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ABSTRACT

We apply a nonlinear-nonlocal field theory for numerical calculation of quasistatic fracture. The
model is given by a regularized nonlinear pairwise (RNP) potential in a peridynamic formulation.
The potential function is given by an explicit formula with and explicit first and second derivatives.
This fact allows us to write the entries of the tangent stiffness matrix explicitly thereby saving com-
putational costs during the assembly of the tangent stiffness matrix. We validate our approach against
classical continuum mechanics for the linear elastic material behavior. In addition, we compare our
approach to a state-based peridynamic model that uses standard numerical derivations to assemble
the tangent stiffness matrix. The numerical experiments show that for elastic material behavior our
approach agrees with both classical continuum mechanics and the state-based model. The fracture
model is applied to produce a fracture simulation for a ASTM E8 like tension test. We conclude with
an example of crack growth in a pre-cracked square plate. For the pre-cracked plate, we investigated
soft loading (load in force) and hard loading (load in displacement). Our approach is novel in that
only bond softening is used as opposed to bond breaking. For the fracture simulation we have shown
that our approach works with and without initial damage for two common test problems.

1 Introduction

Peridynamic theory (PD) [63], [65], is a non-local formulation of continuum mechanics that autonomously nucleates
and propagates fracture. The formulation successfully captures qualitative features seen in a range of experiments [22].
As of this writing it appears that only a few quasi static PD simulations are available [21, 32, 53, 72, 69, 7, 39, 57, 25].
For quasi static problems there is no inertia and time is represented by a load parameter. One significant reason behind
the paucity of quasi-static PD simulations is the additional computational expense in going from dynamic methods
with explicit time integration O(n2) to a quasi- static implementation with an implicit time integration O(n4), where
n is the number of discrete PD nodes. The major expense here is the assembly of the tangent stiffness matrix O(n4).

Several methods were proposed to speed up the time integration. Finite element approaches (FEM) for PD [10, 24, 51]
were applied and found to reduce the computational costs for the assembly of the tangent stiffness matrix to O(n3).
For purely elastic problems Wang [70] developed a Galerkin method that exploits the matrix structure and reduces
the costs of solving the matrix system from O(n3) to O(n log2(n)). In another direction, Chen [10] proposed a
simplified model to reduce the computational costs to O(n) but with a reduced convergence rate of only first order
for linear (FEM). Prakash [55] presents an algorithm using sparse matrices for the assembly of the tangent stiffness
matrix instead a dense matrix. The sparse algorithms scaled approximately linearly with the problem size, whereas
the dense matrix algorithm scales non-linearly as one would expect. The performance of the sparse implementation
is compared with an adaptive dynamic relaxation scheme (ADR) in [9, 66, 39]. It is found that a speed-up factor
between 12 and 22 against the ADR solve is achievable. Shiihara [62] implemented the Fire algorithm [6] which
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originated from molecular dynamics within the PD framework. The Fire algorithm converges about 100 time faster
than the energy based relaxation method. Hu[31, 30] solved the linear equation system iterative using the GMRES
algorithm [59] in conjunction with the Arnoldi process [2, 60]. Another approach to speed-up nonlocal diffusion [35]
or peridynamics [34] is the convolution-based method which reduces the computational costs to O(nlog2(n)).

In this paper, we propose a different approach. We apply an explicit regularized nonlinear pairwise (RNP) poten-
tial [41, 47, 44] in our peridynamic formulation. The potential function is given by explicit formulas with explicit
derivatives. This fact allows us to write the entries of the tangent stiffness matrix using explicit formulas, thereby
saving computational costs during the assembly of the tangent stiffness matrix. In the absence of fracture, numerical
simulations using our model recover linear elastostatic material behavior. We compare simulations using our approach
to those using a state-based peridynamic model with standard numerical derivations to assemble the tangent stiffness
matrix. The numerical experiments show that for elastic material behavior, our approach agrees with both classical
elastostatic continuum mechanics and the state-based model. Next, the model is applied to a fracture simulation for an
ASTM E8 like tension test. The crack initiates at the upper grip section in agreement with theory. However, the crack
growth becomes unstable, and the tangent stiffness matrix ceases to be invertible due to extensive localized damage -
transverse to the loading direction - that occurs after a critical load step. We conclude with an example of crack growth
in a pre-cracked square plate. Here, we apply the so-called soft load, which means the load is applied using an external
force. In that case the crack starts to grow, and moves forward for few mesh widths, upon reducing the load the crack
grows further in a stable fashion for a few more load steps, however, beyond that even with increasingly small load
steps the matrix is unstable. This numerical behavior aligns with the theory of fracture mechanics [29, 11, 58]. Next,
we applied the so-called hard load, which means the load is applied in displacement. Here, we could observe stable
crack growth for the pre-cracked square plate. Again, this numerical behavior aligns with the theory of fracture me-
chanics [3]. Our approach is novel in that only bond softening is used, as opposed to bond breaking. We demonstrate
that our approach works with and without initial damage for the two common test problems treated here.

The paper is organized as follows: A brief introduction on stable and unstable crack growth is presented in Section 2.
The peridynamic model and quasistatic formulation is presented in Section 3. In Section 4, we demonstrate how
to obtain the entries of the tangent stiffness matrix explicitly using Taylor series. In Section 5 we describe the new
algorithm used to assemble the stiffness matrix and investigate its theoretical complexity. In Section 6, we present
the results of our computational experiments. Here we first display the savings in computational time using our RNP
potentials versus non differential potentials. We then present the validation of the implementation and present results
for the mode-I fracture experiment. Concluding remarks and directions for future work are presented in Section 7.

2 On stable and unstable crack growth

The stability of crack growth is investigated in this section from the theoretical perspective. In this section, we briefly
emphasize the ingredients to explain stable and unstable crack growth using soft loading and hard loading. In soft
loading the load is applied using a force and in hard loading the load is applied using displacement. One important
aspect to look at for crack stability is the so-called resistance curve or R curve. In this curve, the crack resistance R is
plotted with respect to the crack length l. The R curve can be determined experimentally using load in displacement
as specified for example in ASTM Standard E 561 [5]. Figure 1 sketches a rising R curve (thick black line) which
is common for most materials. The crack starts to grow when G = R when the energy release rate G is equal to the
material resistance to crack growth R. However, depending on how G varies with the crack length l the crack growth
is either stable or unstable. The condition for stable crack growth reads as

∂G

∂l
≤ ∂R

∂l
(1)

and the condition for unstable crack growth reads as

∂G

∂l
>
∂R

∂l
. (2)

The simplest case is a flat R curve, which is common for brittle materials, like ceramics, where the change in G with
respect to the crack length is constant [26]. Here, the common failure criterion is G > Gc and the crack starts to grow
if the energy release rate is larger than the critical energy release rate Gc and the crack will unstably grow.

