there is strong information

in the data that supports it. This approach has been extended to priors for spatial models

(Fuglstad et al., 2019), which becomes important for nonergodic models based on varying

coefficient models (Franco-Villoria et al., 2019; Landwehr et al., 2016).

In the end, as stated before it is difficult to give general advice, but we believe that one

should at least think about the prior distributions for each parameter. To get an idea about

the impact of prior distributions, one can also simulate data based on the prior distributions

(i.e. sample coefficients from the prior distribution, then generate synthetic data based on the

model). One can then assess whether the simulated data “makes sense”, or show unrealistic

values. This is a example of (qualitative) prior predictive checking (Gabry et al., 2019; Gelman

et al., 2020).

6 Discussion

We have provided a simple introduction to the estimation of GMMs with Stan, using MCMC.

The main contribution, though, is the list of models compiled at https://github.com/pstafford/

StanGMMTutorial, which can serve as a starting point for anyone who is interested to esimate

GMMs with Bayesian inference. Throughout the article, we have mentioned that we believe

the Bayesian approach has advantages in GMM development: one can set informative prior

distributions, and the posterior distribution allows for an easy quantification of epistemic un-

certainty. There are disadvantages as well: a Stan model estimated with MCMC will generally

take longer to run than an ML model. For example, the simple example model took about 5

minutes with Stan, but only about a second using lmer. For more complicated models, the

runtime will typically be even longer. It depends on the actual application and model whether

this is a concern.

This article is only a brief introduction to Stan, and touches upon Bayesian statistics very
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lightly. For more thorough exposition, some introductory textbooks, such as Kruschke (2015)

or McElreath (2020) are recommended. For a better understanding of Stan, one should also

look at the Stan documentation (https://mc-stan.org/users/documentation/). There are

different ways to code the same model in Stan, and it is often not immediately obvious which pa-

rameterization is most efficient. An example is the difference between a centered/non-centered

parameterization in hierarchical models (Betancourt, 2020; Betancourt and Girolami, 2015).

For model comparison in MCMC models, one can use the widely applicable information

criterion (WAIC) (Watanabe, 2013), cross-validation (CV), or approximate leave-one-out CV

(LOO-CV) (Vehtari et al., 2017). Many of these are easily available for Stan models, and can

be computed via the loo R-package (Vehtari et al., 2020a).

We have focused on running the Stan models in R, but Stan can be run from many interfaces.

For Python users, there exist the packages PyStan or cmdstanpy. For assessment of the posterior

dstribution, the Python package ArviZ (Kumar et al., 2019) is very useful, and provides many

of the same tools and capabilities as the R-packages used in this work.
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