Now we look into the crack growth stability with respect to soft load (load in force) and hard load (load ind displace-
ment). Looking at the Equation (1) and Equation (2) the stability of crack growth depends on the change inG. Figure 1
sketches the so-calledR curve in thick black with respect to the crack length l. First, we look at the soft loading, where
the load is applied using a force. The lines P1, P2, and P3 sketch the load subjected to the geometry. The three black
dots indicate the instabilities in crack growth using the soft loading. The instability occurs since the subjected load
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Figure 1: Sketch of a rising R curve (thick black line) which increases with the crack length l. The three thin black
lines indicate soft loading, where a load P in force was applied to the geometry. The crack grow will start to grow, but
will become unstable since the load is intersecting tangent to the R curve. Whereas the dotted lines show hard loading
where a load U is applied in displacement to the geometry. Here the lines are interesting normal to the R curve, which
indicates that the load in displacement need to be increased to let the crack develop further. This leads to Equation (1)
and the crack growth tends to be more stable as in soft loading. This figure was adapted from Figure 2.11 from in[3].

in force P is tangent to the R curve. Second, we look at the hard loading, where the load is applied in displacement.
The dotted lines u1 up to u5 show a load in displacement. Here, the lines are normal to the R curve, which means that
the load in displacement needs to be increased to let the crack grow further. This leads to that hard loading tends to
more stable crack growth. These theoretical aspects are observed in the numerical simulations in Section 6 where soft
loading resulted in unstable crack growth and hard loading in stable crack growth. For more details about R curves
and hard and soft loading we refer to Section 2 in [3].

3 Peridynamic model and quasistatic formulation

The appeal of peridynamic models is that fracture appears as an emergent phenomenon, eliminating the need for
supplemental kinetic relations describing crack growth. The displacement field inside the body for points x at time t
is written u(x, t). The peridynamic model is described simply by the balance of linear momentum of the form

ρutt(x, t) =

∫
Hε(x)

f(y,x) dy + b(x, t) (3)

where Hε(x) is a neighborhood of x, ρ is the density, b is the body force density field, and f is a material-dependent
constitutive law that represents the force density that a point y inside the neighborhood exerts on x as a result of the
deformation field. The radius ε of the neighborhood is referred to as the horizon. We assumeHε(x) is a ball of radius
ε centered at x. Here, all points satisfy the same field equations (3). Assuming the rate of loading is slow enough
that the effect of inertia term is negligible, we arrive at the quasi-static formulation which states that the body is in
equilibrium at all times, hence u(x, t) is the solution of:∫

Hε(x)
f(y,x) dy + b(x, t) = 0. (4)

Here the parameter t can now be interpreted as a load parameter.

In this work, we focus on numerical approximation of (4) when the force density f(y,x) is given by the regularized
nonlinear pairwise (RNP) model introduced in [41] and further studied in [42, 36, 37, 47, 44]. This is a two point
density and the force between the two points, f(y,x) is referred to as a bond force between y and x. For small strains
the nonlocal force is linearly elastic but for larger strains the force begins to soften and then approaches zero after
reaching a critical strain, see Figure 2. The associated nonlocal dynamics is called cohesive dynamics. This type of
model can be generalized to state based peridynamics, see [46].

3
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Figure 2: Cohesive force. The force goes smoothly to zero at ±r+.

The tensile strain S between two points x,y in D along the direction ey−x is defined as

S(y,x,u(t)) =
u(y, t)− u(x, t)

|y − x| · ey−x, (5)

where ey−x = y−x
|y−x| is a unit vector and “·” is the dot product. The critical strain Sc > 0 for which the force begins

to soften is given by

Sc =
rc√
|y − x|

, (6)

and S+ is the strain at which the force goes to zero

S+ =
r+√
|y − x|

. (7)

The nonlocal force in the RNP model can be defined in terms of a double well potential. The bond potential is a
function of the strain and is defined for all x,y in D by

Wε(S(y,x,u(t))) = Jε(|y − x|) 1

εd+1ωd|y − x|
g(
√
|y − x|S(y,x,u(t))) (8)

whereWε(S(y,x,u(t))) is the pairwise force potential per unit length between two points x and y. It is described in
terms of its potential function g, given by

g(r) = h(r2) (9)

where h is concave. Here ωd is the volume of the unit ball in dimension d, and εdωd is the volume of the horizon
Hε(x). The influence function Jε(|y − x|) is a measure of the influence that the point y has on x. Only points inside
the horizon can influence x so Jε(|y − x|) is nonzero for |y − x| < ε and zero otherwise. We take Jε to be of the
form: Jε(|y − x|) = J( |y−x|ε ) with J(r) = 0 for r ≥ 1 and 0 ≤ J(r) ≤M <∞ for r < 1. One of the examples of
g is:

g(r) = C(1− exp[−βr]) (10)

where C, β are material dependent parameters.

In the RNP model, the bond force f(x,y) is the derivative of the bond potential given by

f(x,y) = 2∂SWε(S(y,x,u(t)))ey−x, (11)

where

∂SWε(S(y,x,u(t))) =
1

εd+1ωd

Jε(|y − x|)
|y − x| ∂Sg(

√
|y − x|S(y,x,u(t))). (12)

The potential energy of the motion is given by

PDε(u) =

∫
D

∫
Hε(x)∩D

|y − x|Wε(S(y,x,u(t))) dydx, (13)

and define the energy

E(u, t) = −PDε(u) +

∫
D

b · u dx.

4
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Figure 3: Failure zone center-line.

On taking the first variation of the energy we see that the stationary point is the solution of the Euler-Lagrange equation
(4).

For convenience set

L(u)(x) =

∫
Hε(x)

f(y,x) dy. (14)

We assume at t = 0 that there exists a displacement u0 = u(x, 0) and body force b(x, 0) for which the displacement
is at equilibrium

L(u0)(x) + b(x, 0) = 0, (15)

and the quasistatic evolution u(x, t) : D × [0, T ]→ Rd is given by

L(u)(x) + b(x, t) = 0. (16)

for a prescribed load path b(x, t) : D × [0, T ] → Rd. Here b(x, t) includes boundary tractions. Dirichlet boundary
conditions can be applied and are described in section 6.

We propose a new numerical approach to the quasistatic evolution problem and choose a discrete load parameter with
increment ∆ > 0. The load parameter is defined by t = tn = n ×∆ with 0 ≤ n ≤ N . At each tn the displacement
u(x, tn) is the solution of

L(u)(x) + b(x, tn) = 0. (17)

3.1 Failure Zone - Process Zone

Both pure elastic response and quasistatic fracture emerges from the model. This model can be thought of as a
mesoscopic model where the model treats the fracture as a failure zone and one recovers a fracture surface by passing
to the limit of vanishing horizon ε→ 0. This has been shown for the dynamic case, where the failure zone converges
to a surface as ε → 0 and the RNP model recovers the energy of linear elastic fracture mechanics as the peridynamic
horizon goes to zero, see [41, 42]. The Kinetic relation for the RNP model converges to that of LEFM [38] and
for prescribed crack paths the displacement field converges to the solution of the wave equation on time-dependent
domains [43].

The failure zone represents the crack in the RNP model. It is characterized by the failure zone center-line. In an
illustrative example, the failure zone center-line starts at a notch tip on the left side of the specimen and propagates
into the interior. The force between two points x and y separated by the failure zone center-line is zero. The center-
line is shown in figure 3 and the failure zone is the grey region in figure 4. For the boundary conditions chosen here,
failure is in tension and confined to a neighborhood of the x2 = 0 axis of width 2ε. Just in front of the failure zone
is the process zone, where the force between two points x and y on either side of the x2 = 0 axis is decreasing with
increasing strain. At the leading edge of the crack, one sees force softening between points x and y and as the crack
center-line moves forward passing between x and y the force between x and y decreases to zero, see figure 4. It
needs to be stressed the failure zone and process zone emerge from the nonlocal dynamics and are not prescribed. The

5
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Failure Zone Process zone
ε
ε
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Figure 4: The failure zone is the gray shaded region and the process zone is the clear region inside the contour.

D

Hε(xi)

xi

ε

Figure 5: The material points at discrete positions xi in the domain D in the reference configuration at time t = 0.
For each discrete material point xi the neighborhoodHε(xi) := {j| |xj − xi| < ε} is computed. As an example, the
neighborhood for the discrete node xi is shown. The material point xi exchanges force with all other discrete nodes
within its neighborhood. Adapted from [14].

damage at each node X is given by

d(x) = max

(
S(y,x,u(t))

rc
√
|y − x|

)
, ∀y ∈ Hε(x). (18)

When d(X) < 1 the maximally stretched bonds lie below the inflection point rc and the material is behaving elasti-
cally, for d(X) = 1 the maximal bond stretch corresponds now to the strength of the material, and for d(X) > 1 the
collection of maximally stretched bonds have started to soften and have begun the failure process.

3.2 Discretization

To discretize the peridynamic equations of motion, a finite difference approximation is utilized. Figure 5 shows the
domain D in the initial configuration at time t = 0. A set of mesh nodes {xi ∈ Rd}Ni=1 ⊂ D is placed in the
domain D. To each of the nodes, surrounding volumes {Vi ∈ R}Ni=1 is associated. These volumes are nonoverlapping
Vi ∩ Vj = ∅ and recover

∑N
i=1 Vi ≈ |D| the volume of the domain D. Each node xi interacts with all neighbors

within the finite neighborhoodHε(xi) = {xj | |xj − xi| ≤ ε}.

4 Derivation of the analytic stiffness matrix

We seek a displacement field u that satisfies the quasistatic formulation

L(u)(x) + b(x) = 0.

L, see expression Equation 14, depends nonlinearly on the displacement u. To make above problem tractable and
implementable in a computer, we apply the Newton’s iterative method which is outlined in Algorithm 1 for the soft
loading case, where the load is applied via the external force density b; and in Algorithm 2 for the hard loading case,
where the load is applied via a prescribed displacement on an extension of the domain D.

6
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Algorithm 1 Solver using a Newton method for the soft loading case, where the load is applied via the external force
density b.

1: Start with the initial guess of displacement u0

2: for 0 ≤ k ≤ N do
3: Take uk = uk−1 + ∆u
4: Linearize L such that L(uk) = L(uk−1) +H(uk−1)[∆u]
5: Solve for increment ∆u using

H(uk−1)[∆u] + L(uk−1) + b(uk−1) = 0. (19)

6: if ‖uk − uk−1‖ < δ then
7: Exit loop
8: end if
9: end for

Algorithm 2 Solver using a Newton method for the hard loading case, where the load is applied via a prescribed
displacement on an extension of the domain D

1: Extend the domain and applied the prescribed displacement w in the extension, see Figure 6a.
2: Start with the initial guess of displacement u0 = 0
3: for 0 ≤ k ≤ N do
4: Take uk = uk−1 + ∆u
5: Linearize L such that L(uk) = L(uk−1) +H(uk−1)[∆u]
6: Solve for increment ∆u using

H(uk−1)[∆u] + L(uk−1 + w) = 0. (20)

7: if ‖w‖ − ‖uk‖ < δ then
8: Exit loop
9: end if

10: end for

We next derive the formula for H(u)[w]. Substituting Equation 11 into Equation 14, and taking u = u0 + ∆u, we
have

L(u0 + ∆u)(x)

=
2

εd+1ωd

∫
D∩Hε(x)

Jε(|y − x|)√
|y − x|

g′(
√
|y − x|S(y,x,u0 + ∆u))ey−xdy, (21)

From the definition of S in Equation 5, we have

S(y,x;u0 + ∆u) = S(y,x;u0) + S(y,x; ∆u). (22)

Let us do a Taylor expansion for the first derivative of the potential h

g′(
√
|y − x|S(y,x;u0 + ∆u)) = g′(

√
|y − x|S(y,x;u0))

+ g′′(
√
|y − x|S(y,x;u0))

√
|y − x|S(y,x; ∆u)

+O(||∆u||2). (23)

Substituting the above in Equation 21, we get

L(u0 + ∆u)(x) = L(u0)(x)

+
2

εd+1ωd

∫
D∩Hε(x)

Jε(|y − x|)√
|y − x|

g′′(
√
|y − x|S(y,x;u0))

√
|y − x|S(y,x; ∆u)ey−xdy

+O(||∆u||2). (24)

Denoting the first order term above as H(u)[w] as follows

H(u0)[∆u](x) =
2

εd+1ωd

∫
D∩Hε(x)

Jε(|y − x|)g′′(
√
|y − x|S(y,x;u0))S(y,x; ∆u)ey−xdy (25)

Note that H(u0)[∆u] is linear in ∆u.

7
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Discretization of quasistatic formulation and tangent matrix The discrete approximation of Equation 19 reads

H(uk−1)[∆u](xi) = −b(xi)− L(uk−1)(xi), (26)
where

L(uk−1)(xi) =
2

εd+1ωd

∑
xj∈Hε(xi),
xj 6=xi

Jε(|xj − xi|)√
|xj − xi|

g′(
√
|xj − xi|S(xj ,xi;u

k−1))exj−xiVj

H(uk−1)[∆u](xi) =
2

εd+1ωd

∑
xj∈Hε(xi),
xj 6=xi

Jε(|xj − xi|)g′′(
√
|xj − xi|S(xj ,xi;u

k−1))S(xj ,xi; ∆u)exj−xiVj . (27)

We substitute definition of S(xj ,xi; ∆u) in H(uk−1)[∆u] to write

H(uk−1)[∆u](xi)

=
2

εd+1ωd

∑
xj∈Hε(xi),
xj 6=xi

Jε(|xj − xi|)
|xj − xi|

g′′(
√
|xj − xi|S(xj ,xi;u

k−1))Exj−xi(∆u(xj)−∆u(xi))Vj , (28)

where
Exj−xi = exj−xi⊗exj−xi , (29)

is the second-order tensor. Discrete problem Equation 26 can be represented as

K(Uk−1)∆U = F k−1, (30)

where Uk−1,∆U,F k−1 = F (Uk−1) are discrete displacement vector at previous iteration k− 1, the increment of the
displacement in the current iteration, and force vector. Following Equation 26, we have

F k−1i = F (Uk−1)i = −b(xi)− L(Uk−1)(xi). (31)

It remains to show the form of the tangent matrix K which depends on the solution Uk−1 from the previous iteration.
We suppress the dependence of K on Uk−1, and write

K(u) =



K1,1 K1,2 . . . K1,N−1 K1,N

K2,1 K2,2 . . . K2,N−1 K2,N

...
... . . .

...
...

...
... . . .

...
...

...
... . . .

...
...

KN−1,1 KN,2 ... KN−1,N−1 KN,N−1
KN,1 KN,2 ... KN−1,N KN,N


, (32)

where each entry Kij is a d× d matrix where d = 1, 2, 3 is the dimension of the problem. From Equation 28, we have

Kij =

Aij , if i 6= j,∑
xk∈Hε(xk),
xj 6=xi

Aik, if i = j, (33)

where second order tensorAij is given by

Aij ≡ Aij(u
k−1) =

2

εd+1ωd

Jε(|xj − xi|)
|xj − xi|

g′′(
√
|xj − xi|S(xj ,xi;u

k−1))⊗Exj−xiVj , (34)

when i 6= j, andAii = 0. Here by the notation S(xj ,xi;u
k−1) we mean

S(xj ,xi;u
k−1) =

uk−1j − uk−1i

|xj − xi|
· xj − xi|xj − xi|

, (35)

for discrete problems. Note, that the same approach can be used to derive the analytic stiffness for the state-based
RNP model [45] with some additional linearization of the hydro-static force.

8
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Algorithm 3 Solver using a Newton method for the soft loading case, where the load is applied via the external force
density b.

1: Define the external force density b, tolerance δ, and perturbation τ
2: Guess the initial displacement u0

3: Compute the residual r = ‖F‖ //Equation (31)
4: while r ≥ δ do
5: Assemble the tangent stiffness matrix K(u) ∈ Rd·N×d·N //Equation (34)
6: Remove all columns/rows in K for nodes with prescribed zero displacement (clamped nodes)
7: Remove all entries in F for nodes with prescribed zero displacement (clamped nodes)
8: Solve the reduced system K∆u = F // Equation (19)
9: u+ = ∆u

10: r = ‖F‖
11: end while

5 Algorithm

The algorithm for solving the system K(u)x = F is similar to the one described in [20, 48] using a Newton method,
see Algorithm 3. Note that using a generic peridynamic material model, assembling the tangent stiffness matrix,
see Line 5, can become computationally expensive since the entries are approximated using numerical schemes, e.g.
central differences,

Kij(u) ≈ L
T (u+ ε)(xi)− LT (u− ε)(xi)

2τ
(36)

by perturbation the displacement. One is refereed to [8] where a comparison of different methods are given. These
include automatic differentiation, central difference scheme approach, finite difference scheme approach, and the
complex step scheme [49, 50], for calculating tangent stiffness matrices in a massively parallel fashion. The relative
accuracy of these schemes for computing the tangent stiffness matrix can be found in [8]. The perturbation approach
requires the PD forces to be evaluated for a perturbed displacement u ± τ over all directions, which is only com-
putationally feasible in one dimension. For higher dimensions or numerous discrete nodes, the computational costs
increase heavily, since the theoretical complexity of the algorithm is O(n4). Meaning that for all n nodes the per-
turbed forces for all n neighbors have to be computed. Since the evaluation of the force costs n2 operations, we have
n2(d · n2 + d · n2) operations in total. On the other hand, for the RNP softening model the entries of the tangent stiff-
ness matrix can be computed without perturbing the displacement of each node in all directions using Equation (33).
Hence, the evaluation of the perturbed forces is not needed anymore and this reduces the computational cost for the
RNP model to O(n3).

5.1 Soft loading

Algorithm 3 sketches the solver for the bond-based softening model for the soft loading case, where the load is applied
via the external force density b. The solver needs the external force density b, the tolerance δ, and the perturbation τ .
A guess for the initial displacement can be zero or some small perturbation in the size of τ . The initial guess of the
displacement is used to compute the residual using Equation (31) and if the residual r < δ is smaller than the tolerance
the initial guess is the solution. If not, iteration of Newton steps are done to get the solution of the displacement until
the residual r is less than the tolerance δ. The tangent stiffness matrix is assembled using Equation (33). To avoid a
singular matrix, all entries of the stiffness matrix and the force vector are removed in Line 6 and Line 7. After that,
the reduced system is solved. Note that this is just a single Newton iteration and for each successive load step, the
Algorithm 3 is repeated with u from the previous load step as the current initial guess u0 and a larger external load u
as shown in Algorithm 1. These steps are not shown in the discrete algorithm for simplification.

5.2 Hard loading

Algorithm 4 outlines the solver used for the bond-based softening model for the hard loading case, where the load is
applied via the displacement u instead of the external force b as in the soft loading. To apply the load in displacement,
the domain D is extended with a layer of ±δ in y-direction at the top D+ε and bottom D−ε, respectively. Note
that the extension of the domain to apply boundary conditions within peridynamics was applied in the following
references [56, 64, 23, 1, 27, 52, 28]. Figure 6a shows the reference configuration of the domain D. A positive
load displacement +u is applied to the upper extension D+ε. A negative load displacement −u is applied to the
lower extension D−ε. The algorithm uses the tolerance δ and the perturbation τ as input. In Line 2 the reference
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Figure 6: Extended domain for the hard loading: (a) reference configuration D with the extension D+ε and D−ε
to apply the load in displacement w. In this example, the assumption is made that a positive load in displacement is
applied within the top extension and a negative load in displacement in the upper extension. (b) sketch of the prescribed
displacement w in y-direction and all values in the x-direction are zero. Here, the prescribed load in displacement is
applied to the extension D+ε and D−ε. To avoid high damage concentration at the interface of the extension and the
domain, the prescribed displacement needs to be extended to the reference configuration D.

configuration is extended by a layer of horizon size ±ε and additional discrete PD nodes with the same nodal spacing
are placed in the extension area. In Line 3 the initial displacement field u0 in the extended domain is guessed. A
guess for the initial displacement can be zero or some small perturbation in the size of τ . In Line 4 the prescribed
displacement is initialized. Here, the prescribed load in displacement is applied to the extension D+ε and D−ε.
For example, a constant displacement is applied to all discrete PD nodes in the extension. To avoid high damage
concentration at the interface of the extension and the domain, the prescribed displacement needs to be extended to
the reference configuration D. Figure 6b sketches some example field of the prescribed displacement w in y-direction
and all values in the x-direction are zero. The displacement value is +u/2 and −u/2 in the extension and decays
linearly to zero until reaching the middle of the plate. For this method, the displacement to be found u is determined
by iteration so that the residual r defined by

r =
(
‖wD+ε‖+ ‖wD−ε‖

)
−
(
‖uD+ε‖+ ‖uD−ε‖

)
, (37)

satisfies r < δ. Note that the evaluation of the residual depends on the chosen prescribed displacement w and in
this case we assure that the prescribed displacement in the extension matches the displacement solved in the Newton
iteration of the current load step. Note that at this stage, the residual r is computed using the initial guess u0. If
the initial guess of the displacement is not smaller as the tolerance δ a set of Newton iterations are started until the
solution satisfies the tolerance, see Line 6. Inside the while loop all steps are identical to the ones for the soft loading
(Algorithm 3), except that the force F = L(u + w) in Line 7 is evaluated differently. Note that the all fields, e.g.
force, displacements, and damage, need to be extended and in the tangent stiffness matrix has a larger size of m = ε/h.

6 Numerical examples

6.1 Linear elasticity

In this section, we validate our approach against classical continuum mechanics for the linear regime of the potential
in Figure 2. Note that there is no damage involved since the strain is less than critical, given by the inflection point rc.
These simulations are necessary to show that our approach recovers linear elasticity and gets results comparable to the
approach using the numerical differentiation.

6.1.1 One-dimensional

For the one-dimensional case, the strain εCCM from classical continuum mechanics (CCM) is recovered. The
stress σ is defined as σ = E · ε where E is the material’s Young’s modulus. The relation of Force F and stress

10
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Algorithm 4 Solver using a Newton method for the hard loading case, where the load is applied using a prescribed
displacement u on an extension of the domain D of ±ε.

1: Define the tolerance δ, the load in displacement ±w, and perturbation τ
2: Extend the domain D by a layer of horizon size ±ε //see Figure 6a.
3: Guess the initial displacement u0

4: Initialize the prescribed displacement w
5: Compute the residual r =

(
‖wD+ε‖+ ‖wD−ε‖

)
−
(
‖uD+ε

0 ‖+ ‖uD−ε

0 ‖
)

//see Equation 37
6: while r ≥ δ do
7: Compute F = L(u+ w)
8: Assemble the tangent stiffness matrix K(u) ∈ Rd·(N+ε/h)×d·(N+ε/h) //Equation (34)
9: Remove all columns/rows in K for nodes with prescribed zero displacement (clamped nodes)

10: Remove all entries in F for nodes with prescribed displacement (clamped nodes)
11: Solve the reduced system K∆u = F // Equation (20)
12: u+ = ∆u

13: r =
(
‖wD+ε‖+ ‖wD−ε‖

)
−
(
‖uD+ε‖+ ‖uD−ε‖

)
//see Equation 37

14: end while

x FF

h = 14

Figure 7: Sketch of the one dimensional bar benchmark test. The node on the left-hand side is clamped with respect
to displacement (u = 0). A force F is applied on the node at the right-hand side. Adapted from [17].

reads as σ = F/A with A as the area of the cross-section. Applying these two relations, the strain is obtained by
ε = σ/E = F/(A · E). Assuming a force F of 40N, a cross-section of 1m2, and a Young’s modulus E of 40GPa, the
strain reads as εCCM = 1× 10−8.

Figure 7 sketches the geometry for the one-dimensional model problem, which is used to recover the strain from
classical continuum mechanics. The node on the left-hand side is clamped with respect to displacement. A load force
is applied to the first node. The length of the bar is 16m. We chose δ = 3 · h with h = 1/4, a length L = 16 and the
tolerance was set to δ = 1× 10−11. To determine the bond-based material properties C and β in Equation (10), we
used the relation E = C · β. Since, we are interested in the linear elastic region of the potential, we can set β = 1 and
thus E = C = 40GPa. For more details on the energy equivalence for the one-dimensional bond-based softening
model, we refer to [36].

For the global strain we get, ε = 1.01× 10−8 which is close to the strain predicted by classical continuum mechanics
εCCM = 1× 10−8. As a second validation, the same discretized bar was simulated using the Silling’s state based
model [65] and the assembly of the tangent stiffness matrix using the numerical approximation of derivative as in [48].
In that case the predicted strain is ε = 1.0× 10−8 using the author’s C++ code [20]. The python code finished in
1.04s (24 iterations) using the presented approach, and the numerical approximation of the tangent stiffness matrix
took 3.71s (31 iterations).

6.1.2 Two-dimensional

For the two-dimensional problem, the geometry in Figure 8, which is a square plate of W = 16 mm times
L = 16 mm, is used. The nodes on the right-hand side are clamped in displacement (ux = uy = 0). A body force
F = −40N is applied on the first line of nodes on the left-hand side. The nodal spacing is chosen as h = 0.1 and the
horizon is δ = 5h. The material properties are chosen as Young’s modulus E = 4000, Poisson’s ratio ν = 1/3, and
Energy release rate G = 500.

To validate our assembly of the stiffness matrix, we use the solution from classical continuum mechanics, see [20],
derived by using the Airy stress function [61]. The following equations show the displacement obtained by classical
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Figure 8: Sketch of the two-dimensional square plate for benchmark. The displacement of the last layer of nodes
is fixed in both directions. An external force in negative x-direction is applied to the first layer of nodes. Adapted
from [16].
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Figure 9: Displacement ux (a) and uy (b) at the nodes obtained by classical continuum mechanics from Equation (38).

continuum mechanics

. (38)

Figure 9 shows the solution of the displacement fields from Equation (38). The bond-based material parameters C and
β in Equation (10) can be related to classical continuum mechanics as follows [12]

C =
16

6

K2
IC

E
, (39)

β =
20µ

β
. (40)

Figure 10a shows the displacement ux obtained with our approach using a tolerance δ = 1× 10−6. The error with
respect to CCM is overestimated by 13.7%. Figure 10b shows the displacement ux obtained by assemble of the
tangent stiffens matrix using the numerical approximation of derivative as in [48]. Note that the state-based model of
Silling [65] instead of a bond-based model was used, however, the tolerance δ = 1× 10−6 was the same. Here, there
is no error with respect to CCM. Note that one would have to do a convergence study for both quasi-static methods
by varying the nodal spacing h and the horizon δ. However, this is out of the scope of the paper, since the focus of
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Figure 10: Displacement ux (a) obtained by our approach using a bond-based peridynamic model and ux (b) obtained
using the numerical derivation for the stiffness matrix and a state-based model using the authors C++ code. Adapted
from [18].

the paper is the analytic assembly of the stiffness matrix and validation of the approach to CCM and the approach to
assemble the stiffness matrix using the numerical approximation of the derivative.

The computation time for our approach employing the analytic stiffness matrix took 238 minutes using the prototype
Python code with one CPU while for the computationally assembled stiffness matrix approach we used the author’s
C++ code, and it took 191 minutes using five CPUs. Thus, for this example, the analytic approach seems to be far
more efficient than the standard numerical perturbation approach.

6.2 Damage

Previously, we validated our approach against classical continuum mechanics and now, we will show the performance
of our method for fracture simulations. First, we investigate the influence of softening bonds on the condition number
of the tangent stiffness matrix in Section 6.2.1. An ASTM E8 like tensile test is done to observe crack initiation in
Section 6.2.2. Last, a notched square plate is used as an example for crack growth from a pre-crack in Section 6.2.3
for the soft loading and in Section 6.2.4 for the hard loading, respectively.

6.2.1 User controlled damage

To study the influence of broken bonds on the matrix’s condition number, the two-dimensional model problem in
Section 6.1.2 is employed without the applied boundary conditions. A precrack from (0,0.8) to (0.8,0.8) is introduced.
The precrack is modeled by excluding all peridynamic bonds that intersect this line from the neighborhood Bδ(x).
Figure 11a shows the grid with the initial crack and all discrete PD nodes are colored with the number of neighbors.
To analyze the influence of softening bonds on the condition number of the stiffness matrix K, bonds adjacent to the
pre-crack crack are artificially softened to zero for three different scenarios: 1) the crack grows each time step by 1/2
of the mesh size h, 2) grows at each step by exactly the mesh size, and 3) grows at each time step by 1.5 h. Figure 11
shows the artificial crack growth for the second case. Figure 12 shows the condition number con(K) of the stiffness
matrix K for all three cases. The condition number con(K) = |K|L2/|K−1|L2

was obtained using Numpy where the
method described in [40] was implemented. For all three cases, we see that the condition number increases linearly
per iteration. However, even for the fully cracked plate, the condition number is not increasing too much.
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(b) Crack tip = h
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(c) Crack tip = 2h

0.0 0.5 1.0 1.5
Position x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Po
si

tio
n
y

20

25

30

35

40

45

B
δ
(x

)

(d) Crack tip = 3h
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(e) Crack tip = 4h

Figure 11: The initial configuration of the plate with the initial crack (a). The consecutive images show the artificial
grown crack, where the crack growth was controlled by softening all bonds along the initial crack. In the first iteration
(b) the crack tip grows for one mesh width h. In the second iteration (c) for 2h. In the third iteration (d) for 4h. And
in the last iteration, the plate is completely broken (e). The resulting condition number con(K) for each iteration is
shown in Figure 12.
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Figure 12: The condition number con(K) of the tangent stiffness matrix K with respect to the crack growth. The
initial configuration of the half-cracked square plate is shown in Figure 11a. At iteration zero, the condition number
was computed for this configuration. To analyze the influence of soften bonds to the condition number of the stiffness
matrix K, bonds along the initial crack are artificial soften to zero for three cases: 1) the crack grows 1/2 of the mesh
size h, 2) grows the mesh size, and 3) grows 1.5h per iteration.

x
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Figure 13: Sketch of the ASTM ES like tensile specimen. The green nodes. Note that we rotated the specimen by 90°
and we used metric units. The nodes within the left-hand side are clamped in x-direction and y-direction. On the blue
colored nodes a force of 4× 106N is applied. Note that we apply a force density in peridynamic by dividing the force
by the area of the clamped region. Adapted from [13].

6.2.2 Crack initiation for tensile testing with soft loading)

In the first two model problems, we focused on linear elasticity to showcase that our approach can reproduce the
results where the cohesive force in Figure 2 stays in the linear regime. Note that these steps are necessary to validate
this model, however, the interesting aspect of this approach is the part where the crack starts to initiate or grow.
To showcase our approach, we now recover this important feature of peridynamics numerically. We use a flat test
specimen for a tensile test according to standard ASTM E8 [4]. Figure 13 shows the simplified geometry of the flat
test specimen. Note that we rotated the specimen by 90° and we used metric units. The green colored nodes are
clamped in x-direction and y-direction. On the blue colored nodes, a force of 4× 106N is applied. Note that we
apply a force density in peridynamics by dividing the force by the area of the clamped region. The nodal spacing h is
set to 1mm and the horizon δ is set to 4h. The solver tolerance δ is set to 1× 10−6. For material properties, we chose
C =3× 108 and β =0.1. Note that the same model was utilized in [12] for a tensile test with explicit time integration.
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Figure 14: Damage for soft loading at the discrete PD nodes (black = undamaged and gray = damaged) for the
following loading steps: (a) after the first load step, (b) after 10 load steps, and (c) after 20 load steps. Note that the
damage is plotted with respect to the reference configuration D.

Figure 15 shows the evolution of the damage in the tensile specimen. Figure 14a shows the damage after one load
step. Figure 14b shows the damage after 50% of the load steps. Figure 14c shows the last load step before the analytic
stiffness matrix becomes singular. We tried to continue beyond the last load step using smaller load steps, however,
the matrix remained unstable. This behavior of unstable crack growth is depicted in the R curve in Figure 1. Once
a load which intersects the R Curve tangential is reached, for example P3 in Figure 1, the crack growth will remain
unstable while increasing the load in force. However, one can find some smaller loads in force, for example P1 and
P2, where the crack would grow for a small length l. For more details about soft loading and R curves, we refer to [3].
However, the crack initiation’s location is near to the upper grip section, which is the location where the crack should
initiate. Figure 15 shows the displacement in y direction for the same load steps.

6.2.3 Pre-cracked plate with soft loading

Figure 16 shows a sketch of the precracked square plate (5×5) with an initial crack of length 7.5. All nodes within the
lower and upper right-hand side square of horizon size δ are clamped in both directions. All nodes within the lower
and upper left-hand side square of horizon size δ × 13δ are loaded with the force of ±4× 106N in y-direction. The
load in force refers to the so-called soft loading in the theory of fracture mechanics. The nodal spacing h was 0.2 and
the horizon δ was 4 · h = 0.8. The tolerance was set to δ = 1× 10−5. All bonds between the PD nodes crossing the
initial crack line were removed from the neighborhood Hε(xi). As material properties, we chose C =3× 108 and
β =0.1.

First, we look into the damage field while the bond stretch is still in the linear regime, see Figure 17. Note that the
damage is plotted with respect to the reference configuration D. The black line indicates the initial crack, and all
bonds intersecting this line are initially broken. The color map is chosen such that dark blue indicates no damage,
light red indicates crack growth started, and dark red indicates that the bonds are fully softened to zero. The damage
after one load step (Figure 22a) with F1 = ±4× 106N some bonds are stretched up to 1.1% to the inflection point
rc before softening starts, and we can not see the damage yet. The damage after six load steps (Figure 17b) with
F6 = ±4× 106N and the bonds are stretched around 7.2% close to the inflection point rc, but are still in the linear
regime. The damage is localized around the tip of the initial crack.

Second, we look at the damage while the bond stretch started to soften, but the crack growth has not started yet, see
Figure 18. The damage field after nine load steps (Figure 18a) with F9 = 36× 106N shows that first bond stretches
are at 140% and exceeding the inflection point rc and are softening. Here, the damage is still localized in a layer of
horizon size δ at the tip of the initial crack. The damage after eleven load steps (Figure 18b) with F11 = 44× 106N
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Figure 15: Displacement uy for soft loading at the discrete PD nodes (black = 0 and gray = max(uy)) for following
loading steps: (a) after the first load step, (b) after 10 load steps, and (c) after 20 load steps.

y

x

15

7.5

δ

δ

−F−F

F F

Figure 16: Sketch of the two-dimensional pre-cracked square plate with an initial crack from the mid of the left-hand
side to the center of the plate. All nodes in a square of horizon size δ at the lower right and upper right corner are fixed
in displacement in both directions. On the lower left and the upper left, an external force in y-direction is applied to
all nodes within a rectangle of size δ × 2δ. Adapted from [15].
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Figure 17: Plot of the damage for soft loading while the bond stretch is still in the linear regime and the material
behaves linear elastic. The color map is chosen such that dark blue indicates no damage, light red indicates crack
growth started, and dark red indicates that bonds are fully softened to zero. The damage after one load step (a) with
F1 = ±4× 106N some bonds are stretched up to 1.1% to the inflection point rc before softening starts, and we can
not see the damage yet. The damage after six load steps (b) with F6 = ±4× 106N and the bonds are stretched around
7.2% close to the inflection point rc, but are still in the linear regime. The damage is localized around the tip of the
initial crack. Note that the damage is plotted with respect to the reference configuration D. The black line indicates
the initial crack, and all bonds intersecting this line are initially broken.

0 5 10 15
Position x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Po
is

tio
n
y

0.0e+00

1.7e+00

3.3e+00

5.0e+00

6.6e+00

8.3e+00

D
am

ag
e

(a)

0 5 10 15
Position x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Po
is

tio
n
y

0.0e+00

1.7e+00

3.3e+00

5.0e+00

6.6e+00

8.3e+00

D
am

ag
e

(b)

Figure 18: Plot of the damage for soft loading while the bond stretch started to soften, but the crack growth has
not started yet. The color map is chosen such that dark blue indicates no damage, light red indicates crack growth
started, and dark red indicates that bonds are fully softened to zero. The damage field after nine load steps (a) with
F9 = 36× 106N shows that first bond stretches are at 140% and exceeding the inflection point rc and are softening.
Here, the damage is still localized in a layer of horizon size δ at the tip of the initial crack. The damage after eleven
load steps (b) with F11 = 44× 106N shows, that bonds are still softening, but crack growth has not yet begun. Note
that the color is light blue and shortly turning to light red, which indicates crack growth. The damage is plotted with
respect to the reference configuration D. The black line indicates the initial crack, and all bonds intersecting this line
are initially broken.

shows, that the bonds are still softening, but crack growth has not yet begun. Note that the color is light blue and
shortly turns to light red, which indicates crack growth.

Third, while the bond stretch is softening and unstable crack growth has begun. The crack is the location where the
strength has been surpassed and softening begins. The simulation shows that the crack (indicated by the red zone)
grows unstable with increasing load. The damage after twelve load steps with F12 = 44.4N is shown in (a) and after
21 load steps with F21 = 44.436N in (b), respectively. We had to reduce the load in force to ±4× 105N at load step
12 and further to±4× 103N for the remaining load steps, since the large force resulted in an unstable matrix. At some
point, the matrix kept unstable while decreasing the load further, which conforms with the theory that soft loading is
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Figure 19: Damage for soft loading while the bond stretch is softening and unstable crack growth has begun. The
crack is the location where the strength has been surpassed and softening begins. The simulation shows that the crack
(indicated by the red zone) grows unstable with increasing load. The damage after twelve load steps with F12 = 44.4N
is shown in (a) and after 21 load steps with F21 = 44.436N in (b), respectively. We had to reduce the load in force
since the large force resulted in an unstable matrix. At some point, the matrix kept unstable while decreasing the load
further, which conforms with the theory that soft loading is more likely to result in unstable crack growth. Note that
the damage is plotted with respect to the reference configuration D. The white line indicates the initial crack, and all
bonds intersecting this line are initially broken.

more likely to result in unstable crack growth. Figure 20 shows the corresponding displacement field in y-directions
at the discrete PD nodes (black = min(uy) and gray = max(uy)).

We like to share three remarks here. First, from the numerical perspective this behavior is seen in other quasi-static
PD methods that once the crack starts to grow and bonds soften or drop to zero, the load step needs to be reduced
to keep the condition number con(K) of the tangent stiffness matrix feasible and the matrix solvable, see Figure 12.
Second, from the physical perspective we know that once the crack starts to grow, the force gets less with the length
of the crack to drive the crack. Thus, with the same force, the crack grows faster. Third, applying the load in force,
the so-called soft loading, results that the crack only grows for few load steps and becomes unstable. The simulations
show that this is to be expected since for the soft loading most of the deformation is borne by the pre-crack opening
displacement with very small strain seen in the intact material except at the tip of the precrack where material damage
and strain is concentrated. This behavior of unstable crack growth is reflected in the theory as depicted in the R curve
in Figure 1. Once a load that intersects the R curve tangentially is reached, for example P3 in Figure 1, the crack
growth will remain unstable while increasing the load in force. However, one can find some smaller loads in force,
for example P1 and P2, where the crack would grow for a small length l. For more details about soft loading and R
curves, we refer to [3].

6.2.4 Pre-cracked plate with hard loading

For the hard loading, the geometry of the precracked square plate in Figure 16 was modified to apply the load in
displacement to the top and bottom of the plate accordingly to Algorithm 4. Figure 21a shows the modified geometry
for the hard loading. To the blue nodes, a positive load in displacement u and to the red nodes, a negative load in
displacement −u is applied. The lower and upper node of the last line of nodes are clamped to ensure a solvable /
invertible tangent stiffness matrix. In that example, the maximal load of ±6.9× 10−2 was applied to the lower and
upper line of nodes, except the last clamped node. For the prescribed displacement field, w this maximal value decayed
to 1× 10−3 to the center of the plate. Due to numerical artifacts in the solver, the prescribed displacement should not
be exactly zero at the center of the plate. Figure 21b shows the prescribed displacement field w at the first load step
and for all successive load steps, the field increased linearly. All simulation parameters and material properties from
the soft loading example were used, except the horizon ε was increased by a factor of two and ε = 8h.

Figure 22 shows the damage field while the bond stretch S is less than one, which means that all bonds are still in the
linear regime. Note that the damage is plotted with respect to the reference configuration D and the discrete nodes
in the extended domains D+ε and D−ε are not shown. The black line indicates the initial crack. The color map is
chosen such that dark blue indicates no damage, light red indicates crack growth started, and dark red indicates that
the bonds are fully softened to zero. Figure 22a shows the damage field after the first load step, and we see that some
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Figure 20: Displacement uy for soft loading at the discrete PD nodes (black = min(uy) and gray = max(uy)) for the
following loading steps: A external force F1 = ±4× 106N was applied for one load step (a), after six load steps (b),
after nine load steps (a), and 11 load steps b. An external force F2 = ±4× 105N was applied for one load step a since
the larger load resulted in an unstable matrix. After that, an external force F3 = ±4× 103N was applied for nine time
steps (b) before the matrix got unstable again.
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Figure 21: Extended domain for the hard loading: (a) of the extended domain where a load in positive displacement u
is applied to the blue colored discrete nodes and a negative load u in displacement to the red colored discrete nodes.
(b) shows the field of the prescribed displacement wy in the y-direction. For more details, we refer to Algorithm 4.
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Figure 22: Plot of the damage for hard loading while the bond stretch is still in the linear regime and the material
behaves linear elastic. The color map is chosen such that dark blue indicates no damage, light red indicates crack
growth started, and dark red indicates that bonds are fully softened to zero. The damage after one load step (a) is
localized around the center of the plate from the initial crack to the boundary. These bonds are stretched around 21%
close to the critical inflection point rc before the bond softening starts. After five load steps (b) the bonds are stretched
around 82% close to the inflection point rc, but are still in the linear regime. Since we still are in the linear regime, we
see that the damage is equally distributed. Note that the damage is plotted with respect to the reference configuration
D and the discrete nodes in the extended domains D+ε and D−ε are not shown. The black line indicates the initial
crack, and all bonds intersecting this line are initially broken.

bonds close to the center of the plate are stretched around 21% close to the critical inflection point rc before the bond
softening starts. Since we pull with the same constant displacement at the top and bottom, we expect that the stretch is
equally distributed at the beginning. In Figure 22b the damage field after five load steps is shown. Here, the bonds are
stretched around 82% close to the inflection point rc, but are still in the linear regime. Since we still are in the linear
regime, we see that the damage is equally distributed.

Figure 23 shows the damage field once the bond softening started, but the crack has not started to grow yet. Figure 23a
shows the damage field after seven load steps and the first bonds reached the inflection point rC meaning the softening
of bonds started, and we left the linear regime. However, crack growth has not yet initiated. Figure 23b shows the
damage field were bonds stretched over 190% of the inflection point and the crack growth is close to initiate. Note
that the color is light blue and shortly turns to light red, which indicates crack growth.
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Figure 23: Plot of the damage for hard loading while the bond stretch started to soften, but the crack growth has not
started yet. The color map is chosen such that dark blue indicates no damage, light red indicates crack growth started,
and dark red indicates that bonds are fully softened to zero. The damage field after seven load steps (a) shows that
first bond stretches are exactly at the inflection point rc and close before softening. Here, the damage is still localized
since we are still in the linear regime. The damage after nine load steps (b) shows, that bonds are stretched over 190%
of the inflection point and the crack growth is close to initiate. Note that the color is light blue and shortly turning to
light red, which indicates crack growth. The damage is plotted with respect to the reference configuration D and the
discrete nodes in the extended domains D+ε and D−ε are not shown. The black line indicates the initial crack, and all
bonds intersecting this line are initially broken.
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Figure 24: Plot of the damage for hard loading while the bond stretch is softening and stable crack growth has begun.
The crack is the location where the strength has been surpassed and softening begins. The simulation shows that the
crack (indicated by the red zone) grows stably with increasing load. The damage after 11 load steps is shown in (a)
and after 12 load steps in (b), respectively. Note that the damage is plotted with respect to the reference configuration
D and the discrete nodes in the extended domains D+ε and D−ε are not shown. The black line indicates the initial
crack, and all bonds intersecting this line are initially broken.

Finally, Figure 24 shows crack growth. The simulation shows that the crack (indicated by the red zone) grows stably
with increasing load. The damage after 11 load steps is shown in (a) and after 12 load steps in (b), respectively. The
simulations again show that this is to be expected since for the hard loading the pre-crack opening displacement is
small and the strain is now distributed uniformly within the intact material and stable crack growth can proceed. This
is corroborated by the theory, recall Figure 1 where an example R curve with respect to the crack length is plotted.
The dotted lines U1 to U5 sketch load in displacement. We see that these dotted lines intersect the R curve in normal
direction, which indicates that the load in displacement needs to be increased to develop the crack further. This leads
to Equation 1 and the crack growth tends to be more stable as in soft loading. For more details about soft loading and
R curves, we refer to [3].
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7 Conclusion

We showed the analytic derivation of the tangent stiffness matrix for a regularized nonlinear pairwise (RNP) potential.
First, we validated our approach against solutions from classical continuum mechanics for linear elasticity to validate
the linear regime of the RNP potential. In addition, we validated our approach against to a state-based model that
uses the standard numerical derivations for assembling the stiffness matrix. Both validations showed good agreement
for the validation of the linear regime without any damage. Furthermore, we could observe that the computational
time of our approach was faster due to the reduced cost in the assembly of the tangent stiffness matrix. However, the
Newton iterations per load step do not differ much. Second, the effect of softening bonds to the condition number
of the tangent stiffness matrix con(K) was investigated. Note that the crack growth was controlled by the user for
this example. For a pre-crack square plate, the condition number increases linear with respect to the softening bonds.
However, the crack should not grow faster than one or one and a half mesh width per load step to keep the condition
number small. Third, fracture simulations for a ASTM E8 like tension test and a pre-crack square plate were obtained
for soft loading. Here, both simulations resulted in unstable crack growth as intended for soft loading. However, for
the hard loading, we could show stable crack growth closely to the boundary. Again, the novelty of our approach is
that we soften the bonds and do not break them, which allows us analytic derivation of the analytic stiffness matrix.

To follow up on the proof of concept, the authors will implement the approach in their massive parallel C++ code to run
larger simulations, which are needed for validation with experimental results and simulating more complex structures.
Another aspect is to apply the method to three-dimensional structures. In addition, adaptive load steps are needed if
one load step results in an unstable tangent stiffness matrix. Here, the authors like to investigate a more sophisticated
choice of the reduced load steps based on numerical estimates or physical properties. Another aspect is to speed up
the assembly of the stiffness matrix using the Fire algorithm [6] or Broyden-Fletcher–Goldfarb-Shanno (BFGS) [71]
approach. A further challenge is to conduct a rigorous computational performance study of proposed methods to
compare the reductions in computational cost. Here, all methods would need to run on the same computer hardware
and one benchmark example would need to be defined for comparison. From the modeling aspect, the authors intend
to apply the same numerical approach to the state-based RNP model [45] which includes dilatation forces.
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